説明

Fターム[5F140CE07]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 製造工程一般 (2,583) | 平坦化 (1,497) | CMP (1,242)

Fターム[5F140CE07]に分類される特許

81 - 100 / 1,242


【課題】 層間絶縁膜をCMP法で研磨、平坦化する際、MOS型トランジスタのチャネル領域に応力を与えるためにゲート電極を覆うように形成される応力ライナー膜が研磨されて、トランジスタ特性の変動やバラツキが発生しないようにする。
【解決手段】 第1活性領域(例えばPチャネルトランジスタ形成領域)上のゲート電極(シリコン膜14と金属シリサイド膜15との積層膜)上には第1応力膜(圧縮応力ライナー膜)16のみを形成し、第2活性領域(例えばNチャネルトランジスタ領域)上のゲート電極上には第2応力膜(引っ張り応力ライナー膜)18のみを形成する。一方、素子分離10上のゲート電極上には第1および第2応力膜16、18の積層膜を形成する。層間絶縁膜20のCMP法による研磨は、素子分離10上の第2応力膜18の露出後に停止する。 (もっと読む)


【課題】トレンチ横型パワーMOSFETにおいて、装置の信頼性を高めること。
【解決手段】半導体基板1の表面層にトレンチ5を形成する。トレンチ5は、半導体基板1の表面層を第1メサ領域41と第2メサ領域42に分割し、かつ第1メサ領域41と第2メサ領域42を交互に配置させる。第1メサ領域41および第2メサ領域42は、それぞれソース電流およびドレイン電流の引き出しをおこなう。第2メサ領域42は、半導体基板1からの深さが、第1メサ領域41よりも深くなっている。 (もっと読む)


【課題】本発明は、接合リーク電流を低減可能で、かつトランジスタの信頼性を向上させることの可能な半導体装置及びその製造方法を提供することを課題とする。
【解決手段】ゲート電極61よりも上方に配置されたゲート絶縁膜21、及びゲート電極61の上面61aを覆う水素含有絶縁膜62と、水素含有絶縁膜62を介して、ゲート電極用溝17の上部17Bを埋め込むフッ素含有絶縁膜63と、を備え、ゲート絶縁膜21と接触する第1及び第2の不純物拡散領域65,66の面に、半導体基板13に含まれるシリコンと水素含有絶縁膜62に含まれる水素とが結合したSi−H結合、及び半導体基板13に含まれるシリコンとフッ素含有絶縁膜63に含まれるフッ素とが結合したSi−F結合を有する。 (もっと読む)


【課題】新しい形態のメモリ素子のトランジスタ構造及びその製造方法を提供する。
【解決手段】本発明のトランジスタ構造は、半導体基板111の所定の領域から突出した活性領域111aと、活性領域111a内のチャネル領域に形成された凹溝部gと、半導体基板111上に、凹溝部gの底面より低い位置にある表面を有するように形成されたフィールド膜112と、凹溝部gの底面および側壁と、フィールド膜112によって露出した活性領域111aの側面とに形成されたゲート絶縁膜113と、ゲート絶縁膜113が形成された凹溝部g及びフィールド膜112を横切るように形成されたゲート電極114と、ゲート電極114の両側の活性領域111aに形成されたソースS及びドレーンD領域とを備え、ソースS及びドレーンDラインに沿ったX−X’断面はリセストランジスタ構造であり、ゲートラインに沿ったY−Y’断面は突起型トランジスタ構造である。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を用いたCMIS型半導体集積回路において、短チャネル長、且つ狭チャネル幅のデバイス領域では、ソースドレイン領域の活性化アニールによって、高誘電率ゲート絶縁膜とシリコン系基板部との界面膜であるILの膜厚が増加することによって、閾値電圧の絶対値が増加するという問題がある。
【解決手段】本願の一つの発明は、MISFETを有する半導体集積回路装置の製造方法において、MISFETのゲートスタック及びその周辺構造を形成した後、半導体基板表面を酸素吸収膜で覆い、その状態でソースドレインの不純物を活性化するためのアニールを実行し、その後、当該酸素吸収膜を除去するものである。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を用いたCMIS型半導体集積回路において、短チャネル長、且つ狭チャネル幅のデバイス領域では、ソースドレイン領域の活性化アニールによって、高誘電率ゲート絶縁膜とシリコン系基板部との界面膜であるILの膜厚が増加することによって、閾値電圧の絶対値が増加するという問題がある。
【解決手段】本願の一つの発明は、MISFETを有する半導体集積回路装置の製造方法において、MISFETのゲートスタック及びその周辺構造を形成した後、半導体基板表面を酸素吸収膜で覆い、その状態でソースドレインの不純物を活性化するためのアニールを実行し、その後、当該酸素吸収膜を除去するものである。 (もっと読む)


