説明

Fターム[5F140BG28]の内容

Fターム[5F140BG28]の下位に属するFターム

Fターム[5F140BG28]に分類される特許

201 - 220 / 1,343


【課題】駆動電流が大きくリーク電流の少ない低消費電力のMISトランジスタを有する半導体装置及びその製造方法を提供する。
【解決手段】チャネル領域を有する半導体基板と、チャネル領域上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲート電極と、半導体基板内にチャネル領域を挟むように配置されたソース拡散層及びドレイン拡散層と、ソース拡散層側の半導体基板内に形成された第1のポケット不純物層と、ドレイン拡散層側の半導体基板内に形成された第2のポケット不純物層とを有し、第1のポケット不純物層は、ソース拡散層のエクステンション不純物層の濃度ピーク位置よりも深い位置に濃度ピークを有しており、第2のポケット不純物層は、ドレイン拡散層のエクステンション不純物層の濃度ピーク位置よりも浅い位置に濃度ピークを有している。 (もっと読む)


本発明の実施例として、半導体装置上のエピタキシャル領域を示した。ある実施例では、エピタキシャル領域は、成膜−エッチングプロセスを経て基板に成膜される。周期的な成膜−エッチングプロセスの間に、スペーサの下側に形成されるキャビティは、エピタキシャルキャップ層によって埋め戻される。エピタキシャル領域およびエピタキシャルキャップ層は、チャネル領域での電子移動度を改善し、短チャネル効果が抑制され、寄生抵抗が低下する。
(もっと読む)


【課題】ノーマリオフ動作を可能にし、かつしきい値電圧を自由に制御出来るGaN系MOSFETを提供する。
【解決手段】p−GaNからなる電子走行層13とゲート電極18との間にゲート絶縁膜15が形成されたGaN系MOSFET10である。ゲート電極18は、AlGaInP混晶からなる。ゲート電極18は、p型AlGaInP混晶からなる第1のゲート層19と、この上に形成されたp型GaAsからなる第2のゲート層20と、この上に形成された金属層(AuGe/Au電極)21とを有する。AlGaInP混晶の混晶比を変化させることにより、しきい値電圧を制御することが出来る。 (もっと読む)


【目的】コンタクト領域を確保し、ドレイン接合容量とリーク電流を減少させることができる半導体装置およびその製造方法を提供する。
【解決手段】ゲート電極5上のシリコン酸化膜6をマスクにドレイン領域7に斜めトレンチ10を形成して、ドレイン領域7の幅をコンタクト領域を形成できる最小幅にすることで、ドレイン接合容量とリーク電流を減少させる。 (もっと読む)


【課題】短チャネル効果の発生を抑制できる半導体装置及びその製造方法の提供。
【解決手段】本発明の半導体装置は、半導体基板1の活性領域上にゲート絶縁膜5aを介して形成されたゲート電極105と、ゲート電極105側面を覆う第1絶縁膜サイドウォール5bと、ゲート電極105を挟んで形成されたソース領域108S及びドレイン領域108Dにおいて、側面が第1絶縁膜サイドウォール5bに接して半導体基板1上面に形成されたシリコン層109と、第1絶縁膜サイドウォール5bを介してゲート電極105側面と対向し、底面がシリコン層109上面に接して形成された第2絶縁膜サイドウォール5dと、シリコン層109内下層部に設けられたLDD不純物層109aと、シリコン層109内上層部に設けられた高濃度不純物層109bと、LDD不純物層109aの下方、半導体基板1の表面側に形成されたポケット不純物層108aとを具備する。 (もっと読む)


【課題】塗布法や堆積法を用いて高品質な絶縁部材を半導体素子周辺に形成することのできる半導体装置の製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100の製造方法は、半導体基板2上に、Si系絶縁材料からなる絶縁膜10を付加的に形成する工程と、絶縁膜10上に触媒金属膜11を形成する工程と、触媒金属膜11を触媒として用いて絶縁膜10に酸化処理を施す工程と、酸化処理を施した絶縁膜10を加工してゲート絶縁膜4を形成する工程と、ゲート絶縁膜4を含むMOSFET1を形成する工程と、を含む。 (もっと読む)


