説明

Fターム[5F140BE13]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート絶縁膜の製造 (6,009) | ゲート絶縁膜を形成した後の処理 (810)

Fターム[5F140BE13]の下位に属するFターム

Fターム[5F140BE13]に分類される特許

1 - 20 / 84



【課題】EOTの低減及びリーク電流の低減を両立できる半導体装置の製造方法を提供すること。
【解決手段】被処理体上に第1の高誘電率絶縁膜を成膜する第1の成膜工程と、前記第1の高誘電率絶縁膜を、650℃以上で60秒未満の間熱処理する結晶化熱処理工程と、前記第1の高誘電率絶縁膜上に、前記第1の高誘電率絶縁膜の金属元素のイオン半径よりも小さいイオン半径を有する金属元素を有し、前記第1の高誘電率絶縁膜よりも比誘電率が大きい、第2の高誘電率絶縁膜を成膜する第2の成膜工程と、を含む、半導体装置の製造方法。 (もっと読む)


【課題】高い誘電率でリーク電流の低い誘電体膜を有する高集積化可能な半導体装置の製造方法を提供する。
【解決手段】半導体基板上に誘電体膜を形成する成膜工程と、前記誘電体膜を熱処理する熱処理工程と、前記熱処理後の誘電体膜にイオン化したガスクラスターを照射する照射工程と、を有することを特徴とする半導体装置の製造方法を提供することにより上記課題を解決する。 (もっと読む)


【課題】 エッチングによるダメージを抑制しながら、ヘテロ接合面の近傍に負イオンを導入する技術を提供する。
【解決手段】 導入領域8上に保護膜30を形成する保護膜形成工程と、保護膜形成工程の後に、導入領域8を負イオンを含むプラズマに曝すプラズマ工程を備えている。保護膜30は、プラズマに対するエッチング速度が導入領域8よりも小さい。保護膜30には、負イオンを通過させることが可能な材料が用いられている。プラズマ中の負イオンは、保護膜30を通過し、導入領域8に導入される。 (もっと読む)


【課題】ゲート部におけるリーク電流が低減できる反面、プロセス上の制約があるため製造が困難で、ゲートリーク電流を安定して低減させることが困難だった。
【解決手段】基板と、前記基板上に形成され且つ二次元キャリアガスを有する半導体機能層と、前記半導体機能層上において互いに離間して形成される第1及び第2の主電極と、前記半導体機能層上における前記第1及び第2の主電極間に形成される制御電極と、前記半導体機能層と前記制御電極との間に形成される金属酸化膜と、を備え、
前記金属酸化膜と前記半導体機能層との接合界面における結晶格子は不連続であることを特徴とする半導体装置。 (もっと読む)


【課題】リセス等の形成に伴う処理で生じる残渣を適切に除去することができる化合物半導体装置の製造方法及び洗浄剤を提供する。
【解決手段】化合物半導体積層構造1を形成し、化合物半導体積層構造1の一部を除去して凹部4を形成し、洗浄剤を用いて凹部4内の洗浄を行う。洗浄剤は、凹部4内に存在する残渣と相溶する基材樹脂と溶媒とを含む。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】nチャネル型MISFET用のメタルゲート電極であるゲート電極GE1とpチャネル型MISFET用のダミーゲート電極GE2とを形成してから、nチャネル型MISFET用のソース・ドレイン領域とpチャネル型MISFET用のソース・ドレイン領域をそれぞれ形成する。その後、ダミーゲート電極GE2を除去し、ダミーゲート電極GE2が除去されたことで形成された凹部にpチャネル型MISFET用のメタルゲート電極を形成する。 (もっと読む)


【課題】ゲートメタル電極とHigh−k膜とを用いた半導体装置において、低抵抗なゲートメタル電極により仕事関数を調整できるようにする。
【解決手段】半導体装置は、Nウェル102の上に形成された第1のゲート絶縁膜109と、該第1のゲート絶縁膜109の上に形成された第1のゲート電極とを備えている。第1のゲート絶縁膜109は、第1の高誘電体膜109bを含み、第1のゲート電極は、第1の高誘電体膜109bの上に形成され、TiN層110aとAlN層110bとが交互に積層された第1の実効仕事関数調整層110を含む。TiN層110aはAlN層110bよりも抵抗が小さく、且つ、AlN層110bはTiN層110aよりも実効仕事関数の調整量が大きい。 (もっと読む)


