説明

Fターム[5F101BH16]の内容

不揮発性半導体メモリ (42,765) | 製造方法 (5,495) | 熱処理 (725)

Fターム[5F101BH16]に分類される特許

181 - 200 / 725


【課題】素子分離溝を塗布系の材料で埋め込む素子分離構造において、熱処理時に素子分離溝に大きな応力が作用することを防止する。
【解決手段】メモリセル領域に形成され第1の開口幅を有する第1の素子分離溝と、周辺回路領域に形成され第1の開口幅より大きい第2の開口幅を有する第2の素子分離溝と、第1の素子分離溝の内面に形成された第1の酸化膜と、第1の酸化膜上に形成されて前記第1の素子分離溝内に埋め込まれた第1の塗布型酸化膜と、第2の素子分離溝の内面のうちの側部に形成された第2の酸化膜と、第2の素子分離溝内の内面のうちの底部上に形成された第3の酸化膜と、第3の酸化膜上に形成されて第2の素子分離溝内に埋め込まれた第2の塗布型酸化膜とを備えた。 (もっと読む)


【課題】高温ポストアニールのステップを必要とせず、従来の低温ポリシリコン薄膜トラ
ンジスタと集積可能な、高効率の太陽電池を提供する。
【解決手段】基板と、前記基板上に形成された第1導電層と、前記第1導電層上に形成されたNドープまたはPドープの第1半導体層と、前記第1半導体層上に形成され、複数のレーザー誘起凝集シリコンナノドットを有するシリコンリッチ誘電体層と、前記シリコンリッチ誘電体層上に形成されたNドープまたはPドープの第2半導体層と、前記第2半導体層上に形成された第2導電層と、を含み、前記基板、前記第1導電層、および前記第1半導体層と、前記第2半導体層および前記第2導電層と、のいずれかは、透明材料からなることを特徴とする太陽電池。 (もっと読む)


【課題】リフレッシュ時間のマージンを十分に確保しつつ、微細化が可能な半導体記憶装置を提供することを目的とする。
【解決手段】メモリセルを、読み出しトランジスタ、書き込みトランジスタ、キャパシタにより構成する。かかる構成において、キャパシタは読み出しトランジスタのゲートにかかる電位を制御する。書き込みトランジスタは、データの書き込みおよび消去を制御するとともに、キャパシタに蓄積された電荷が、該書き込みトランジスタのリーク電流で消失しないように、オフ時の電流が小さいトランジスタで構成する。書き込みトランジスタを構成する半導体層は、読み出しトランジスタのゲート電極とソース領域の間を架橋するように設ける。キャパシタは、読み出しトランジスタのゲート電極と重畳するように設ける。 (もっと読む)


【課題】ウィンドウ特性の向上とリテンション特性の向上とを同時に図ることのできる半導体装置の製造方法を提供する。
【解決手段】シリコン基板上に、トンネル酸化膜、チャージトラップ膜、ブロッキング酸化膜、ゲート電極が、下側からこの順で形成された積層構造を有する半導体装置を製造する方法であって、前記ブロッキング酸化膜を形成する工程が、前記チャージトラップ膜上に結晶質膜を形成する結晶質膜形成工程と、前記結晶質膜の上層にアモルファス膜を形成するアモルファス膜形成工程とを具備し、前記結晶質膜形成工程と、前記アモルファス膜形成工程とを同一の処理容器内で連続的に行う。 (もっと読む)


【課題】データの保持期間を長くする半導体装置又は半導体記憶装置を提供する。
【解決手段】一対の不純物領域を有する第1の半導体層152aと、第1の半導体層と同じ材料であり、第1の半導体層と離間する第2の半導体層152bと、第1、第2の半導体層の上に設けられた第1の絶縁層153と、第1の絶縁層153を介して第1の半導体層に重畳する第1の導電層154と、第1の絶縁層153を介して第1の導電層に重畳し、第1の半導体層と異なる材料である第3の半導体層156と、第1の導電層及び第3の半導体層に電気的に接続される第2の導電層157bと、第3の半導体層156に電気的に接続され、第2の導電層と同じ材料である第3の導電層157aと、第3の半導体層、第2の導電層、及び第3の導電層の上に設けられた第2の絶縁層158と、第2の絶縁層を介して第3の半導体層に重畳する第4の導電層159と、を含む。 (もっと読む)


【課題】パーコレーションリークを抑制可能な構造を有する半導体装置を提供する。
【解決手段】ソース領域18、ドレイン領域18及びチャネル領域を有する半導体領域と、チャネル領域上に形成された第1のトンネル絶縁膜12と、第1のトンネル絶縁膜上に形成され、エネルギー障壁を有する障壁層13と、障壁層上に形成された第2のトンネル絶縁膜14と、第2のトンネル絶縁膜上に形成され、SiY(SiO2)X(Si341-X (ただし、0≦X≦1、Y>0)で表される絶縁膜を具備する電荷蓄積部15と、電荷蓄積部上に形成され、エネルギー障壁の高さを制御する制御電極17とを備え、X及びYは、[2×2X/(4−2X)+(4−4X)/(4−2X)]×[Y/(Y+7−4X)]≧0.016 なる関係を満たし、障壁層は、クーロンブロッケイド条件を満たす導電性微粒子を含んだ微粒子層で形成されている。 (もっと読む)


