説明

Fターム[5F110GG58]の内容

薄膜トランジスタ (412,022) | チャネル半導体層 (67,982) | 製法 (16,298) | 後処理 (1,790)

Fターム[5F110GG58]に分類される特許

121 - 140 / 1,790


【課題】トランジスタに用いることが可能な、低抵抗領域を有する酸化物半導体膜を提供する。また、高速動作が可能な、酸化物半導体膜を用いたトランジスタを生産性高く提供する。また、高速動作が可能な、酸化物半導体膜を用いたトランジスタを有する高性能の半導体装置を生産性高く提供する。
【解決手段】酸化物半導体膜上に還元性を有する膜を成膜し、次に酸化物半導体膜から還元性を有する膜へ酸素の一部を移動させ、次に還元性を有する膜を介して酸化物半導体膜に不純物を注入した後、還元性を有する膜を除去することで、酸化物半導体膜に低抵抗領域を形成する。 (もっと読む)


【課題】不揮発性を有し、書き込み回数に制限のない新たな構造の半導体装置を提供する。
【解決手段】複数の記憶素子が直列に接続され、複数の記憶素子の一は、第1〜第3のゲート電極、第1〜第3のソース電極、および第1〜第3のドレイン電極を有する第1〜第3のトランジスタを有し、第2のトランジスタは酸化物半導体層を含んで構成され、第1のゲート電極と、第2のソース電極または第2のドレイン電極の一方とは、電気的に接続され、第1の配線と、第1のソース電極と、第3のソース電極とは、電気的に接続され、第2の配線と、第1のドレイン電極と、第3のドレイン電極とは、電気的に接続され、第3の配線と、第2のソース電極または第2のドレイン電極の他方とは、電気的に接続され、第4の配線と、第2のゲート電極とは、電気的に接続され、第5の配線と、第3のゲート電極とは電気的に接続された半導体装置。 (もっと読む)


【課題】酸化物半導体層を用いる薄膜トランジスタにおいて、酸化物半導体層と電気的に接続するソース電極層またはドレイン電極層との接触抵抗の低減を図る。
【解決手段】ソース電極層またはドレイン電極層を2層以上の積層構造とし、その積層のうち、酸化物半導体層と接する一層104a、104bを薄いインジウム層または薄いインジウム合金層とする。なお、酸化物半導体層103は、インジウムを含む。二層目以降のソース電極層105aまたはドレイン電極層105bの材料は、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金等を用いる。 (もっと読む)


【課題】高速動作が可能であり、且つ消費電力の低減が可能な半導体装置を提供する。
【解決手段】酸化物半導体を有するトランジスタを備える半導体装置において、ゲート電圧が負のときの電流が小さいトランジスタの酸化物半導体膜と、電界効果移動度が高くオン電流が大きいトランジスタの酸化物半導体膜において、酸素濃度が異なる。代表的には、ゲート電圧が負のときの電流が小さいトランジスタの酸化物半導体膜と比較して、電界効果移動度が高くオン電流が大きいトランジスタの酸化物半導体膜の酸素濃度が低い。 (もっと読む)


【課題】ノーマリーオフのスイッチング素子を実現するトランジスタ構造およびその作製方法を提供する。トランジスタのオン特性を向上させて、半導体装置の高速応答、高速駆動を実現する構成およびその作製方法を提供する。信頼性の高い半導体装置を提供する。
【解決手段】半導体層、ソース電極層又はドレイン電極層、ゲート絶縁膜、及びゲート電極層が順に積層されたトランジスタにおいて、該半導体層としてインジウム、ガリウム、亜鉛、及び酸素の4元素を少なくとも含み、該4元素の組成比を原子百分率で表したとき、インジウムの割合が、ガリウムの割合及び亜鉛の割合の2倍以上である酸化物半導体層を用いる。 (もっと読む)


【課題】成膜直後の基板面内における酸化物半導体膜の抵抗値を効率よく測定することができる膜抵抗値測定方法を提供する。
【解決手段】測定対象物Wを基板表面に成膜した酸化物半導体膜とし、成膜直後の酸化物半導体膜を局所的に加熱する工程と、この加熱した領域で抵抗値測定用プロープ6を用いて抵抗値を測定する工程とを含む。酸化物半導体膜として、例えばIn−Ga−Zn−O系材料からなる透明酸化物半導体膜を用いることができる。 (もっと読む)


