説明

Fターム[5F140BF05]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 最下層材料 (6,467) | 金属 (3,194)

Fターム[5F140BF05]の下位に属するFターム

Fターム[5F140BF05]に分類される特許

61 - 80 / 939


【課題】窒化物半導体装置の、ソース・ドレイン間のオン抵抗を低減する。
【解決手段】ソース・ドレイン間を走行する窒化物半導体層と下地となる窒化物半導体層の間に、両窒化物半導体層より電子親和力が大きく、下地となる窒化物半導体よりも格子定数の大きい材料を形成する。その結果、ゲート電圧の印加によりゲート絶縁膜の下方に形成されるチャネルと、ゲート部以外で形成される二次元電子ガスを、深さ方向において近づけることができ、オン抵抗の低減が可能となる。 (もっと読む)


【課題】第2の部分の寄生容量を低下させることにより、半導体装置の特性を向上させる。
【解決手段】MISトランジスタは、半導体基板上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられ、第1の幅W1を有する第1の部分と第2の幅W2を有する第2の部分とを有するゲート電極を有する。第2の部分の側壁上には、酸化シリコン膜が設けられている。第2の部分に接するゲート絶縁膜は、第1の部分に接するゲート絶縁膜よりも厚くなっている。 (もっと読む)


【課題】ウルツ鉱型結晶構造の半導体を用いた電界効果トランジスタで、電極との接触抵抗を高くすることなく、バンドギャップエネルギーのより大きな半導体から障壁層が構成できるようにする。
【解決手段】ゲート電極104を挟んで各々離間して障壁層103の上に接して形成された2つの電流トンネル層105と、各々の電流トンネル層105の上に形成された2つのキャップ層106とを備える。電流トンネル層105の分極電荷は、障壁層103の分極電荷よりも大きい。 (もっと読む)


【課題】シリサイド層を有するトランジスタにおいて、オン電流の高いトランジスタを得ることを課題とする。さらに、加熱処理等の工程を増やさずにオン電流の高いトランジスタを得ることを課題とする。
【解決手段】チャネル形成領域、不純物領域及びシリサイド層を有するシリコン膜と、ゲート絶縁膜と、ゲート電極と、不純物領域にシリサイド層を介して電気的に接続する配線とを有し、シリサイド層断面は、チャネル形成領域側の端点から膜厚が増加している第1領域と、第1領域と比べて膜厚が一定である第2領域とを有する半導体装置において、第1領域と第2領域は、シリサイド層断面の端点を通り、水平線とθ(0°<θ<45°)の角度をなす直線がシリサイド層と不純物領域の界面と交わる点を通り、且つ水平線に対し垂直な線で分けられ、シリコン膜の膜厚に対する第2領域の膜厚比は0.6以上である。 (もっと読む)


【課題】配線の低抵抗化を図る。
【解決手段】本実施形態の半導体装置は、半導体基板10を覆う第1の層間絶縁膜上に設けられる配線60と、配線60の上面上に設けられるキャップ層68と、配線60と第2の層間絶縁膜との間に設けられるバリア膜62と、を含む。配線60は高融点導電層を含み、配線60の配線幅W1は、キャップ層68の幅W2よりも小さい。バリア膜62は、高融点導電層60が含む元素の化合物からなり、配線60を覆う層間絶縁膜69,70に起因する不純物が配線60内に拡散するのを抑制する。 (もっと読む)


【課題】ゲート電極のドレイン端の電界を緩和し、ゲート絶縁膜の破損を低減する。
【解決手段】窒化物半導体で形成されたチャネル層108と、チャネル層108の上方に、チャネル層よりバンドギャップエネルギーが大きい窒化物半導体で形成された電子供給層112と、チャネル層108の上方に形成されたソース電極116およびドレイン電極118と、チャネル層108の上方に形成されたゲート電極120と、チャネル層108の上方に形成され、チャネル層108からホールを引き抜くホール引抜部126と、ゲート電極120およびホール引抜部126を、電気的に接続する接続部124と、を備える電界効果型トランジスタ100。 (もっと読む)