【課題】トランジスタを備えた半導体装置において、トランジスタのGIDLを抑制する。
【解決手段】縦型トランジスタを備えた半導体装置に関する。縦型トランジスタは、半導体領域と、半導体領域上に設けられた柱状領域と、柱状領域の側面を覆うように設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極と、柱状領域の上部に設けられた第1の不純物拡散領域と、半導体領域内に柱状領域を囲むように設けられた第2の不純物拡散領域と、を有する。第1の不純物拡散領域は、柱状領域の側面と離間するように設けられている。 (もっと読む)


【課題】シリサイド層とSi層との界面における抵抗が低いMOSFETを備える半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100は、半導体基板2上にゲート絶縁膜11を介して形成されたゲート電極12と、半導体基板2上のゲート電極12の両側に形成された、チャネル移動度に実質的な影響を与えないSiGe層15と、SiGe層15上に形成されたSi層16と、半導体基板2、SiGe層15、およびSi層16内のゲート電極12の両側に形成されたn型ソース・ドレイン領域19と、Si層16上に形成されたシリサイド層17と、を有する。 (もっと読む)


【課題】 高誘電体ゲート絶縁膜およびシリコン基板との界面を高品質化して、MISFETの特性向上を図る。
【解決手段】 シリコン基板11上にhigh−k膜21とゲート電極24を形成する半導体装置の製造方法において、high−k膜形成後にフッ素雰囲気でアニール処理23を施し、その後のプロセス温度を600℃以下で行う、半導体装置の製造方法。 (もっと読む)


【課題】製造工程中にピラー径の変動が小さいピラー型MOSトランジスタを備えた半導体装置及びその製造方法を提供する。
【解決手段】本発明の半導体装置は、基板対して垂直に立設する第1のピラー及び第2のピラーの側面にゲート絶縁膜を介して形成されたゲート電極と、第1のピラーの先端部及び基端周囲領域に形成された上部拡散層及び下部拡散層と、を備え、第2のピラーのゲート電極と隣接する第1のピラーのゲート電極とは接続されており、第1のピラーのゲート電極には第2のピラーのゲート電極を介して電位が供給され、第1のピラーと、該第1のピラーに隣接する第2のピラーの少なくとも一部とは平面視して、第1のピラー及び第2のピラーの側面を構成する面のうち、熱酸化速度及び/又はエッチング速度が最大の面に対して45°の方向に沿って配置されていることを特徴とする。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法のうちの一部は、大部分が既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法のうちの一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより一層正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


【課題】トランジスタの面積を小さくしてもフリッカノイズを低減できる半導体装置を提供する。
【解決手段】本発明の一態様の半導体装置は、シリコン基板1に形成された第1及び第2のP型低濃度不純物層3a,3bと、シリコン基板1に埋め込まれて形成され、第1及び第2のP型低濃度不純物層の相互間に位置する埋め込みチャネル層5と、埋め込みチャネル層の上方に位置するシリコン基板の表面上にゲート絶縁膜6を介して形成され、N型不純物が導入されたポリシリコン膜からなるゲート電極と、第1のP型低濃度不純物層3a内における深さが浅い領域に形成されたソース領域及びドレイン領域の一方のP型層13aと、第2のP型低濃度不純物層3b内における深さが浅い領域に形成されたソース領域及びドレイン領域の他方のP型層13bと、を具備することを特徴とする。 (もっと読む)


【課題】高耐圧且つ低オン抵抗な半導体装置及びこれを含む半導体集積回路装置を歩留まり良く、安価に提供する。

【解決手段】第1導電型の半導体基板(1)と、前記第1導電型と反対の第2導電型であって前記半導体基板の表面側に形成されたソース領域(11)、低濃度ドレイン領域(12)及び高濃度ドレイン領域(13)と、前記半導体基板上に形成されたゲート絶縁膜(14)と、前記ゲート絶縁膜上に形成されたゲート電極と、を備える半導体装置(10)であって、
前記ゲート電極は、前記低濃度ドレイン領域の少なくとも一部を覆うように形成され、且つ、前記低濃度ドレイン領域の上方において開孔(16)を有することを特徴とする半導体装置。前記低濃度ドレイン領域と高濃度ドレイン領域とは互いに隣接することが好ましい。 (もっと読む)