【課題】トランジスタの耐圧を向上し得る半導体装置及びその製造方法を提供することにある。
【解決手段】半導体基板10内に形成された第1導電型の第1の不純物領域32、46と、半導体基板内に形成され、第1の不純物領域に隣接する第2導電型の第2の不純物領域34、48と、第2の不純物領域内に形成された第1導電型のソース領域30a、44aと、第1の不純物領域内に形成された第1導電型のドレイン領域30b、44bと、ソース領域とドレイン領域との間における第1の不純物領域内に、第2の不純物領域から離間して埋め込まれた、二酸化シリコンより比誘電率が高い絶縁層14と、ソース領域とドレイン領域との間における第1の不純物領域上、第2の不純物領域上及び絶縁層上に、ゲート絶縁膜22を介して形成されたゲート電極24a、24bとを有している。 (もっと読む)


【課題】高品質な半導体装置及びその製造方法を提供する。
【解決手段】半導体装置は、基板と、基板上に形成される半導体領域、半導体領域内に形成され、互いに分離されているソース領域及びドレイン領域、半導体領域内に形成され、ソース領域及びドレイン領域を分離するチャネル領域、チャネル領域上に形成され、1×1019atoms/cmよりも大きいピーク濃度で、Si、O、またはNとは異なる少なくとも一つの要素を有する界面酸化層、及び界面酸化層上に形成され、実質的に界面酸化層に隣接する深さでhigh―k/界面酸化層接合面を有するhigh―k絶縁層を有するMOS(metal-oxide-semiconductor)トランジスタを備え、少なくとも一つの要素のピーク濃度の少なくとも一つの深さは、実質的にhigh―k/界面酸化層接合面よりも下に位置する。 (もっと読む)


【課題】MOSトランジスタの新規な閾値電圧制御技術を提供する。
【解決手段】半導体装置の製造方法は、半導体基板のp型領域上に、ゲート絶縁膜を形成する工程と、ゲート絶縁膜上に、化学量論組成よりも酸素量の少ない酸化アルミニウム膜を形成する工程と、酸化アルミニウム膜上に、タンタルと窒素とを含むタンタル窒素含有膜を形成する工程と、タンタル窒素含有膜上に、導電膜を形成する工程と、導電膜をパターニングして、ゲート電極を形成する工程と、ゲート電極をマスクとして、p型領域にn型不純物を注入する工程と、タンタル窒素含有膜の形成後に、熱処理を行う工程とを有する。 (もっと読む)


【課題】メタルゲートを用いたCMISまたはCMOS構造の集積回路デバイスにおいて、Nチャネル領域およびPチャネル領域におけるゲート絶縁膜、メタルゲート層等のつくり分けに関しては、種々の方法が提案されているが、プロセスが複雑になる等の問題があった。
【解決手段】本願発明は、CMOS集積回路デバイスの製造方法において、Nチャネル領域およびPチャネル領域において、ゲート電極膜形成前の高誘電率ゲート絶縁膜の電気的特性を調整するためのチタン系窒化物膜を下方のチタンを比較的多く含む膜と、上方の窒素を比較的多く含む膜を含む構成とするものである。 (もっと読む)


【課題】使用可能な処理技術と材料の数、ならびに処理技術の順序における変更可能性を高めることである。
【解決手段】本発明は、とりわけガスセンサ用の化学的感受性電界効果トランジスタである電界効果トランジスタの製造方法に関する。使用可能な処理技術と材料の数、ならびに処理技術の順序における変更可能性を高めるために、本方法の枠内で、ゲート絶縁保護層(3)が形成され、このゲート絶縁保護層は、ゲート絶縁層(2)をさらなるプロセス化の際に環境の影響から保護し、ゲート電極層形成前に部分的にまたは完全に除去される。さらに本発明は、この種の電界効果トランジスタおよびその使用法に関する。 (もっと読む)


【課題】特性を向上できるSiC半導体装置の製造方法およびSiC半導体装置の製造装置を提供する。
【解決手段】SiC半導体装置の製造方法は、SiC半導体の第1の表面に第1の酸化膜を形成する工程(ステップS4)と、第1の酸化膜を除去する工程(ステップS5)と、SiC半導体において第1の酸化膜が除去されることにより露出した第2の表面に、SiC半導体装置を構成する第2の酸化膜を形成する工程(ステップS6)とを備える。第1の酸化膜を除去する工程(ステップS4)と、第2の酸化膜を形成する工程(ステップS6)との間において、SiC半導体は大気が遮断された雰囲気内に配置される。 (もっと読む)


