説明

Fターム[5H007CA02]の内容

インバータ装置 (60,604) | スイッチング素子 (5,393) | トランジスタ (5,228) | 電界効果トランジスタ(FET) (1,588)

Fターム[5H007CA02]に分類される特許

161 - 180 / 1,588


【課題】 インバータ装置及びそれを備えた電動工具を提供する。
【解決手段】
インバータ装置1では、第1の電池パック2と第2の電池パック2のいずれが接続された場合であってもインバータ回路16から所定の実効値を有する交流電圧が出力されるように、第1の電池パック2が接続されている場合には、トランス131による目標電圧を第1の目標変圧電圧に設定した上で、第1のデューティでスイッチング動作を行うようにインバータ回路16を制御し、第2の電池パック2が接続されている場合には、トランス131による目標変圧電圧を前記第1の目標電圧よりも小さい第2の目標電圧に設定した上で、第1のデューティよりも大きな第2のデューティでスイッチング動作を行うようにインバータ回路16を制御する。 (もっと読む)


【課題】 インバータ装置及びそれを備えた電動工具を提供する。
【解決手段】 インバータ装置1では、FET132及びトランス131により電池パック2から供給される直流電力を交流電力に変換し、整流・平滑回路14によりトランス131から出力された交流電力を整流・平滑して直流電力として出力し、インバータ回路16により整流・平滑回路14から出力された直流電力を交流電力に変換して出力する。電流検出抵抗17は、インバータ回路16に流れる電流を検出し、温度検出部20は、FET132の温度を検出する。制御部19は、電流検出抵抗17により検出された電流の電流値と温度検出部20により検出された温度の両方に基づいて、FET132がオンすることを防止する。 (もっと読む)


【課題】 インバータ装置を提供する。
【解決手段】 インバータ装置1は、昇圧回路13と、整流・平滑回路14と、インバータ回路16と、制御部19と、を備えている。昇圧回路13は、直流電圧を交流電圧に変圧して出力する。整流・平滑回路14は、昇圧回路13から出力された交流電圧を整流・平滑して直流電圧として出力する。インバータ回路16は、整流・平滑回路14から出力された直流電圧を交流電圧に変換して出力する。制御部19は、昇圧回路13の出力側の電圧が所定範囲から外れた場合にインバータ回路16からの交流電圧の出力を停止させる。 (もっと読む)


【課題】 インバータ装置及びそれを備えた電動工具を提供する。
【解決手段】 インバータ装置1は、FET132と、トランス131と、整流・平滑回路14と、インバータ回路16と、制御部19と、を備えている。FET132及びトランス131は、電池パック2から供給される直流電圧を交流電圧に変換して出力する。整流・平滑回路14は、トランス131から出力された交流電力を整流・平滑して直流電力として出力する。インバータ回路16は、整流・平滑回路14から出力された直流電力を交流電力に変換して出力する。制御部19は、電池パック2の特性に基づきインバータ回路16からの交流電圧の出力を防止する。 (もっと読む)


【課題】 インバータ装置を提供する。
【解決手段】 インバータ装置1は、インバータ回路16と、電流検出抵抗17と、インバータ回路停止部20と、を備えている。インバータ回路16は、直流電力を交流電力に変換して出力する。電流検出抵抗17は、前記インバータ回路に流れる電流の電流値を検出する。インバータ回路停止部20は、前記電流値が過電流閾値を上回った場合にインバータ回路16からの交流電力の出力を停止させる。 (もっと読む)


【課題】電流コラプス現象が発生する半導体デバイスを用いた場合にも、電力変換装置において、より正確にオン電圧補償ができるようにする。
【解決手段】電力変換装置において、スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)の非導通時に印加される印加電圧値(V)に対応した、スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のオン電圧降下(Vs)を求める電圧降下演算部(52)を設ける。また、オン電圧降下(Vs)に応じ、スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)をオン状態にする時間(Ton)を制御する制御部(5)を設ける。 (もっと読む)


