説明

Fターム[5F102GD10]の内容

接合型電界効果トランジスタ (42,929) | ゲート接合のタイプ (3,160) | その他(MOS、擬似MIS) (744)

Fターム[5F102GD10]に分類される特許

121 - 140 / 744


【課題】定電流動作が可能な窒化物半導体装置を提供する。
【解決手段】窒化物半導体を含む半導体層30と、ソース電極40と、ドレイ電極50と、第1ゲート電極10と、第2ゲート電極20と、を備えた窒化物半導体装置111が提供される。ソース電極40とドレイン電極50は、主面上に設けられ、半導体層とオーミック性接触を形成し、互いに離間する。第1ゲート電極10は、主面上においてソース電極40とドレイン電極50との間に設けられる。第2ゲート電極20は、主面上においてソース電極40と第1ゲート電極10との間に設けられる。ソース電極40と第1ゲート電極10との間の電位差が0ボルトのときに、半導体層30のうちの第1ゲート電極に対向する部分は導通する。第1ゲート電極10は、第2ゲート電極20に印加される電圧に応じた定電流をスイッチングする。 (もっと読む)


【課題】DWB法における貼り合わせ時にIII-V族化合物半導体層が受けるダメージを小さくするとともに、受けたダメージの影響および界面準位の影響を低く抑え、高いキャリアの移動度を有するIII-V族MISFETを提供する。
【解決手段】ベース基板102と第1絶縁体層104と半導体層106とを有し、ベース基板102、第1絶縁体層104および半導体層106が、ベース基板102、第1絶縁体層104、半導体層106の順に位置し、第1絶縁体層104が、アモルファス状金属酸化物またはアモルファス状金属窒化物からなり、半導体層が、第1結晶層108および第2結晶層110を含み、第1結晶層108および第2結晶層110が、ベース基板102の側から、第1結晶層108、第2結晶層110の順に位置し、第1結晶層108の電子親和力Ea1が、第2結晶層110の電子親和力Ea2より大きい半導体基板を提供する。 (もっと読む)


【課題】双方向で電流の流れを制御(ON/OFF制御)することができる半導体素子を提供すること。
【解決手段】チャネル層8と障壁層10が積層された半導体へテロ接合と、前記半導体へテロ接合の上方に設けられたゲート12と、前記ゲートの両側に設けられた第1および第2のソースドレイン端子14a,14bと、前記第1のソースドレイン端子と前記ゲートの間に設けられた第1のフィールプレート16aと、前記第2のソースドレイン端子と前記ゲートの間に設けられた第2のフィールドプレート16bとを有すること。 (もっと読む)


【課題】半導体装置内に保護ダイオードをレイアウトする。
【解決手段】半導体装置は、電界効果トランジスタ11と、電界効果トランジスタ11の形成領域30に隣接するダイオード形成領域12とを備え、ダイオード形成領域12はトランジスタの形成領域30と半導体基板上で絶縁され、ダイオード形成領域12内において、電界効果トランジスタ11のゲート電極1がバス配線7を介して半導体基板とショットキー接合とオーミック接合のいずれか又は両方の接合をする第1のダイオード電極20と、電界効果トランジスタ11のソース電極2がパッド5を介して半導体基板とオーミック接合とショットキー接合のいずれか又は両方の接合をする第2のダイオード電極21とを備えることによってゲート電極1とソース電極2間にダイオードが形成されたことを特徴とする。 (もっと読む)


【課題】高品質なIII族窒化物を結晶成長させ、高品質な半導体装置を得ることが可能な半導体装置の製造方法を提供する。
【解決手段】窒化サファイア基板をアルカリエッチングし、窒化サファイア基板を清浄化する。その後、III族窒化物を結晶成長させることにより、極めて高品質なN極性結晶を得ることができる。 (もっと読む)