【課題】コンタクトホールの一部が素子分離領域上に配置された構造の半導体装置において、短絡及び接合漏れ電流の増大を抑制する。
【解決手段】半導体装置50は、半導体基板10における活性領域10aを取り囲むように形成された溝15bに素子分離絶縁膜15aが埋め込まれた素子分離領域15と、活性領域10aに形成された不純物領域26と、半導体基板10上を覆う層間絶縁膜28と、層間絶縁膜28を貫通し、活性領域10a上及び素子分離領域15上に跨って形成されたコンタクトプラグ34と、少なくともコンタクトプラグ34下方において、不純物領域26上に形成された金属シリサイド膜33とを備える。素子分離領域15は、コンタクトプラグ34の下方において、素子分離絶縁膜15と活性領域10aとの間に設けられた保護絶縁膜35を更に有する。 (もっと読む)


【課題】 半導体装置を高耐圧化する技術を提供することを目的とする。
【解決手段】 半導体装置100は、p型の埋込み層26と、p型埋込み層26上に設けられており、ヘテロ接合面3が構成されている窒化物半導体のヘテロ接合層32を備えている。p型埋込み層26は、ソース電極10側からドレイン電極2側に向けて厚みが減少する厚み減少部24を有している。厚み減少部24では、ソース電極10側の減少開始点14からドレイン電極2側の減少終了点16までの長さ24bが、減少開始点14における厚み24aよりも長い。 (もっと読む)


【課題】二重金属ゲートを有する構造体において金属膜の仕事関数を調整する為の改善した方法および半導体素子を提供する。
【解決手段】半導体素子は単一金属膜に対し、NMOSにおいてはフッ素、PMOSにおいては炭素をそれぞれ選択的にドーピングすることによって形成される二重仕事関数の金属ゲート電極108’、109’を有する。 (もっと読む)


【課題】高耐圧及び高電流の動作が可能な半導体素子及びその製造方法を提案する。
【解決手段】内部に2次元電子ガス(2DEG)チャンネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50の方向に突出した多数のパターン化された突起61を備え、内部に窒化物半導体層30にオーミック接合されるオーミックパターン65を含むソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上に、且つ、パターン化された突起61を含んでソース電極60上の少なくとも一部に亘って形成された誘電層40と、一部が、誘電層40を間に置いてソース電極60のパターン化された突起61部分及びドレイン方向のエッジ部分の上部に形成されたゲート電極70と、を含んでなる。 (もっと読む)


【課題】半導体素子、例えばFETのソース領域にショットキー電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフまたはエンハンスメントモード動作する半導体素子及び製造方法を提供する。
【解決手段】基板10上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、該窒化物半導体層30にオミック接合されたドレイン電極50と、該ドレイン電極50と離間して配設され、該窒化物半導体層30にショットキー接合されたソース電極60と、該ドレイン電極50と該ソース電極60との間の窒化物半導体層30上及び該ソース電極60の少なくとも一部上にかけて形成された誘電層40と、該ドレイン電極50と離間して誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成されたゲート電極70とを含む。 (もっと読む)


【課題】オン抵抗が低く、かつ、Vthが高い半導体装置を提供する。
【解決手段】基板102の上方に、III−V族化合物半導体で形成されたバックバリア層106と、バックバリア層106上に、バックバリア層106よりバンドギャップエネルギーが小さいIII−V族化合物半導体で形成され、バックバリア層106の上方の少なくとも一部に設けられたリセス部122において、他の部分より膜厚が薄いチャネル層108と、チャネル層108にオーミック接合された第1の電極116,118と、少なくともリセス部においてチャネル層の上方に形成された第2の電極120と、を備える半導体装置を提供する。 (もっと読む)


【課題】FETのソース領域にショットキー電極を形成し、内部にオミックパターン電極を備え、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフ動作すると共に高耐圧及び高電流で動作可能な、半導体素子及び製造方法を提供する。
【解決手段】内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50と離間され、窒化物半導体層30にショットキー接合されるソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて形成された誘電層40と、ドレイン電極50と離間されるように誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上部に形成されたゲート電極70とを含む。 (もっと読む)


【課題】FETのソース領域にショットキー電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成し、ドレイン電極と該ソース電極との間にフローティングガードリングを設けることによって、ノーマリ−オフで動作する半導体素子を提供する。
【解決手段】内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ショットキー接合されたソース電極60と、ドレイン電極50とソース電極60との間で窒化物半導体層30にショットキー接合されたフローティングガードリング75と、ドレイン電極50とソース電極60との間及びソース電極60の少なくとも一部上にかけて形成された誘電層40と、誘電層40上に形成され、一部が、誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成されたゲート電極70とを含む。 (もっと読む)


