説明

Fターム[5F140BF05]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 最下層材料 (6,467) | 金属 (3,194)

Fターム[5F140BF05]の下位に属するFターム

Fターム[5F140BF05]に分類される特許

101 - 120 / 939


【課題】工程増を最小限とした簡便な手法で、素子形成領域における化合物半導体と同時に、しかもその結晶性を損なうことなく確実な素子分離を実現し、信頼性の高い化合物半導体装置を実現する。
【解決手段】Si基板1上の素子分離領域に初期層3を選択的に形成し、初期層3上を含むSi基板1上の全面に化合物半導体の積層構造4を形成して、積層構造4は、素子分離領域では初期層3と共に素子分離構造4Bとなり、素子形成領域ではソース電極5、ドレイン電極6及びゲート電極7が形成される素子形成層4Aとなる。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】工程を簡素化して歩留まりを向上すると共に、安定した形状の電極を再現性よく得ることができる半導体装置の製造方法を提供する。
【解決手段】第1のレジスト膜11と、第1のレジスト膜11の開口よりも小さな開口を有する第2のレジスト膜12とを用いて、SiO絶縁膜10を異方性ドライエッチングによってエッチングして、SiO絶縁膜10にテーパ状の開口部101を形成する。このため、GaN層1を斜めに設置し直してSiO絶縁膜10をエッチングする必要がなく、GaN層1を水平に設置したままSiO絶縁膜10をエッチングすることができ、工程を簡素化できる。 (もっと読む)


【課題】MOSFET特性を改善することができる半導体装置及びその製造方法を提供する。
【解決手段】本発明の実施形態にかかる半導体装置は、基板と、基板の上方に形成されたゲート電極と、ゲート電極の下に形成されたゲート絶縁膜と、ゲート絶縁膜の下に、シリコン基板の材料に比して広いバンドギャップを持つチャネル層材料により形成されたチャネル層と、チャネル方向に沿ってチャネル層を挟むように基板に形成されたソース領域とドレイン領域と、チャネル層とソース領域との間のシリコン基板に、チャネル層のソース側端部とオーバーラップするように形成され、且つ、チャネル層とともにキャリアがトンネルするヘテロ界面を成すソースエクステンション層とを有する。 (もっと読む)


【課題】制御性よく空洞部を形成することが可能な半導体装置の製造方法を提供する。
【解決手段】ダミーゲート電極22上にオフセットスペーサ材料層を形成し、オフセットスペーサ材料層に異方性エッチングを行い、ダミーゲート電極22の側壁下部にオフセットスペーサ24を形成する。そして、サイドウォール15の形成後、ダミーゲート電極22とオフセットスペーサ24とを除去し、高誘電率材料からなるゲート絶縁膜13とメタルゲート電極14とを異方性の高い堆積方法を用いて形成する。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】nチャネル型MISFET用のメタルゲート電極であるゲート電極GE1とpチャネル型MISFET用のダミーゲート電極GE2とを形成してから、nチャネル型MISFET用のソース・ドレイン領域とpチャネル型MISFET用のソース・ドレイン領域をそれぞれ形成する。その後、ダミーゲート電極GE2を除去し、ダミーゲート電極GE2が除去されたことで形成された凹部にpチャネル型MISFET用のメタルゲート電極を形成する。 (もっと読む)


【課題】ダイヤモンドFETにおいて、ドレイン電流特性を改善すること。
【解決手段】ダイヤモンド結晶層1の上に、高濃度ホウ素ドープダイヤモンド薄膜層102を成長する(図1(a))。次に、ソース電極およびドレイン電極として、Ti層131A、131B、Au層132A、132Bを順に蒸着する(図1(b))。次に、400℃でアニールを行いTiをダイヤモンドと反応させて、TiC層133A、133Bを形成する(図1(c))。最後に、ゲート部にAl23膜141を形成し、その上にAlゲート電極42を蒸着する(図1(d))。作製したダイヤモンドFETのドレイン電流特性は、ゲート電圧−3Vにおける最大ドレイン電流密度が600mA/mmとなり、従来技術による場合の約6倍に増加した。温度依存性に関しては、従来技術では室温から150℃付近でドレイン電流密度は急激に減少したが、本発明では900℃まで安定して動作した。 (もっと読む)