【課題】書き込み特性の向上を図る。
【解決手段】半導体記憶装置の製造方法は、基板10上に、トンネル絶縁膜11を形成し、前記トンネル絶縁膜上に、導電体で構成される電荷蓄積層12を形成し、前記電荷蓄積層、前記トンネル絶縁膜、および前記基板を加工して、前記基板内に、前記電荷蓄積層および前記トンネル絶縁膜を分離する素子分離溝22を形成し、前記素子分離溝内に、上面が前記電荷蓄積層の下面より高く上面より低くなるように素子分離絶縁膜13を埋め込み、前記電荷蓄積層の表面に形成された自然酸化膜30を除去し、前記素子分離絶縁膜および前記電荷蓄積層の表面に、絶縁膜14を形成し、前記自然酸化膜の除去から前記絶縁膜の形成までが、その内部の酸素濃度がコントロールされた製造装置内で行われる。 (もっと読む)


【課題】二酸化シリコンとシリコンとの良好な界面特性を有し、絶縁基板上に作製された半導体素子を提供する。
【解決手段】半導体素子10は、多結晶シリコン膜4と、絶縁膜5,9と、金属量子ドット8とを備える。多結晶シリコン膜4は、絶縁基板1上に配置され、アモルファスシリコン膜を熱プラズマジェットによってアニールして作製される。絶縁膜5は、SiOからなり、多結晶シリコン膜4に接して多結晶シリコン膜4上に形成される。金属量子ドット8は、Ptからなり、Pt薄膜を熱プラズマジェットによってアニールして絶縁膜5上に形成される。絶縁膜9は、SiOからなり、金属量子ドット8を覆うように絶縁膜5上に形成される。 (もっと読む)


【課題】フラッシュメモリセルと低電圧動作トランジスタや高電圧動作トランジスタを集積化し、異種トランジスタを混載する半導体装置の製造法を提供する。
【解決手段】半導体装置の製造方法は、(a)トンネル絶縁膜、Fゲート電極膜、電極間絶縁膜を堆積したFゲート電極構造を形成し(b)ゲート絶縁膜を形成し(c)導電膜、エッチストッパ膜を堆積し(d)エッチストッパ膜、導電膜をエッチングした積層ゲート電極構造を形成し(e)積層ゲート電極構造の側壁上に第1絶縁膜を形成し(f)積層ゲート電極側壁上に第1サイドウォールスペーサ層を形成し(g)エッチストッパ層を除去し(h)他の領域の導電層から、ゲート電極構造を形成し(i)積層ゲート電極構造、ゲート電極構造側壁上に第2サイドウォールスペーサを形成し(j)希弗酸水溶液で半導体基板表面を露出し(k)半導体基板表面にシリサイド層を形成する。 (もっと読む)


【課題】酸化物半導体を用いたトランジスタを用いて、高速動作が可能で、信頼性も高い半導体装置を歩留まりよく作製する。
【解決手段】絶縁膜上にマスクを形成し、該マスクを微細化する。微細化されたマスクを用いて凸部を有する絶縁層を形成し、これを用いて、微細なチャネル長(L)を有するトランジスタを形成する。また、トランジスタを作製する際に、微細化された凸部の上面と重なるゲート絶縁膜の表面に平坦化処理を行う。これにより、トランジスタの高速化を達成しつつ、信頼性を向上させることが可能となる。また、絶縁膜を凸部を有する形状とすることで、自己整合的にソース電極及びドレイン電極を形成することができ、製造工程の簡略化、また生産性を向上させることが可能となる。 (もっと読む)


【課題】メモリデータを外部回路を用いずに、コピーを行う半導体記憶装置を提供することを課題とする。
【解決手段】複数のメモリセルの第一端子が共通接続されたビット線と、ビット線に接続され、読み出し時にビット線を特定の電位にプリチャージするプリチャージ回路と、メモリセルから読み出したデータ、もしくはメモリセルへの書き込みデータを一時的に保持する容量素子を有するデータ保持回路と、データ保持回路で保持しているデータの反転データをビット線に出力する反転データ出力回路とを有し、反転データ出力回路は、データ保持回路で保持しているデータの反転データの出力を制御する手段を有する構成とする。 (もっと読む)