【課題】オン抵抗が低く、かつ、耐圧が高いノーマリーオフの半導体装置を提供する。
【解決手段】基板102の上方に形成された、III−V族化合物半導体からなるバックバリア層106と、バックバリア層106上に形成され、バックバリア層よりバンドギャップエネルギーが小さいIII−V族化合物半導体からなるチャネル層と108、チャネル層108にオーミック接続された第1の電極116,118と、チャネル層の上方に形成された第2の電極120と、を備え、バックバリア層106は第2の電極120の下方に設けられ、かつ、第2の電極120の下方から第1の電極の116,118下方まで連続して設けられていない半導体装置を提供する。 (もっと読む)


【課題】 エッチングによるダメージを抑制しながら、ヘテロ接合面の近傍に負イオンを導入する技術を提供する。
【解決手段】 導入領域8上に保護膜30を形成する保護膜形成工程と、保護膜形成工程の後に、導入領域8を負イオンを含むプラズマに曝すプラズマ工程を備えている。保護膜30は、プラズマに対するエッチング速度が導入領域8よりも小さい。保護膜30には、負イオンを通過させることが可能な材料が用いられている。プラズマ中の負イオンは、保護膜30を通過し、導入領域8に導入される。 (もっと読む)


【課題】低温ALD法で形成された窒化珪素膜のエッチング耐性を向上させる。
【解決手段】プラズマ窒化処理方法は、上部に開口を有する処理容器1と、ウエハWを載置する載置台2と、処理容器1の開口を塞ぐとともにマイクロ波を透過させるマイクロ波透過板28と、処理容器1内にマイクロ波を導入するための複数のスロットを有する平面アンテナ31と、を備えたプラズマ処理装置100を用いる。処理容器1内で、窒素含有ガスと希ガスとを含む処理ガスのプラズマを生成させて、ウエハW上の窒化珪素膜をプラズマ窒化処理する。窒化珪素膜は、ALD法により400℃以下の成膜温度で成膜された窒化珪素膜であり、プラズマ窒化処理は、ALD法における成膜温度を上限とする処理温度で行う。 (もっと読む)


【課題】ピンチオフ特性を維持しながら動作効率を向上することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板11と、基板11上方に形成された電子走行層12と、電子走行層12上方に形成された電子供給層13と、電子供給層13上方に形成されたソース電極15s及びドレイン電極15dと、電子供給層13上方で、ソース電極15s及びドレイン電極15dの間に形成された第1のゲート電極15g−1及び第2のゲート電極15g−2と、が設けられている。ゲート電極15g−1の仕事関数は、第2のゲート電極15g−2の仕事関数よりも低い。 (もっと読む)


【課題】大電流かつ高耐圧な窒化物系半導体デバイスを提供する。
【解決手段】基板10と、基板10の上方に形成された電子走行層30と、電子走行層30上に形成された、電子走行層30とバンドギャップエネルギーの異なる電子供給層40と、電子供給層40上に形成されたドレイン電極80と、ドレイン電極80に流れる電流を制御するゲート電極70と、ゲート電極70をはさんでドレイン電極80の反対側に形成されたソース電極90とを備え、ゲート電極70とドレイン電極80との間の電子走行層30の表面には、2次元電子ガスの濃度が他の領域より低い複数の低濃度領域32が、互いに離れて形成されている、窒化物系半導体デバイス100。 (もっと読む)


【課題】縦型PN接合において確実にオン/オフの制御をすることができる半導体装置を提供する。
【解決手段】半導体装置は、半導体層と、半導体層上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極とを備える。第1導電型の第1のチャネル領域が、ゲート絶縁膜の下にある半導体層の表面の一部に設けられている。第1導電型とは異なる導電型である第2導電型の拡散層が、第1のチャネル領域のさらに下の半導体層に設けられ、半導体層の表面に対してほぼ垂直方向に第1のチャネル領域の底部と接し、該第1のチャネル領域の底部とPN接合を形成する。第1導電型のドレインおよび第2導電型のソースが、第1のチャネル領域の両側にある半導体層内にそれぞれ設けられている。側壁絶縁膜は、第1のチャネル領域の拡散層側の側面を被覆する。 (もっと読む)


61 - 80 / 939