【課題】 オン抵抗を増大させることなく、高耐圧化を実現させることが可能な半導体装置を実現する。
【解決手段】 P型の半導体基板1内には、P型ボディ領域3と、P型ボディ領域3に対して基板面に平行な方向に離間して形成されたN型ドリフト領域5と、N型ドリフト領域内のフィールド酸化膜11で分離された領域に形成された、N型ドリフト領域5より高濃度N型のドレイン領域8と、P型ボディ領域3内に形成された、N型ドリフト領域5より高濃度N型のソース領域6を備える。そして、P型ボディ領域3の一部底面に離散的に連結すると共に、それぞれが基板面に平行な方向に延伸し、各先端がドリフト領域5内に達するよう、N型ドリフト領域5より高濃度のP型埋め込み拡散領域4が形成される。 (もっと読む)


【課題】ゲート電極とプラグとの接続信頼性を向上することができる技術を提供する。
【解決手段】本発明では、MISFETのゲート電極G1を金属膜MF2とポリシリコン膜PF1の積層膜から構成するMIPS電極を前提とする。そして、このMIPS電極から構成されるゲート電極G1のゲート長に比べて、ゲートコンタクトホールGCNT1の開口径を大きく形成する第1特徴点と、ゲート電極G1を構成する金属膜MF2の側面に凹部CP1を形成する第2特徴点により、さらなるゲート抵抗(寄生抵抗)の低減と、ゲート電極G1とゲートプラグGPLG1との接続信頼性を向上することができる。 (もっと読む)


【課題】RC型トランジスタのチャネル領域の高さを所望の範囲に調整するとともに、前記チャネル領域に近接して残存する薄皮状のバリ部を完全に除去して、半導体装置を製造するという課題があった。
【解決手段】半導体基板1の一面に、溝部と、溝部に囲まれ、側壁面の少なくとも一部が傾斜面である凸部39とを形成してから、溝部を埋める素子分離用絶縁膜を形成する第1工程と、素子分離用絶縁膜をマスクの一部にして半導体基板1の一面をドライエッチングして凸部39内に凹部27を設けるとともに、凹部27と素子分離用絶縁膜との間にチャネル領域4となる薄肉部41を形成する第2工程と、ウェットエッチングにより、薄肉部41の高さを調整する第3工程と、を有する半導体装置の製造方法を用いることにより、上記課題を解決できる。 (もっと読む)


【課題】 ウェット洗浄工程を増加させることなく、かつ、より低温でシリサイドを形成することが可能なシリサイドの形成方法を提供すること。
【解決手段】 表面にシリコンとシリコン酸化物とが露出している基板101上にシリサイドを形成するシリサイドの形成方法であって、基板101の温度を400℃以上として、シリコンとシリコン酸化物とが露出している基板101の表面上にマンガン有機化合物ガスを供給し、基板101の表面に露出したシリコンを選択的にマンガンシリサイド化する。 (もっと読む)


【課題】フィンの下部に適切に不純物が導入された半導体装置及びその製造方法を提供する。
【解決手段】半導体装置としてのFinFET1は、基体としての半導体基板10と、半導体基板10上に形成された複数のフィン20とを有し、複数のフィン20は、第1の間隔と第1の間隔よりも間隔が狭い第2の間隔とを繰り返して形成され、第1の間隔を形成する側に面した第1の側面221の下部の不純物濃度が、第2の間隔を形成する側に面した第2の側面222の下部の不純物濃度よりも高い半導体領域を有する。 (もっと読む)


【課題】
幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。一部の構造及び方法は、大部分が、既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。一部の構造及び方法は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。様々な効果を達成するようDDCを構成する手法が数多く存在し得る。
(もっと読む)


【課題】相対的に厚いゲート絶縁膜を有するMOSトランジスタと相対的に薄いゲート絶縁膜を有するMOSトランジスタを同時に形成する半導体装置およびその製造方法の提供。
【解決手段】相対的に薄いゲート絶縁膜25を有するMOSトランジスタが形成される領域のフィールド絶縁膜端23を相対的に厚いゲート絶縁膜24で覆うことにより、フィールド絶縁膜下部に形成された反転防止拡散層31から相対的に薄いゲート絶縁膜25を有するMOSトランジスタのチャネル領域33をオフセットさせることによって、フィールド絶縁膜の膜厚ばらつきや相対的に厚い第一のゲート絶縁膜24のエッチングばらつき、および反転防止拡散層によるチャネル端の濃度変動の影響を受けず、MOSトランジスタのチャネル幅を短く設計した際に生じる狭チャネル効果の影響を抑制することが可能となり、素子特性が安定した半導体装置。 (もっと読む)


201 - 220 / 1,343