【課題】優れた結晶性を有する酸化物半導体膜を作製する。
【解決手段】酸化物半導体の膜を形成するに際し、基板を第1の温度以上第2の温度未満に加熱しつつ、基板の、典型的な長さが1nm乃至1μmの部分だけ、第2の温度以上の温度に加熱する。ここで、第1の温度とは、何らかの刺激があれば結晶化する温度であり、第2の温度とは、刺激がなくとも自発的に結晶化する温度である。また、典型的な長さとは、その部分の面積を円周率で除したものの平方根である。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】トランジスタのオフ電流を十分に小さくすることができる材料、例えば、ワイドギャップ半導体である酸化物半導体材料を用いて半導体装置を構成する。トランジスタのオフ電流を十分に小さくすることができる半導体材料を用いることで、長期間にわたって情報を保持することが可能である。また、書き込みワード線に電気的に接続する容量素子またはノイズ除去回路を設けることで、駆動回路等からメモリセルに入力されうる制御信号とは異なる短パルスやノイズ等の信号を低減または除去することができる。これにより、メモリセルが有するトランジスタが瞬間的にオンすることでメモリセルに書き込まれたデータが消失してしまう誤動作を防ぐことが可能である。 (もっと読む)


【課題】 トンネル絶縁膜を有するトランジスタにおいて、トンネル絶縁膜の電子トラップが増加することによるトランジスタの電気特性の劣化を抑制することが可能な半導体装置及びその製造方法を提供する
【解決手段】 実施形態に係る半導体装置は、半導体基板1と、前記半導体基板1上に形成されたトンネル絶縁膜2を含むトランジスタと、前記トランジスタの上方に形成されたBを含むシリコン窒化膜7と、を備える。前記シリコン窒化膜7は、B−N結合を有する。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな半導体装置を提供する。また、回路規模を縮小し、書き込み、読み出しに対する信頼性を向上させる。
【解決手段】酸化物半導体層を含むトランジスタを用いたメモリセルに対して、ベリファイ動作と、読み出しを行う際に、異なるしきい値電圧を示すデュアルゲート駆動のトランジスタを抵抗素子として用いることで、一系統の基準電位回路のみで安定したベリファイ動作、及び読み出し動作が可能となる。 (もっと読む)


【課題】信頼性の高い書き込み動作を高速に行うことのできる半導体装置の駆動方法を提供する。
【解決手段】多値書き込みを行う半導体装置の駆動方法において、酸化物半導体層を含むトランジスタを用いたメモリセルに、書き込みを行う書き込みトランジスタのオンオフを制御する信号線を、ビット線に沿うように配置し、読み出し動作時に容量素子に与える電圧を書き込み時にも利用して、多値書き込みを行う。書き込みを行いながらビット線の電位を検知することによって、書き込みベリファイ動作を行うことなく、書き込みデータに対応した電位がフローティングゲートに正常に与えられたかを確認することができる。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな駆動方法を提供する。また、新たな駆動方法により、メモリ素子への書き込み電位のばらつきを低減し、信頼性を向上させる。
【解決手段】半導体装置の駆動方法において、書き込み電位を段階的に上昇させて、同時に読み出し電流を確認し、読み出し電流の結果を書き込み電位に利用して書き込みを行う。つまり、正しい電位で書き込みが行われたか確認しながら書き込みを行うことで、信頼性の高い書き込みを行うことが可能である。 (もっと読む)


【課題】消去電圧を低減させることができる半導体記憶装置を提供することを課題とする。
【解決手段】チャネル形成領域を有する半導体膜と、半導体膜のチャネル形成領域上に、第1の絶縁層、浮遊ゲート電極、第2の絶縁層、制御ゲート電極を設ける。浮遊ゲート電極材料には、半導体基板よりも仕事関数があまり大きくならない窒化チタンとすることにより、消去電圧低減を図ったものである。なお、上記窒化チタンのチタン組成比は、低消費電力化及び誤書き換え耐性の観点から56atomic%以上75atomic%以下がよい。 (もっと読む)


【課題】メモリセルの保持データが多値化された場合であっても正確なデータを保持することが可能なメモリセルを有する半導体装置を供給すること。
【解決手段】半導体装置に、酸化物半導体によってチャネル領域が形成されるトランジスタのソース及びドレインの一方が電気的に接続されたノードにおいてデータの保持を行うメモリセルを設ける。なお、当該トランジスタのオフ電流(リーク電流)の値は、極めて低い。そのため、当該ノードの電位を所望の値に設定後、当該トランジスタをオフ状態とすることで当該電位を一定又はほぼ一定に維持することが可能である。これにより、当該メモリセルにおいて、正確なデータの保持が可能となる。 (もっと読む)


【課題】酸化膜の窒化速度を向上させる。
【解決手段】ガス流量制御部により処理ガス中の水素含有ガスと窒素含有ガスとの流量をそれぞれ調整し、処理ガス中に含まれる水素原子の数と窒素原子の数との総数に対する水素原子の数の比率Rを0%<R≦80%とする工程と、ガス供給部により処理ガスを処理室内に供給する工程と、プラズマ生成部により励起した処理ガスで酸化膜が形成された基板を処理する工程と、を有する。 (もっと読む)


181 - 200 / 725