【課題】ブリッジ回路を構成する一対のMOSFETの内蔵ダイオードに流れる負荷電流の逆回復を速くする。
【解決手段】ブリッジ回路3は内蔵ダイオード4a、5aを内蔵したMOSFET4、5により構成される。MOSFET4、5はスイッチング制御回路6によりゲート駆動回路7、8を介して駆動制御される。負荷電流ILがコイル1からブリッジ回路に向けて流れる状態であって、例えば内蔵ダイオード4aを介して環流電流を流す状態からMOSFET5を介して負荷電流を流す状態への移行期間の終盤にMOSFET4をオンして内蔵ダイオード4aをオフさせ、電流I1がゼロ相当になったらMOSFET4をオフ、MOSFET5をクランプ状態で一定時間オンする。その後、MOSFET5を通常のオン状態に移行させる。 (もっと読む)


【課題】コアの磁気抵抗部(ギャップ)からの漏れ磁束による不要輻射ノイズを効果的に低減させ、出力電圧も高められるようにする。
【解決手段】入力電圧Vinをスイッチング素子Qswによってスイッチングしてトランス10の励磁巻線NPに励磁電流を流し、出力巻線NSから高電圧Voutを出力する。そのトランス10が、励磁巻線NPと出力巻線NSを巻装するコアの磁路に磁気抵抗となるギャップを有する共振トランスであり、コアにおける磁束の向きと鎖交するように閉じられた帯状の導電材からなる磁気消去リング13を、その幅方向の中央がギャップの間隔の中央と磁束方向の位置が一致するように、コアと巻線部の外側に巻き付けて設け、その磁気消去リング13を、抵抗R2とコンデンサC2の並列回路を通してフレームグラウンドGNDに接続した。 (もっと読む)


【課題】体格を小型にでき、高精度に制御可能な駆動装置を提供する。
【解決手段】パワー部60および制御部70は、モータ40の軸方向に設けられ、モータ40を制御する。電源コネクタ51はモータケース41から径方向外側に突出するよう設けられ、モータ40、パワー部60、および、制御部70に電力を供給する電源線が接続される。信号コネクタはモータケース41から径方向外側に突出するよう設けられ、モータ40を制御するための信号を制御部70に伝達する信号線が接続される。トルク信号コネクタ53は、モータケース41から径方向外側に突出するよう、軸方向の制御部70側に設けられ、トルク信号を制御部70に伝達するトルク信号線が接続される。トルク信号コネクタ53は、電源コネクタ51から所定の距離離間し、トルク信号コネクタ53の接続部531は軸方向のモータ40側を向くよう形成されている。 (もっと読む)


【課題】高電圧インバータ装置の出力経路における漏電を確実に検出できるようにする。
【解決手段】入力電圧Vinをスイッチングして、トランス10の励磁巻線NPに励磁電流を流し、出力巻線NSから交流高電圧を出力して、出力ラインを11,12から負荷に高電圧を供給する高電圧インバータ装置で、出力ライン12のG点がフレームグラウンドGNDに接続されている。漏電検出用トランス30の第1の巻線N1をG点から電流が流出する側の出力ラインに直列に介挿し、第2の巻線N2をG点に電流が流入する側の出力ラインに直列に介挿し、増幅用巻線N20から出力される検出電圧Vdを比較回路31によって比較電圧Vrefと比較して、Vd>Vrefのときに漏電検出信号Sdを出力する。第1の巻線N1と第2の巻線N2は互いに巻方向が逆で巻数が同じで、増幅用巻線N20の巻数は第1、第2の巻線N1,N2より1桁以上多い。 (もっと読む)