【課題】400℃以下で作製可能であり、30cm/Vs以上の高い電界効果移動度と、ノーマリーオフとなる低いオフ電流を両立する薄膜トランジスタを提供する。
【解決手段】ゲート電極16と、ゲート電極と接するゲート絶縁膜15と、In(x)Zn(1−x)O(y)(0.4≦x≦0.5,y>0)で表される第1の領域A1及びIn(a)Ga(b)Zn(c)O(d)(b/(a+b)>0.250,c>0,d>0)で表され、ゲート電極に対して第1の領域よりも遠くに位置する第2の領域A2を含み、ゲート絶縁膜を介してゲート電極に対向配置されている酸化物半導体層12と、互いに離間して配置されており、酸化物半導体層を介して導通可能なソース電極13及びドレイン電極14と、を有する薄膜トランジスタ1。 (もっと読む)


【課題】良好な特性を維持しつつ、微細化を達成した、酸化物半導体を用いた半導体装置を提供することを目的の一とする。
【解決手段】酸化物半導体層と、酸化物半導体層と接するソース電極及びドレイン電極と、酸化物半導体層と重なるゲート電極と、酸化物半導体層とゲート電極との間に設けられたゲート絶縁層と、酸化物半導体層に接して設けられた絶縁層と、を有し、酸化物半導体層は、該酸化物半導体層の端面において、ソース電極またはドレイン電極と接し、且つ該酸化物半導体層の上面において、絶縁層を介して、ソース電極またはドレイン電極と重なる半導体装置である。 (もっと読む)


【課題】簡便な方法で、結晶化部分を有する半導体基材を得る。
【解決手段】ベース基材と;該ベース基材上に配置された、アモルファス半導体材料由来の結晶性半導体層とを少なくとも含む半導体基材。結晶性半導体層の表面近傍において、SIMSによりGeが検出可能である。 (もっと読む)


【課題】400℃以下で作製可能であり、20cm/Vs以上の高い電界効果移動度と、ノーマリーオフとなる低いオフ電流を両立する薄膜トランジスタを提供する。
【解決手段】ゲート電極16と、ゲート絶縁膜15と、In(a)Ga(b)Zn(c)O(d)(a>0,b>0,c>0,a+b+c=1,d>0)で表され、a≦37/60、b≦91a/74−17/40、b≧3a/7−3/14、c≦3/5を満たす第1の領域A1及びIn(p)Ga(q)Zn(r)O(s)(q/(p+q)>0.250,p>0,q>0,r>0,s>0)で表され、ゲート電極に対して第1の領域よりも遠くに位置する第2の領域A2を含み、ゲート絶縁膜を介してゲート電極に対向配置されている酸化物半導体層と、酸化物半導体層を介して導通可能なソース電極13及びドレイン電極14と、を有する薄膜トランジスタ1。 (もっと読む)


【課題】動作速度を向上させる。
【解決手段】第1のソース及び第1のドレインの一方に画像信号線を介して画像信号が入力され、第1のゲートに第1の走査信号線を介して第1の走査信号が入力される第1のトランジスタ101と、2つの電極のうちの一方の電極が第1のトランジスタの第1のソース及び第1のドレインの他方に電気的に接続される容量素子102と、第2のソース及び第2のドレインの一方が第1のトランジスタ101の第1のソース及び第1のドレインの他方に電気的に接続され、第2のゲートに第2の走査信号線を介して第2の走査信号が入力される第2のトランジスタ103と、第1の電極が第2のトランジスタの第2のソース及び第2のドレインの他方に電気的に接続される液晶素子104と、を備え、画像信号線としての機能を有する導電層及び第2の走査信号が入力される走査信号線としての機能を有する導電層は、互いに離間し、且つ並置されている。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、高信頼性化する。
【解決手段】インジウム、チタン、及び亜鉛を含む酸化物半導体層をチャネル形成領域とするトランジスタ、及び該トランジスタを含む半導体装置を提供する。酸化物半導体層に接するバッファ層としては、チタン、アルミニウム、ガリウム、ジルコニウム、ハフニウム、又は希土類元素から選択された一以上の元素の酸化物を含む金属酸化層を適用することができる。 (もっと読む)


【課題】酸化物半導体膜を用いたTFTでは、ソース・ドレイン電極のプラズマエッチング後に酸化物半導体膜の表面領域に酸素欠損が生成されオフ電流が高くなってしまうという課題があった。
【解決手段】TFT101は、絶縁性基板10上のゲート電極11、ゲート電極11上のゲート絶縁膜12、ゲート絶縁膜12上のインジウムを含む酸化物半導体膜13、及び、酸化物半導体膜13上のソース・ドレイン電極14を有する。そして、酸化物半導体膜13のソース・ドレイン電極14が重ならない部分の表面層15におけるXPSスペクトルのインジウム3d軌道起因のピーク位置が、表面層15の下部に存在する酸化物半導体領域におけるXPSスペクトルのインジウム3d軌道起因のピーク位置よりも、高エネルギ側にシフトしている。 (もっと読む)