【課題】3次元形の半導体素子において、オン抵抗をより効果的に低減できる半導体素子及び半導体素子の製造方法を提供する。
【解決手段】半導体素子は、ドレイン層と、ドレイン層内に選択的に設けられたドリフト領域と、ドリフト領域内に選択的に設けられたベース領域と、ベース領域内に選択的に設けられたソース領域と、ソース領域又はドレイン層の少なくとも一方の内部に、ソース領域又はドレイン層の少なくとも一方に選択的に設けられた第1,第2の金属層と、ドレイン層の表面に対して略平行な方向に、ソース領域の一部から、ソース領域の少なくとも一部に隣接するベース領域を貫通して、ドリフト領域の一部にまで到達するトレンチ状のゲート電極と、第1の金属層に接続されたソース電極と、ドレイン層又は第2の金属層に接続されたドレイン電極と、を備える。 (もっと読む)


【課題】1回のリソグラフィ工程によりセルフアラインでトンネルトランジスタを製造する方法を提供する。
【解決手段】ゲート絶縁膜及びゲート電極が積層された半導体基板上に第1の絶縁膜を形成しリソグラフィにより第1の絶縁膜の端部に第1の絶縁膜とは薬品選択性が異なりゲート電極位置を画定する第2の絶縁膜を形成する工程と、第1及び第2の絶縁膜をマスクにゲート電極の一端を画定する工程と、第1及び第2の絶縁膜をマスクにして第1導電型不純物を半導体基板に導入しソースを形成する工程と、半導体基板全面に第1の絶縁膜とは薬品選択性が異なる第3の絶縁膜を被覆する工程と、該第3の絶縁膜の一部を除去することにより該第1の絶縁膜を選択的に除去する工程と、第2及び第3の絶縁膜をマスクにしてゲート電極を形成した後、第2導電型不純物を半導体基板に導入しドレインを形成する工程を含むトンネルトランジスタの製造方法。 (もっと読む)


【課題】高集積化を図ることができる半導体装置の製造方法を提供することである。
【解決手段】実施形態に係る半導体装置の製造方法は、半導体基板に第1の方向に延びる複数の溝を形成する工程と、前記溝の内面上及び前記半導体基板の上面上に絶縁膜を形成する工程と、前記絶縁膜上に、前記溝を埋めるように、第1の導電層を堆積する工程と、前記第1の導電層上に第2の導電層を堆積する工程と、前記第2の導電層上における前記溝の直上域の一部を含む領域にハードマスクを形成する工程と、前記ハードマスクをマスクとして前記第2の導電層をエッチングすることにより、前記ハードマスク及び前記第2の導電層を含む柱状体を形成する工程と、前記柱状体における前記溝の幅方向に面する2つの側面上に、電極加工側壁を形成する工程と、前記柱状体及び前記電極加工側壁をマスクとしてエッチングすることにより、前記第1の導電層における露出した部分の上部を除去し下部を残留させる工程と、前記電極加工側壁を除去する工程とを備える。 (もっと読む)


【課題】高集積化を図ることができる半導体装置及びその製造方法を提供することである。
【解決手段】実施形態に係る半導体装置は、半導体基板と、前記半導体基板上に設けられ、相互に平行に延びる複数本の積層体であって、前記半導体基板上に設けられたゲート絶縁膜と、前記ゲート絶縁膜上に設けられたゲート電極と、前記ゲート電極上に設けられた絶縁膜と、を有する積層体と、前記ゲート電極の上端部の側面を覆い、前記ゲート電極における前記ゲート絶縁膜に接する部分の側面は覆わない絶縁側壁と、前記半導体基板上に設けられ、前記積層体を覆う層間絶縁膜と、前記層間絶縁膜内における前記積層体の相互間に設けられ、前記半導体基板に接続されたコンタクトと、を備える。 (もっと読む)


