説明

Fターム[5F140BE15]の内容

Fターム[5F140BE15]に分類される特許

1 - 20 / 44


【課題】信頼性の劣化及び素子のばらつきを抑制しつつ、所望の閾値電圧を実現する。
【解決手段】実施形態による複数の閾値電圧を有する半導体装置500は、基板502と、第1の閾値電圧を有する基板上の第1のトランジスタ510と、第2の閾値電圧を有する基板上の第2のトランジスタ530とを具備する。第1のトランジスタは、基板の第1のチャネル領域上に形成された第1の界面層516と、第1の界面層上に形成された第1のゲート誘電体層518と、第1のゲート誘電体層上に形成された第1のゲート電極520,522とを具備する。第2のトランジスタは、基板の第2のチャネル領域上に形成された第2の界面層536と、第2の界面層上に形成された第2のゲート誘電体層538と、第2のゲート誘電体層上に形成された第2のゲート電極540,542とを具備する。第2の界面層は第1の界面層内になくかつSi、O及びNと異なる添加元素を有する。第1及び第2の閾値電圧は異なる。第1及び第2のトランジスタは同一の導電型である。 (もっと読む)


【課題】CMOSトランジスタにおいて、ボロンの染み出しを抑制して閾値電圧を安定させると共に、ノイズを低減できるようにした半導体装置及びその製造方法を提供する。
【解決手段】CMOSトランジスタをシリコン基板1上に備える半導体装置であって、
シリコン基板1上に設けられ、窒素とフッ素とを含有するシリコン酸化膜からなるゲート酸化膜5と、ゲート酸化膜5上に設けられ、ポリシリコンからなるゲート電極7、8と、を有し、ゲート酸化膜5中のゲート電極7、8近傍の位置に窒素濃度のピークがあり、ゲート酸化膜5とシリコン基板1との界面付近の窒素濃度は0.5atom%以下であり、ゲート酸化膜5中におけるフッ素濃度は1atom%以上であり、当該フッ素によりゲート酸化膜5とシリコン基板1との界面のダングリングボンドが終端化されている。 (もっと読む)


【課題】ゲート絶縁膜の形成を1000℃以上で行う場合に、Grow−in欠陥の発生の抑制と、BMDを用いたゲッタリング効果の向上を両立させる。
【解決手段】初期状態での酸素濃度が5×1017atoms/cm以下の半導体基板に素子分離領域3を形成し、ゲート絶縁膜5aを1000℃以上の熱酸化により形成した後、酸素をイオン注入して熱処理することで、BMD層30を素子分離領域3の底面よりも下方に形成する。 (もっと読む)


【課題】高品質な半導体装置及びその製造方法を提供する。
【解決手段】半導体装置は、基板と、基板上に形成される半導体領域、半導体領域内に形成され、互いに分離されているソース領域及びドレイン領域、半導体領域内に形成され、ソース領域及びドレイン領域を分離するチャネル領域、チャネル領域上に形成され、1×1019atoms/cmよりも大きいピーク濃度で、Si、O、またはNとは異なる少なくとも一つの要素を有する界面酸化層、及び界面酸化層上に形成され、実質的に界面酸化層に隣接する深さでhigh―k/界面酸化層接合面を有するhigh―k絶縁層を有するMOS(metal-oxide-semiconductor)トランジスタを備え、少なくとも一つの要素のピーク濃度の少なくとも一つの深さは、実質的にhigh―k/界面酸化層接合面よりも下に位置する。 (もっと読む)


【課題】チャネル移動度と閾値電圧とのトレードオフの関係を打破し、チャネル移動度を向上させ、かつ、閾値電圧の低下を抑えた炭化珪素半導体装置およびその製造方法を提供する。
【解決手段】この発明に係る炭化珪素半導体装置1aの製造方法は、炭化珪素エピタキシャル層6を有する炭化珪素基板2の炭化珪素エピタキシャル層6上に、リンをドープした多結晶珪素膜18を形成する工程と、多結晶珪素膜18を熱酸化してゲート絶縁膜12を形成する工程と、を備えた。 (もっと読む)


【課題】調整用金属を含む高誘電率膜を有するゲート絶縁膜を備えたMISトランジスタを有する半導体装置において、MISトランジスタの閾値電圧が高くなることを防止する。
【解決手段】半導体装置は、MISトランジスタnTrを備えている。MISトランジスタは、半導体基板10における素子分離領域11に囲まれた活性領域10aと、活性領域及び素子分離領域上に形成され、高誘電率膜15aを有するゲート絶縁膜16aと、ゲート絶縁膜上に形成されたゲート電極19aとを備えている。ゲート絶縁膜における素子分離領域上に位置する部分のうち、少なくとも一部分には、窒化領域20x,20yが設けられている。窒化領域20x,20yに含まれる窒素の窒素濃度をn1,n2とし、ゲート絶縁膜における活性領域上に位置する部分に含まれる窒素の窒素濃度をnとしたとき、n1>n、且つ、n2>nの関係式が成り立っている。 (もっと読む)