【課題】 p型のIII族窒化物半導体層に貫通孔が形成されており、その貫通孔をn型のIII族窒化物半導体が充填している場合、貫通孔を充填しているn型のIII族窒化物半導体の不純物濃度が濃くなり、p型のIII族窒化物半導体とn型のIII族窒化物半導体の接合界面を電流が流れやすくなり、耐圧が低くなりやすい。
【解決手段】 p型のIII族窒化物半導体層8に不純物濃度の分布を設ける。貫通孔8cに臨んでいる範囲8bでは不純物濃度を薄くし、貫通孔8cから離反している範囲8aでは不純物濃度を濃くする。半導体装置のオフ時に、空乏層が不純物濃度の薄い範囲8bに広く拡がり、必要な耐圧を確保できる。 (もっと読む)


【課題】電子トラッピングによる、DC特性とRF特性の差を低減する。
【解決手段】トランジスタ10は、チャネル層を有する活性領域を含み、この活性領域と接触してソースおよびドレイン電極20,22が形成され、このソース電極とドレイン電極との間にあって活性領域と接触したゲート24が形成される。ゲートとドレイン電極との間およびゲートとソース電極との間の複数の活性領域の表面の少なくとも一部分上にスペーサ層28がある。このスペーサ層上にはフィールドプレート32があり、活性領域の上のスペーサ上をドレイン電極に向かって延びる。このフィールドプレートはさらに、活性領域の上のスペーサ層上をソース電極に向かって延びる。少なくとも1つの導電性経路34,36が、フィールドプレートをソース電極またはゲートに電気的に接続する。 (もっと読む)


【課題】バッファ層の結晶成長時に高抵抗化の不純物をドーピングすることなく上層の化合物半導体の結晶品質を保持するも、バッファ層を高抵抗化してオフリーク電流を確実に抑制し、信頼性の高い高耐圧の化合物半導体装置を実現する。
【解決手段】化合物半導体積層構造2の裏面から、化合物半導体積層構造2の少なくともバッファ層2aに不純物、例えばFe,C,B,Ti,Crのうちから選ばれた少なくとも1種類を導入し、バッファ層2aの抵抗値を高くする。 (もっと読む)


【課題】半導体基板の洗浄をより効率的に行うことができる半導体装置の製造方法及び半導体基板の洗浄方法等を提供する。
【解決手段】半導体基板20をその主面を鉛直方向及び水平方向から傾斜させて保持し、酸を含む洗浄液26に半導体基板20を浸漬する。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】ゲートとフィールドプレートとを有するトランジスタのスイッチング速度を速くする。
【解決手段】ゲートとフィールドプレートとを有するトランジスタ4を制御する制御回路2であって、トランジスタを駆動するタイミングを検出する検出回路38と、駆動するタイミングに応答してゲートを駆動する第1の駆動タイミングとフィールドプレートを駆動する第2の駆動タイミングとを制御するタイミング制御回路40と、第1の駆動タイミングに応答してゲートを駆動し第2の駆動タイミングに応答してフィールドプレートを駆動する駆動回路42とを有する。 (もっと読む)


【課題】ゲート部におけるリーク電流が低減できる反面、プロセス上の制約があるため製造が困難で、ゲートリーク電流を安定して低減させることが困難だった。
【解決手段】基板と、前記基板上に形成され且つ二次元キャリアガスを有する半導体機能層と、前記半導体機能層上において互いに離間して形成される第1及び第2の主電極と、前記半導体機能層上における前記第1及び第2の主電極間に形成される制御電極と、前記半導体機能層と前記制御電極との間に形成される金属酸化膜と、を備え、
前記金属酸化膜と前記半導体機能層との接合界面における結晶格子は不連続であることを特徴とする半導体装置。 (もっと読む)


【課題】比較的簡易な構成で、化合物半導体素子の低抵抗伝送を達成すると共に、半導体素子の十分な高放熱性を低コストで実現する半導体装置を得る。
【解決手段】表面に接続電極11が形成された化合物半導体素子10と、表面に接続電極28a及び凹部21が形成された樹脂回路基板20と、凹部21内で化合物半導体素子10を固定する金属材料32,33とを有する半導体パッケージであり、化合物半導体素子10は、凹部21内において、接続電極11,28aが近接するように偏倚した位置に固定されており、接続電極11,28aがワイヤ接続されており、金属材料32は、化合物半導体素子10の底面から側面の少なくとも一部まで被覆する。 (もっと読む)