【課題】直流電圧の変動に対応できると共に、無効電力を自由に制御でき、且つ自律並行運転が可能な単相電圧型交直変換装置、及びこの単相電圧型交直変換装置を利用した系統連系システムを提供することを目的とする。
【解決手段】本発明に係る単相電圧型交直変換装置は、直流端子の直流電圧検出値と直流電圧指令値との差分から第2軸電圧指令を生成し、この第2軸電圧指令で有効電力を増減して直流電圧を制御する。例えば、直流端子の直流電圧検出値が直流電圧指令より低い場合、有効電力を低下させることで直流端子の電圧を上昇させ、逆に直流端子の直流電圧検出値が直流電圧指令より高い場合、有効電力を増加させることで直流端子の直流電圧検出値を下降させる。 (もっと読む)


【課題】従来よりも電気部品の不具合発生を抑制し、従来よりもトルク変動を抑制できるようにする。
【解決手段】インバータ制御装置11は、複数のスイッチング部のうちで短絡故障が発生したスイッチング部を検出する故障検出手段110と、短絡故障が発生していないスイッチング部の一部または全部を導通状態に制御する導通制御手段111と、導通制御手段111による制御とともに行われ、複数のスイッチング部のうちで一部または全部を冷却する冷却装置31の駆動を継続させるスイッチング部冷却継続手段113とを有する。この構成によれば、スイッチング部は冷却装置31によって冷却されて温度上昇が抑えられるので、従来よりも不具合発生を抑制することができる。また、スイッチング部の温度θsw上昇が抑えられるので、従来よりもトルク変動を抑制できる。 (もっと読む)


【課題】従来、ダイオードの電流−電圧特性が直線的ではなく、電流が流れ初めるときの電圧が電圧降下が発生した後に電流が通流開始する性質については考慮されておらず、その結果、電流が比較的小さい運転領域では入力電力に対する損失の比率が大きくなり、相対的に回路損失が低下し、回路効率に改善の余地があった。
【解決手段】昇圧チョッパ回路を構成するダイオードに並列にMOS−FETを並列に接続し、昇圧チョッパ回路のスイッチング素子がオフしている期間に、MOS−FETをオンする手段を設けた。これにより、従来の昇圧コンバータを構成するダイオードに流れていた電流は、MOS−FETを通して流れる。N型MOS−FETは、その電圧−電流特性は直線的であるので電流が小さい領域で電圧降下、延いては損失が小さいので回路効率を向上することができる。 (もっと読む)


【課題】本出願は、電気外科発電機を提供する。
【解決手段】入力電力を受信するように構成されるDC−DCバックコンバータと、DC−DCバックコンバータおよびDC−ACブーストインバータと通信するインダクタと、一次巻線と、二次巻線とを有する変圧器であって、変圧器は、出力電力を負荷に伝送するように構成され、DC−ACブーストインバータは、インダクタから入力を受信し、変圧器の該一次巻線にAC電力を移送するように構成される、変圧器と、DC−DCバックコンバータおよびDC−ACブーストインバータの両方を制御するように構成される電気外科発電機(ESG)であって、制御は、電気外科発電機の電気的パラメータに部分的に基づく、電気外科発電機(ESG)とを備えている、電気外科発電機。 (もっと読む)


【課題】高出力の高電圧を連続的に、安定的にしかも安全に得られるようにする。
【解決手段】直流電圧若しくは直流成分に脈流が重畳されたSELV以内の電圧を入力電圧Vinとし、それをスイッチング素子Qswによってスイッチングしてトランス10の励磁巻線NPの電流を断続し、その出力巻線NSから高電圧を出力する。そのトランス10は、コア11に出力巻線NSがNS1〜NS4に分割されて、それぞれ層間絶縁層Es1〜Es4を挟んで積層されて巻装され、その外側に主絶縁層Epsを介して励磁巻線NPが巻装されており、その各絶縁層はいずれも、フッ素樹脂フィルムからなるテープが1枚もしくは複数枚重ねて巻かれて形成され、主絶縁層Epsの厚さが各層間絶縁層Es1〜Es4の厚さより厚い共振トランスであり、その自己共振周波数がスイッチング周波数の1倍を超え20倍以下の範囲にある。 (もっと読む)