【課題】信頼性の劣化及び素子のばらつきを抑制しつつ、所望の閾値電圧を実現する。
【解決手段】実施形態による複数の閾値電圧を有する半導体装置500は、基板502と、第1の閾値電圧を有する基板上の第1のトランジスタ510と、第2の閾値電圧を有する基板上の第2のトランジスタ530とを具備する。第1のトランジスタは、基板の第1のチャネル領域上に形成された第1の界面層516と、第1の界面層上に形成された第1のゲート誘電体層518と、第1のゲート誘電体層上に形成された第1のゲート電極520,522とを具備する。第2のトランジスタは、基板の第2のチャネル領域上に形成された第2の界面層536と、第2の界面層上に形成された第2のゲート誘電体層538と、第2のゲート誘電体層上に形成された第2のゲート電極540,542とを具備する。第2の界面層は第1の界面層内になくかつSi、O及びNと異なる添加元素を有する。第1及び第2の閾値電圧は異なる。第1及び第2のトランジスタは同一の導電型である。 (もっと読む)


【課題】トランジスタのチャネル部に印加される応力を増加させて、電流増加効果を高めることを可能とする。
【解決手段】半導体基板上にダミーゲートを形成した後、該ダミーゲートの側壁に側壁絶縁膜を形成し、該ダミーゲートの両側の前記半導体基板にソース・ドレイン領域を形成する工程と、前記ダミーゲートおよび前記ソース・ドレイン領域の上に応力印加膜を形成する工程と、前記ダミーゲートの上の領域に形成された前記応力印加膜と前記ダミーゲートを除去して溝を形成する工程と、前記溝内の前記半導体基板上にゲート絶縁膜を介してゲート電極を形成する工程と、を備えた半導体装置の製造方法。 (もっと読む)


【課題】ゲート絶縁膜における電荷トラップを大幅に低減し、信頼性の高い化合物半導体装置を実現する。
【解決手段】化合物半導体層2と、化合物半導体層2上でゲート絶縁膜6を介して形成されたゲート電極7とを備えており、ゲート絶縁膜6は、Sixyを絶縁材料として含有しており、Sixyは、0.638≦x/y≦0.863であり、水素終端基濃度が2×1022/cm3以上5×1022/cm3以下の範囲内の値とされたものである。 (もっと読む)


【課題】従来のゲートラスト法の問題点を解決し、さらなる微細化に対応できるゲート構造を実現する。
【解決手段】半導体領域101上から、ダミーゲート構造を除去してリセス107aを形成した後、リセス107aの底部の半導体領域101の表面上に界面層108を形成する。次に、界面層108上及びリセス107aの側壁上に高誘電率絶縁膜109を形成すした後、リセス107a内部の高誘電率絶縁膜109上に、ゲート電極の少なくとも一部となる金属含有膜110を形成する。界面層108上に形成されている部分の高誘電率絶縁膜109の厚さは、リセス107aの側壁上に形成されている部分の高誘電率絶縁膜109の厚さよりも厚い。 (もっと読む)


【課題】半導体装置において、セルフターンオンが発生しないようにし、安定した動作を実現する。
【解決手段】半導体装置を、基板1と、基板の上方に設けられ、電子走行層6及び電子供給層7を含む半導体積層構造2と、半導体積層構造の上方に設けられたゲート電極3、ソース電極4及びドレイン電極5と、ゲート電極、ソース電極及びドレイン電極の上方に設けられ、ゲート電極、ソース電極及びドレイン電極のそれぞれに接続されたゲートパッド10、ソースパッド11及びドレインパッド12と、ゲートパッド、ソースパッド及びドレインパッドの下方に設けられた導電層1とを備えるものとし、ゲートパッドとソースパッドとの間の距離を、ゲートパッドとドレインパッドとの間の距離よりも小さくする。 (もっと読む)


【課題】通常の極性面上(すなわちc軸方向)に形成するエンハンスメント型の窒化物半導体電界効果トランジスタとして、高い密度のドレイン電流を実現することが可能にする。
【解決手段】窒化物半導体からなるチャネル層半導体6の上方の極性面方向に、チャネル層半導体6よりもバンドギャップの大きい窒化物半導体からなる障壁層半導体5が積層され、ゲート電極2の下方に存在する素子領域のうち少なくとも一部の素子領域を覆う第1領域21内に存在する障壁層半導体5の層厚が、第1領域21以外の素子領域を覆う第2領域22内に存在する障壁層半導体5の層厚よりも薄く形成されるか、または、第1領域21内には障壁層半導体5が存在しない状態で形成されるとともに、第2領域22内に存在する障壁層半導体5中に、障壁層半導体5よりもバンドギャップが小さい単一層の量子井戸7または多重層の多重量子井戸を挿入した量子井戸構造が形成される構造にする。 (もっと読む)