【課題】ゲート電極の電界集中を緩和して耐圧の更なる向上を実現することに加え、デバイス動作速度を向上させ、アバランシェ耐量が大きく、サージに対して強く、例えばインバータ回路等に適用する場合に外部のダイオードを接続することを要せず、ホールが発生しても安定動作を得ることができる信頼性の高い高耐圧の化合物半導体装置を実現する。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成されたフィールドプレート用リセス2Dをp型半導体で埋め込み、化合物半導体積層構造2とp型半導体層8aで接触するフィールドプレート8を形成する。 (もっと読む)


【課題】電極材料が拡散するのを抑制し、特性の向上を実現する。
【解決手段】半導体装置を、ゲート電極3とゲート絶縁膜2との間、Al含有オーミック電極4、5とAu配線9との間、及び、ゲート電極3の下方及びAl含有オーミック電極4、5の上方、のいずれかに設けられ、第1TaN層6A、Ta層6B、第2TaN層6Cを順に積層した構造を有する電極材料拡散抑制層6を備えるものとする。 (もっと読む)


【課題】リセス等の形成に伴う処理で生じる残渣を適切に除去することができる化合物半導体装置の製造方法及び洗浄剤を提供する。
【解決手段】化合物半導体積層構造1を形成し、化合物半導体積層構造1の一部を除去して凹部4を形成し、洗浄剤を用いて凹部4内の洗浄を行う。洗浄剤は、凹部4内に存在する残渣と相溶する基材樹脂と溶媒とを含む。 (もっと読む)


【課題】GaN系の材料により形成されるHEMTの信頼性を高める。
【解決手段】基板10の上方に形成された窒化物半導体からなる半導体層21〜24と、半導体層21〜24の上方に、金を含む材料により形成された電極41と、電極41の上方に形成されたバリア膜61と、半導体層21〜24の上方に、シリコンの酸化膜、窒化膜、酸窒化物のいずれかを含む材料により形成された保護膜50と、を有する。 (もっと読む)


【課題】単色性が強く、高効率にテラヘルツ波を発生または検出することができるテラヘルツ波素子を提供する。
【解決手段】テラヘルツ波素子100は、バッファ層102と電子供給層104とのヘテロ接合を含む半導体多層構造101〜104と、半導体多層構造101〜104上に形成されたゲート電極105、ドレイン電極106およびソース電極107とを有し、ゲート電極105とヘテロ接合界面との間の静電容量は、ドレインとソースとの間を流れる電流の方向と直交する方向に周期的に、第1の静電容量と第1の静電容量の値と異なる第2の静電容量とを有している。 (もっと読む)


【課題】歩留りが高く信頼性の高いパッケージングされた半導体装置を提供する。
【解決手段】電極が形成された半導体チップと、前記電極に対応するリードと、前記電極と前記リードとを接続する金属配線と、前記金属配線と前記電極との接続部分及び前記金属配線と前記リードとの接続部分を覆う第1の樹脂部と、前記金属配線、前記第1の樹脂部及び前記半導体チップを覆う第2の樹脂部と、を有することを特徴とする半導体装置により上記課題を解決する。 (もっと読む)


【課題】閾値変動を抑えつつ、ゲートリーク電流を低減させた窒化物半導体HEMT。
【解決手段】窒化物系半導体で形成された半導体層と、半導体層上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極と、を備え、ゲート絶縁膜は、酸窒化膜で形成された第1絶縁膜と、タンタル、ハフニウム、ハフニウムアルミニウム、ランタン、およびイットリウムの少なくとも1つを含む第2絶縁膜と、を有する半導体装置を提供する。 (もっと読む)


121 - 140 / 744