【課題】工数を大幅に増加せず且つ高誘電体からなるゲート絶縁膜にダメージを与えることがない、仕事関数変更用金属不純物膜の効果を有する半導体装置を実現できるようにする。
【解決手段】半導体装置は、半導体基板101と、半導体基板101の上部に形成されたp型活性領域110と、p型活性領域110の上に形成されたゲート絶縁膜150と、ゲート絶縁膜150の上に形成されたゲート電極106とを有している。ゲート絶縁膜150は、二酸化シリコンよりも大きい誘電率を有する高誘電体膜103と、高誘電体膜103の上に形成され、炭素を含む炭素含有膜104とを有している。高誘電体膜103及び炭素含有膜104は、第1の金属としてランタン又はマグネシウムを含み、ゲート電極106は、第2の金属を含む。 (もっと読む)


【課題】エンハンスメントモードのIII族窒化物トランジスタを提供する。
【解決手段】第1のIII族窒化物体110と第2のIII族窒化物体112との間に形成されているとともに二次元電子ガスを有している伝導チャネルを具えるIII族窒化物トランジスタ100において、伝導チャネルに中断領域を生ぜしめるために電荷を内部に閉じ込めた少なくとも1つのゲート誘電体層125と、伝導チャネルの中断領域を復元するように作用しうるゲート電極123とを具える。 (もっと読む)


【課題】 DMOSトランジスタのオン抵抗のバラツキをなくすために、チャネル抵抗のバラツキが生じない製造方法を提供する。
【解決手段】 半導体基板上に第1ボディー領域を形成した後、ゲート酸化膜上にゲート電極膜を積層する。第2ボディー領域を形成するためフォトレジストをマスクとして使用し、開口を形成する。本発明は、フォトレジストを残したまま開口内に不純物イオンを注入し、チャネル領域を構成する第2ボディー領域を形成する。さらに同じマスクを使用して第1ソース領域を形成する。次に、ゲート電極を形成し、サイドスペーサーを形成した後、第2ソース領域とドレイン領域とを同時に形成する。 (もっと読む)


【課題】ノーマリオフ動作を達成し、十分なチャネル電流が得られ、かつ、しきい値電圧制御が容易な窒化物系半導体ヘテロ接合電界効果トランジスタを提供する。
【解決手段】GaN層10とAlGaN層11のヘテロ接合界面をチャネルとする電界効果トランジスタにおいて、負の電荷を有する第三の層40をゲート電極34下のゲート絶縁膜31中に設けるとともに、ヘテロ接合を形成する窒化物半導体内にフッ素イオンF等の負のイオン41を注入する。第三の層40はCl等の負のイオンが注入される。ゲート絶縁膜31中およびAlGaN層11中に適量の負のイオンを注入することにより、しきい値電圧が上がりノーマリオフ動作を確実に達成するとともに、十分なチャネル電流が得られる。 (もっと読む)


【課題】ゲート電極中の不純物がゲート絶縁膜を突き抜けてチャネル領域に拡
散するのを抑制し、ソース・ドレイン領域の不純物イオンが部分的にチャネル領
域方向に異常拡散するのを防ぐ。
【解決手段】ゲート絶縁膜3上に、ポリシリコン膜4を被着してゲート電極5
パターンにパターンニングした後、ソース・ドレイン領域9を形成する前に、窒
素を含む雰囲気中で窒化処理を行って、ゲート電極5端部付近のゲート絶縁膜3
中に新たに窒素を導入する。または、ゲート電極5のパターンニング後、ソース
・ドレイン領域9を形成する前に、酸化処理を行うことによってゲート電極5の
パターンニングの際に生じるダメージや汚染の一部を酸化膜中に取り込んで基板
から除去する。その後、窒化処理を行うことにより、酸化処理によってゲート電
極5端部付近に形成され、ダメージを含む酸化膜に積極的に窒素を導入する。 (もっと読む)


【課題】ゲート絶縁膜とゲート電極との間の界面層にカーボン層を導入して、低い閾値電圧を実現している例では、カーボン層中のカーボンはSi半導体基板中に入り、欠陥準位を形成するため、EWFが不安定であった。本発明は上記問題点を解決するためになされたもので、p−metalを用いたMIS型半導体装置において、EWFを安定して増加させることが可能な半導体装置を提供する。
【解決手段】半導体基板10と、半導体基10上に形成された絶縁膜20と、絶縁膜20上に形成され、且つ、CN基又はCO基を含む界面層30と、界面層30上に形成された金属層40とを備えて半導体装置を構成する。 (もっと読む)