【課題】チャネル領域に歪みを加える領域内の格子位置に存在する炭素量を多くすることができる半導体装置の製造方法を提供する。
【解決手段】半導体基板のうちゲート電極5両側にエクステンション領域7s、7d、ポケット領域8s、8dを形成し、ゲート電極5側面にサイドウォール9を形成し、半導体基板1のうちサイドウォール9、ゲート電極5から露出した領域をエッチングして凹部1s、1dを形成し、凹部1s、1d内に第3不純物を含む半導体層11s,11dを形成し、第1熱処理により第3不純物を活性化してゲート電極5の両側方にソース/ドレイン領域11s,11dを形成し、半導体層11s,11d内に炭素を有する第4不純物をイオン注入して半導体層11s,11dをアモルファス領域13s,13dとなし、第2熱処理によりアモルファス領域13s,13d内結晶の格子位置での炭素の結合性を高めてゲート電極5の両側方に歪発生領域14s,14dを形成する工程を有する。 (もっと読む)


【課題】駆動電流を向上したnMOSトランジスタを備えた半導体装置を実現できるようにする。
【解決手段】半導体装置は、半導体基板の素子領域101の上にゲート絶縁膜111を介在させて形成されたゲート電極112と、素子領域101におけるゲート電極112の両側方に形成され、n型不純物及び炭素を含むソースドレイン領域122とを備えている。ソースドレイン領域122を構成するシリコン及びソースドレイン領域122に含まれる炭素の少なくとも一方は、主同位体よりも質量数が大きい安定同位体の存在比が、天然存在比よりも高い。 (もっと読む)


【課題】縦型PN接合において確実にオン/オフの制御をすることができる半導体装置を提供する。
【解決手段】半導体装置は、半導体層と、半導体層上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極とを備える。第1導電型の第1のチャネル領域が、ゲート絶縁膜の下にある半導体層の表面の一部に設けられている。第1導電型とは異なる導電型である第2導電型の拡散層が、第1のチャネル領域のさらに下の半導体層に設けられ、半導体層の表面に対してほぼ垂直方向に第1のチャネル領域の底部と接し、該第1のチャネル領域の底部とPN接合を形成する。第1導電型のドレインおよび第2導電型のソースが、第1のチャネル領域の両側にある半導体層内にそれぞれ設けられている。側壁絶縁膜は、第1のチャネル領域の拡散層側の側面を被覆する。 (もっと読む)


【課題】フィントランジスタのオン電流のばらつきを抑制する。
【解決手段】半導体基板10の上に形成され、半導体基板10から突出するフィン活性領域15a,15bと、半導体基板10の上に形成され、フィン活性領域15a,15bの下部の側面を覆う素子分離膜16と、素子分離膜16から突出するフィン活性領域15a,15bの中央部及び上部のうち、中央部の側面の上に形成されたサイドウォール18a,18bとを備えている。フィン活性領域15a,15bの上部は、サイドウォール18a,18bから突出している。 (もっと読む)


【課題】低廉なプロセスにて高性能・高信頼性を実現しうる半導体装置及びその製造方法を提供する。
【解決手段】第1の領域に形成された第1導電型の不純物層及び第1のエピタキシャル半導体層と、第1のエピタキシャル半導体層上に第1のゲート絶縁膜を介して形成された第1のゲート電極と、第1の領域に形成された第1のソース/ドレイン領域とを有する第1のトランジスタと、第2の領域に形成された第2導電型の不純物層及び第1のエピタキシャル半導体層とは膜厚の異なる第2のエピタキシャル半導体層と、第2のエピタキシャル半導体層上に第1のゲート絶縁膜と同じ膜厚の第2のゲート絶縁膜を介して形成された第2のゲート電極と、第2の領域に形成された第2のソース/ドレイン領域とを有する第2のトランジスタとを有する。 (もっと読む)