【課題】高誘電率絶縁膜を含むゲート絶縁膜を備えた電界効果型トランジスタにおいてゲート絶縁膜におけるゲート電極の端部下に位置する部分の厚膜化を試みると、高誘電率絶縁膜が結晶化し、ゲートトンネルリーク電流の発生を抑制出来ない場合があった。
【解決手段】半導体装置では、半導体基板1上にはゲート絶縁膜2が形成され、ゲート絶縁膜2上にはゲート電極3が形成されている。ゲート絶縁膜2では、ゲート絶縁膜2におけるゲート電極3の両端部下に位置する厚膜部分2aの膜厚は、ゲート絶縁膜2におけるゲート電極3の中央部下に位置する中央部分2bの膜厚よりも厚い。 (もっと読む)


【課題】可動ゲート電極の変位を制御可能な可動ゲート型電界効果トランジスタを提供する。
【解決手段】ソース電極17とドレイン電極18との上に導電シールド電極20が配置される可動ゲート型電界効果トランジスタ1とした。そして導電シールド電極20の電位を固定することとした。導電シールド電極20が配置されることにより、可動ゲート15とドレイン電極18またはソース電極17との間に発生する静電力を抑制することができる。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を備える半導体装置の閾値電圧を適切に制御すること。
【解決手段】半導体装置の形成方法は、仕事関数メタルを含むダミーメタルゲート層をベース絶縁膜の直上に形成することと、アニーリングによって仕事関数メタルをベース絶縁膜中に拡散させることと、ウェットエッチングによってダミーメタルゲート層を除去することと、ベース絶縁膜211、212上に高誘電率ゲート絶縁膜213、213を形成することと、高誘電率ゲート絶縁膜213上にメタルゲート214、215を形成することと、を含む。 (もっと読む)


【課題】スループットを高く維持しつつリーク電流を抑制してリーク特性も高く維持することが可能な成膜方法を提供する。
【解決手段】被処理体の表面とゲート電極との間に介在されるゲート絶縁層を形成する成膜方法において、シリコンを含む界面膜を所定の温度で形成する界面膜形成工程S1と、被処理体を冷却する冷却工程S2と、冷却された被処理体に対して界面膜形成工程の所定の温度より低い温度でゲート絶縁膜を形成するゲート絶縁膜形成工程S3とを有する。 (もっと読む)


【課題】高誘電率ゲート絶縁膜及びメタルゲート電極を備えたCMISFETの生産性や性能を向上させる。
【解決手段】半導体基板1の主面にゲート絶縁膜用のHf含有絶縁膜5を形成し、その上に窒化金属膜7を形成し、窒化金属膜7上のフォトレジストパターンをマスクにしたウェットエッチングによって、nチャネル型MISFET形成予定領域であるnMIS形成領域1Aの窒化金属膜7を選択的に除去する。それから、希土類元素を含有するしきい値調整層8を形成し、熱処理を行って、nMIS形成領域1AのHf含有絶縁膜5をしきい値調整層8と反応させるが、pチャネル型MISFET形成予定領域であるpMIS形成領域1BのHf含有絶縁膜5は、窒化金属膜7があるためしきい値調整層8とは反応しない。その後、未反応のしきい値調整層8と窒化金属膜7を除去してから、nMIS形成領域1AとpMIS形成領域1Bにメタルゲート電極を形成する。 (もっと読む)


【課題】半導体を高濃度の硝酸の蒸気および/または溶液に接触させる処理で、短時間に、前記半導体表面に高品質の二酸化シリコン膜の生成を実現する。
【解決手段】被処理用シリコンを濃度70wt%の硝酸の加熱溶液から発生させた蒸気中で数秒、および/またはその加熱硝酸溶液で10分程度接触させて、前記シリコンの表面に膜厚約1.39nmの酸化膜を形成した。この被膜は、リーク電流性能が(1V印加時)0.6A/cmであり、同膜厚換算のオキシナイトライド膜の以下のレベルを実現できた。 (もっと読む)


1 - 20 / 84