【課題】膜厚が薄い場合や導入物質の濃度が低い場合であっても、導入物質を導入することのできる基板処理方法を提供する。
【解決手段】基板1上に薄膜2を形成する工程と、薄膜2に、導入物質のガスクラスターをイオン化して加速したガスクラスターイオンビーム3を照射して薄膜中2に導入物質を導入する工程とを具備し、基板1上に導入物質が導入された薄膜2を形成する。 (もっと読む)


【課題】SiO/SiC構造を備える、たとえばMOSFETなどの半導体装置は、界面準位密度の低減が不十分である。
【解決手段】SiC基板1の一方の主表面上に形成させたSiCエピタキシャル層2の一方の主表面上に、あらかじめSi薄膜3を形成させて、このSi薄膜3の内部に窒素原子を注入させる。この状態で、SiCエピタキシャル層2の一方の主表面上を酸窒化させる。 (もっと読む)


【課題】 本発明は、良好な移動度を有する半導体装置およびその製造方法を提供することを目的とする。
【解決手段】 第一の発明の半導体装置は、基板と、基板表面に形成され、Geを主成分とする半導体領域と、半導体領域上に形成された非金属Ge化合物層と、非金属Ge化合物層上に形成された絶縁膜と、絶縁膜上に形成された電極と、前記電極を挟む前記基板表面に形成されたソース・ドレイン領域とを備えることを特徴とする。非金属Ge化合物層は、例えばSrとGeの化合物、BaとGeの化合物もしくはBaとSiとGeの化合物を有する。 (もっと読む)


【課題】III族窒化物系化合物半導体の表面上に酸化物を備えた半導体装置であって、上記III族窒化物系化合物半導体と上記酸化物との間の界面の界面準位密度を小さくでき、移動度を高くできるものを提供すること。
【解決手段】本発明の半導体装置では、III族窒化物系化合物半導体3の表面上に、Alを組成に含みスピネル構造をもつ酸化物4が形成されている。III族窒化物系化合物半導体3は、例えばGaNからなる。酸化物4は、例えばMgAl、MnAl、CoAl、NiAlからなる。 (もっと読む)


【課題】STI幅の増加や信頼性の低下を招くことなく、所定の導電型トランジスタ領域において最適なHigh-kゲート絶縁膜を実現する。
【解決手段】N型トランジスタ領域RnとP型トランジスタ領域Rpとを含む半導体基板101上の全面にHigh-k絶縁膜103、N型トランジスタ用キャップ膜104及び金属含有膜105を順次堆積する。P型トランジスタ領域Rpに位置するN型トランジスタ用キャップ膜104にイオン107を導入することにより、P型トランジスタ用キャップ膜108を形成する。金属含有膜105上にポリシリコン膜111を堆積した後、パターニングにより、N型トランジスタ用ゲート電極113及びP型トランジスタ用ゲート電極114を形成する。 (もっと読む)


【課題】 半導体装置及びその製造方法に関し、高誘電率ゲート絶縁膜/多結晶シリコン界面におけるダイマーの発生を既存の製造工程になじみやすい工程により抑制して、フェルミレベルピンニングを除去する。
【解決手段】 半導体基板上方に形成されたHf、Zr或いはAlの少なくとも一つと酸素とを含むゲート絶縁膜とシリコンを含むゲート電極との間に、炭素を含むキャップ層を設ける。 (もっと読む)


【課題】ゲート絶縁膜とゲート電極を工夫することにより、ゲート空乏化を抑制しつつ実効仕事関数を制御することを可能とする。
【解決手段】P型の絶縁ゲート型電界効果トランジスタの第1トランジスタ2と、N型の絶縁ゲート型電界効果トランジスタの第2トランジスタ3とを有し、前記第1トランジスタ2のゲート絶縁膜21と前記第2トランジスタ3のゲート絶縁膜21は、前記ゲート電極側に金属不純物22が存在していて、前記第1トランジスタ2のゲート電極23NがN型のポリシリコンである、もしくは前記第2トランジスタ3のゲート電極23PがP型のポリシリコンである、もしくは前記第1トランジスタ2のゲート電極23NがP型のポリシリコンであり前記第2トランジスタ3のゲート電極23PがP型のポリシリコンであることを特徴とする。 (もっと読む)


【課題】 メタルゲート電極及び高誘電率ゲート絶縁膜を用いたn型MISトランジスタとp型MISトランジスタの双方において適正なしきい値電圧を得る。
【解決手段】 半導体基板30の表面部に形成された第1及び第2の半導体領域10,20と、第1の半導体領域10上に形成された、La及びAlを含む第1のゲート絶縁膜11及び第1のゲート電極12を有するn型MISトランジスタと、第2の半導体領域20上に形成された、La及びAlを含む第2のゲート絶縁膜21及び第2のゲート電極22を有するp型MISトランジスタと、を備えた相補型半導体装置であって、第2のゲート絶縁膜22における原子濃度比Al/Laが、第1のゲート絶縁膜11における原子濃度比Al/Laよりも大きい。 (もっと読む)


1 - 20 / 44