【課題】短チャネル効果を抑制させつつ微細化を行い、低消費電力化した半導体装置を提供する。
【解決手段】重畳する第1のトランジスタおよび第2のトランジスタからなる第1のインバータと、重畳する第3のトランジスタおよび第4のトランジスタからなる第2のインバータと、第1の選択トランジスタと、第2の選択トランジスタと、を有し、第1のインバータの出力端子、第2のインバータの入力端子および第1の選択トランジスタのソースおよびドレインの一方が接続され、第2のインバータの出力端子、第1のインバータの入力端子および第2の選択トランジスタのソースおよびドレインの一方が接続されることによって、微細化したSRAM回路を形成する。 (もっと読む)


【課題】安定した電気的特性を有する酸化物半導体を用いた半導体装置を提供する。
【解決手段】フッ素や塩素に代表されるハロゲン元素により、酸化物半導体層112に含まれる水素や水分(水素原子や、HOなど水素原子を含む化合)などの不純物を、酸化物半導体層112より排除し、上記酸化物半導体層112中の不純物濃度を低減する。ハロゲン元素は酸化物半導体層112と接して設けられるゲート絶縁層132及び/又は絶縁層116に含ませて形成することができ、またハロゲン元素を含むガス雰囲気下でのプラズマ処理によって酸化物半導体層112に付着させてもよい。 (もっと読む)


【課題】結晶性の高い酸化物半導体をチャネル層に用いて、優れた特性を有する半導体装置を提供することを課題の一つとする。また、下地膜の平坦性を向上させた半導体装置を提供する。
【解決手段】トランジスタの下地膜に化学機械研磨処理を行い、化学機械研磨処理した後、プラズマ処理を行うことで、下地膜の中心線平均粗さRa75値を、0.1nm未満とすることができる。プラズマ処理及び化学機械研磨処理の組み合わせにより得られた平坦性を有する下地膜上に結晶性の高い酸化物半導体層を形成することで、半導体装置の特性向上を図る。 (もっと読む)


【課題】用途に合わせて要求される電気的特性を備えた酸化物半導体層を用いたトランジスタ、及び該トランジスタを有する半導体装置を提供する。
【解決手段】ソース電極層又はドレイン電極層に接する第1の酸化物半導体層と、第1の酸化物半導体層上に設けられ第1の酸化物半導体層とは異なるエネルギーギャップを有する第2の酸化物半導体層と、を少なくとも含む酸化物半導体積層を用いてトランジスタを構成する。第1の酸化物半導体層と第2の酸化物半導体層とは互いに異なるエネルギーギャップを有すればよく、その積層順は問わない。 (もっと読む)


【課題】用途に合わせて要求される電気的特性を備えた酸化物半導体層を用いたトランジスタ、及び該トランジスタを有する半導体装置を提供する。
【解決手段】少なくともゲート電極層、ゲート絶縁膜、及び半導体層が順に積層されたボトムゲート型のトランジスタにおいて、該半導体層としてエネルギーギャップの異なる少なくとも2層の酸化物半導体層を含む酸化物半導体積層を用いる。酸化物半導体積層には、酸素又は/及びドーパントを導入してもよい。 (もっと読む)


【課題】薄膜トランジスタのしきい値電圧を制御するため、薄膜トランジスタのチャネル形成領域の上下にゲート絶縁膜を介してゲート電極を設けた際に、プロセス数の増加を招くことなく、電気特性の優れた薄膜トランジスタを備えた半導体装置を得る。
【解決手段】酸化物半導体層131の上方に設ける第2のゲート電極133を形成するとき、酸化物半導体層131のパターニングと同時に形成することで、第2のゲート電極133の作製に要するプロセス数の増加を削減する。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、高信頼性化する。
【解決手段】酸化物半導体層を含むトランジスタにおいて、酸化物半導体層の上面部及び下面部に、酸化物半導体層と同種の成分でなるバッファ層が接して設けられたトランジスタ、及び該トランジスタを含む半導体装置を提供する。酸化物半導体層に接するバッファ層としては、アルミニウム、ガリウム、ジルコニウム、ハフニウム、又は希土類元素から選択された一以上の元素の酸化物を含む膜を適用することができる。 (もっと読む)


121 - 140 / 1,790