【課題】半導体デバイスを提供する。
【解決手段】理論的な金属:酸素化学量論比を有する高kゲート誘電体、前記高kゲート誘電体の上部に設置された、Mを遷移金属として、組成がMxAlyで表されるアルミナイドを含むNMOS金属ゲート電極、および前記高kゲート誘電体の上部に設置された、アルミナイドを含まないPMOS金属ゲート電極、を有するCMOS半導体デバイス。 (もっと読む)


【課題】ゲート電極から染み出した金属がドレイン電極に到達することを抑制して、ドレイン−ゲート間の絶縁破壊を抑制する窒化物半導体装置を提供する。
【解決手段】ゲート電極5の直下に位置するAlGaN層22と、このAlGaN層22の直上に位置する絶縁膜30との間の界面Sに、ゲート電極5とドレイン電極1との間に位置するように、溝50を設けている。ゲート電極5から界面Sを伝ってドレイン電極1側へ染み出した金属を、溝50によって、堰き止めることができる。 (もっと読む)


【課題】ファインゲート構造を採用してゲート電極の微細化を図るも、ゲート電極の周辺における電界集中によるデバイス特性の変動・劣化を防止する、信頼性の高い化合物半導体装置を実現する。
【解決手段】ゲート電極8は、ファインゲート構造の幹状の下方部分8aと、下方部分8aの上端から当該上端よりも幅広に傘状(オーバーハング形状)に拡がる上方部分8bとが一体形成されており、下方部分8aは、下端を含む第1の部分8aaと、第1の部分8aa上の第2の部分8abとを有し、保護壁7は、第1の部分8aaの両側面のみを覆うように形成されている。 (もっと読む)


【課題】半導体デバイスの小面積化を実現する。
【解決手段】電極と、第1絶縁体と、バンドギャップが2eV以上の第1半導体と、第2絶縁体と、第2半導体とが積層されており、第1半導体に接する1つ以上の電極と、第2半導体に接する2つ以上の電極とを少なくとも備えることを特徴とする半導体デバイス。 (もっと読む)


【課題】実際のデバイスの絶縁破壊寿命に適合する精度の良いシミュレーションを行って、正確な絶縁膜の絶縁破壊寿命を求めることで、実測データとの対比で欠陥種、欠陥の大きさ等を正確に解析できる絶縁破壊寿命シミュレーション方法及びシリコンウェーハ表面の品質評価方法を提供することを目的とする。
【解決手段】前記シミュレーションする構造における、前記シリコンウェーハと前記絶縁膜の界面及び前記絶縁膜と前記金属電極の界面に、及び/又は、前記絶縁膜中に予め欠陥を組み込み、該欠陥を組み込んだ構造において、前記絶縁膜中に欠陥を乱数にて発生させて前記絶縁膜の絶縁破壊寿命を求める絶縁破壊寿命シミュレーション方法。 (もっと読む)


【課題】窒化物半導体装置において、高温且つ高電圧下のスイッチング時においても電流コラプスによるオン抵抗の増大が生じないようにする。
【解決手段】基板1上には、バッファ層2、GaNからなるチャネル層3及びアンドープAlGaNからなるバリア層4が順次形成されている。チャネル層3は、該チャネル層3の下部にp型不純物層3aを有し、その上にアンドープ層3bを有している。バリア層4及びチャネル層3の端部が除去されており、露出したバリア層4及びチャネル層3の側面と接するように、それぞれソース電極5及びドレイン電極6が設けられている。バリア層4上におけるソース電極5とドレイン電極6との間の領域にはゲート電極7が設けられている。 (もっと読む)


【課題】半導体基板の主面上の洗浄効果を低下させることなく、電界効果トランジスタのゲート電極の側面上に形成されたオフセットスペーサ膜の除去を抑制する。
【解決手段】ゲート電極部Gn,Gpを覆うように、半導体基板1の主面上に薬液に対するエッチング速度が互いに異なる第1OSS膜10および第2OSS膜12を順次形成した後、異方性エッチングにより、ゲート電極部Gn,Gpの側面上に位置する第2OSS膜12を残して、他の部分に位置する第2OSS膜12を除去する。そして、ゲート電極部Gn,Gpと、ゲート電極部Gn,Gpの側面上に位置する第1OSS膜10および第2OSS膜12と、をマスクにして、半導体基板1に不純物をイオン注入した後、半導体基板1を薬液により洗浄して、露出している第1OSS膜10を除去する。 (もっと読む)


101 - 120 / 939