【課題】特性の良好な半導体装置を形成する。
【解決手段】本発明は、pチャネル型MISFETをpMIS形成領域1Aに有し、nチャネル型MISFETをnMIS形成領域1Bに有する半導体装置の製造方法であって、HfON膜5上にAl膜8aを形成する工程と、Al膜上にTiリッチなTiN膜7aを形成する工程と、を有する。さらに、nMIS形成領域1BのTiN膜およびAl膜を除去する工程と、nMIS形成領域1BのHfON膜5上およびpMIS形成領域1AのTiN膜7a上にLa膜8bを形成する工程と、La膜8b上にNリッチなTiN膜7bを形成する工程と、熱処理を施す工程とを有する。かかる工程によれば、pMIS形成領域1Aにおいては、HfAlON膜のN含有量を少なくでき、nMIS形成領域1Bにおいては、HfLaON膜のN含有量を多くできる。よって、eWFを改善できる。 (もっと読む)


【課題】素子分離用ゲート電極のみのしきい値電圧を高くすることができ、素子分離用ゲート電極の底部にチャネルが形成されない半導体装置を提供する。
【解決手段】半導体基板1に形成された複数の活性領域と、これら活性領域同士を区画する素子分離領域と、活性領域内を複数の素子領域に区画する第1素子分離用トレンチ32Aと、隣接する第1素子分離用トレンチ32A間に設けられ、第1素子分離用トレンチ32Aの深さよりも浅く形成されたゲートトレンチ31Aと、絶縁膜25を介して第1素子分離用トレンチ32A内に形成された素子分離用電極32と、ゲート絶縁膜26Aを介してゲートトレンチ31A内に形成されたゲート電極31と、を具備してなり、素子分離用電極32底部に成膜されている絶縁膜25の膜厚が、ゲート電極31の底部に成膜されているゲート絶縁膜26Aの膜厚よりも厚いことを特徴とする。 (もっと読む)


【課題】MISFETにおいて、信頼性寿命の低下を抑制する。
【解決手段】半導体装置100は、少なくとも1つのMISFETを備える。MISFETは、第1導電型の半導体基板101と、半導体基板101上にゲート絶縁膜104を介して形成されたゲート電極105と、半導体基板101におけるゲート電極105の側方に形成された第2導電型のソース領域106と、他方の側方に形成された第2導電型のドレイン領域107と、半導体基板101におけるゲート電極105の下方であり且つソース領域106及びドレイン領域107に挟まれたチャネル領域111とを備える。ゲート絶縁膜104は、ゲート電極105の底面下から側面上にまで亘って形成されている。チャネル領域111において、ドレイン領域107近傍の第1領域における不純物濃度は、チャネル領域111における第1領域以外の第2領域における不純物濃度に比べて低い。 (もっと読む)


【課題】トンネルトランジスタにおいて、その寄生容量を低減したゲート電極を提供する。
【解決手段】ゲート絶縁膜201を介して形成されたゲート電極202を挟むように形成された、第1導電型のソース領域121及び前記第1導電型とは逆導電型の第2導電型のドレイン領域122と、基板101内において前記ソース領域121と前記ドレイン領域122との間に形成された、第2導電型のチャネル領域123とを備える。そして、前記ゲート絶縁膜201は、前記ソース領域上に位置し、チャネル幅方向に平行な第1のエッジE1と、前記チャネル領域上又は前記ソース領域上に位置し、チャネル幅方向に平行な第2のエッジE2とを有し、第1の膜厚を有する第1の絶縁膜部分を有する。さらに、前記ゲート絶縁膜201は、前記第1の絶縁膜部分に対して前記ドレイン領域側に位置し、前記第1の膜厚よりも厚い第2の膜厚を有する第2の絶縁膜部分を有する。 (もっと読む)


【課題】半導体装置の性能と信頼性を向上させる。
【解決手段】nチャネル型MISFETQn1,Qn2を覆うように半導体基板1上に引張応力膜としての窒化シリコン膜5を形成する。窒化シリコン膜5は窒化シリコン膜5a,5b,5cの積層膜である。窒化シリコン膜5a,5bの膜厚の合計は、サイドウォールスペーサSW1とサイドウォールスペーサSW2との間の間隔の半分よりも小さく、窒化シリコン膜5a,5bは、成膜後に紫外線照射処理を行って引張応力を増大させる。窒化シリコン膜5a,5b,5cの膜厚の合計は、サイドウォールスペーサSW1とサイドウォールスペーサSW2との間の間隔の半分以上であり、窒化シリコン膜5cに対しては紫外線照射処理を行わない。 (もっと読む)


81 - 100 / 1,242