【課題】パワー半導体素子を備え、片面実装の金属基板を用いたパワーモジュールの放熱効率を改善する。
【解決手段】パワー半導体素子を実装するランド部面積を増大させ、空いたランド部に蓄熱金属塊(金属製ブロック)を設置し、パワー半導体素子と同一面でのはんだ実装とする。
【効果】金属基板の特徴を生かしつつ、更に放熱性能の改善を簡単かつ、安価な方策で実現できる。 (もっと読む)


【課題】 負荷への通電を妨げることなく、昇圧した電圧が低下することを防止することができる負荷駆動装置を提供する。
【解決手段】 複数相の駆動回路のうちの少なくとも2相間において昇圧用コンデンサ47,67と第3の電源45,65との接続部に設けられ、昇圧された電圧が出力される昇圧電源端子10,13同士の電気的な接続または遮断を選択する少なくとも1つのスイッチ回路102と、少なくとも1つのスイッチ回路102を制御する少なくとも1つのスイッチ制御回路110とを備えている。 (もっと読む)


【課題】電圧利用率を向上するとともに、線間電圧の歪みを低減可能な電力変換装置を提供する。
【解決手段】電力変換装置1は、インバータ部20と制御部60とを備える。インバータ部20は、モータ10のコイル11〜13の各相に対応し、上SW21〜23および下SW24〜26を有する。制御部60は、上SW21〜23および下SW24〜26のオン時間が、デッドタイムに基づいて決定される所定時間未満となる相がある場合、上SW21〜23のオン時間または下SW24〜26のオン時間が所定時間以上となるように、コイル11〜13の各相に印加される電圧の平均値である出力電圧平均値を変更する。これにより、特別な回路を設けることなく、電圧利用率を向上することができる。また、デッドタイムの影響による線間電圧の歪みや電流の歪み、これに伴う振動や騒音を抑制することができる。 (もっと読む)


【課題】3相インバータ回路において2つの相に配置されたMOSFETを保護する電動パワーステアリング装置を提供する。
【解決手段】電動パワーステアリング装置は、ステアリングホイールの操舵を補助する。この電動パワーステアリング装置は操舵を補助するためのトルクを発生するモータ12と、3つの経路からモータ12に3相の駆動電流を供給する3相インバータ回路50と、3相インバータ回路50を制御するCPU46と、を備える。3相インバータ回路50は、6つのMOSFETと、モータ12と、出力端子が接地されている1つのMOSFETのゲートとに接続されるアクティブクランプ回路60と、モータ12とアクティブクランプ回路60との間に設けられる第1リレー47と、を有する。アクティブクランプ回路60は、モータ12側の電圧が所定電圧以上になると1つのMOSFETをオンする。 (もっと読む)


【課題】入力電流の変化を抑制可能な電力変換回路を提供する。
【解決手段】変圧器T1の二次巻線S1と三組の直列回路を含む。第一組直列回路は直流入力電圧と並列に接続され、互いに直列に接続される第一コンデンサーC1と第二コンデンサーC2を含む。第二組直列回路は直流入力電圧と並列に接続され、順番に直列に接続される変圧器T1の第一一次巻線P1、第三コンデンサーCc及び変圧器T1の第二一次巻線P2を含む。第三組直列回路は第三コンデンサーCcと並列に接続され、互いに直列に接続される第一スイッチQ1及び第二スイッチQ2を含む。第一組直列回路と第二組直列回路二組の中心端子は一緒に接続される。これにより、第一スイッチQ1及び第二スイッチQ2がそれぞれ導電及び遮断されると、変圧器T1の二次巻線S1に交流電圧が発生する。 (もっと読む)


161 - 180 / 1,588