説明

Fターム[5H007CA02]の内容

インバータ装置 (60,604) | スイッチング素子 (5,393) | トランジスタ (5,228) | 電界効果トランジスタ(FET) (1,588)

Fターム[5H007CA02]に分類される特許

81 - 100 / 1,588


【課題】スイッチング回路の損失を低減させる。
【解決手段】所定のスイッチング周期において、ハイ側スイッチング素子のオンデューティとロー側スイッチング素子のオンデューティとを独立に設定可能なPWM演算部25を備え、PWM演算部25は、前回までの複数のスイッチング周期におけるオンデューティの積算値を算出する通電割合演算部25aを備える。PWM演算部25は、通電割合演算部25aによって算出されたオンデューティの積算値に基づいて、順方向電流が流れていないスイッチング素子のオンデューティを設定する。 (もっと読む)


【課題】伝導ノイズ及び伝導ノイズをより低減しつつ、破損を防止することが可能な半導体装置を提供する。
【解決手段】半導体装置16では、正極端子50及び出力端子54の少なくとも一方と第1スイッチング素子34との間には導電性の第1熱緩衝材64aが配置されると共に、負極端子52及び出力端子54の少なくとも一方と第2スイッチング素子40との間には導電性の第2熱緩衝材64bが配置される。第1熱緩衝材64aの線膨張係数は、第1スイッチング素子34の線膨張係数よりも大きく且つ正極端子50又は出力端子54の線膨張係数よりも小さく、第2熱緩衝材64bの線膨張係数は、第2スイッチング素子40の線膨張係数よりも大きく且つ負極端子52又は出力端子54の線膨張係数よりも小さい。 (もっと読む)


【課題】構成に要する費用が嵩むことを防止しつつ、スイッチング回路の損失を低減させる。
【解決手段】ハイ側およびロー側スイッチング素子の各オンデューティを独立に設定可能なPWM演算部25は、相電流検出部32によって検出されたモータに流れる負荷電流に基づき、ハイ側スイッチング素子およびロー側スイッチング素子のうち何れのスイッチング素子に順方向電流が流れていないかを判定する。逆方向デューティ判定部25aは、負荷電流の絶対値あるいは順方向電流の導通損失が所定値以上の場合に、順方向電流が流れていないと判定されたスイッチング素子のオンデューティをゼロに設定すると判定する。PWM演算部25は、逆方向デューティ判定部25aの判定結果に応じて、順方向電流が流れていないと判定したスイッチング素子のオンデューティをゼロに設定する。 (もっと読む)


【課題】スイッチング回路の損失を低減させる。
【解決手段】スイッチング回路の制御装置10は、還流ダイオードに転流電流が流れるときに、この還流ダイオードに並列なスイッチング素子をオン作動させるPWM演算部25と、モータの目標回転数および目標トルクに基づき、スイッチング素子をオン作動させるオン時間を変更するデッドタイム演算部25aと、を備える。デッドタイム演算部25aは、目標回転数の増大に伴ってオン時間を減少傾向に変化させるとともに、力行を正かつ回生を負とする目標トルクの絶対値の増大に伴ってオン時間を減少傾向に変化させる。 (もっと読む)


【課題】小型化して製造コストを低減することが可能なインバータ装置を提供する。
【解決手段】インバータ装置は、直流電源の正極と負極が接続される第1の入力端子1aおよび第2の入力端子2aと、第1、第2のハーフブリッジ出力端子から電圧を出力するハーフブリッジ回路100aと、外部負荷が接続される第1の出力端子1bおよび第2の出力端子2bと、第1、第2のハーフブリッジ出力端子の電圧をフィルタリングして第1の出力端子1bおよび第2の出力端子2bに出力するLCフィルタFと、ハーフブリッジ回路100aを構成するスイッチ素子の動作を制御する制御回路100bと、を備え、制御回路100bは、第1のハーフブリッジ出力端子と第2のハーフブリッジ出力端子との間の端子間電圧が、第1の極性の第1の電圧、又は、ゼロになるように、ハーフブリッジ回路100aを構成するスイッチ素子を制御する。 (もっと読む)


【課題】産業用車両に好適に利用可能な電力変換装置を提供する。
【解決手段】ハイサイドトランジスタMHUは、対応する相の出力端子OUTUと上側電源ラインLPの間に設けられ、電気的に並列なN個(Nは2以上の整数)のハイサイドトランジスタユニット14U1〜Nを含む。ローサイドトランジスタMLUは、対応する相の出力端子OUTUと下側電源ラインLNの間に設けられ、電気的に並列なN個のローサイドトランジスタユニット16U1〜Nを含む。スナバ回路12は、それぞれが、ひとつのハイサイドトランジスタユニット14およびそれと対応するひとつのローサイドトランジスタユニット16のペアごとに設けられる。ハイサイドトランジスタMHU、ローサイドトランジスタMLUおよびN個のスナバ回路12U1〜Nは、金属ベース基板上に実装される。 (もっと読む)


【課題】高調波歪を低減した交流電力を出力するインバータを提供する。
【解決手段】制御部は、それぞれ電圧が異なる複数の直流電源からの電源電圧と、2つの電源電圧の電位差とからなる複数の階調電圧を用いて、擬似正弦波を発生させる。具体的に制御部は、正弦波電圧が2つの階調電圧となる時間の範囲内で、一方の階調電圧および他方の階調電圧をそれぞれローレベルおよびハイレベルとするPWM信号を生成して、擬似正弦波を発生させる。PWM信号の切替タイミングは、正弦波電圧が2つの階調電圧となる時間の範囲内に一方の階調電圧および他方の階調電圧をそれぞれローレベルおよびハイレベルとする三角波を生成し、その三角波と正弦波の交点を用いることで決定される。 (もっと読む)


【課題】機器小型化を図ることができるとともに高温下であってもコモンモードノイズを十分に抑制することができるノイズ低減回路を提供する。
【解決手段】バッテリ19からの電力を半導体素子からなる半導体スイッチング素子11,12を介して電力変換して電力駆動する負荷に出力する高圧電力系統と、ボディ17との間に、半導体スイッチング素子11,12の駆動による発熱温度上限値以上の耐熱温度を有するダイオード26,27を、それらの導通方向が逆向きになるように直列接続したことを特徴とする。 (もっと読む)


【課題】電力変換装置を構成するFETの発熱を低下させ、最大出力電力を高めた改良された電力変換装置を得る。
【解決手段】FET1a、FET1bとFET1a、FET1bに逆並列接続された還流ダイオードD1a、D1bとにより半導体スイッチS1a、S1bを構成し、スイッチング動作を行う2個1組の半導体スイッチS1a、S1bと、平滑コンデンサC1とを有し、半導体スイッチS1a、S1bのFET1a、FET1bの相補的スイッチング動作により電力変換を行う電力変換装置10において、半導体スイッチS1a、S1bに流れる電流の向きを検出する電流センサCS1と、半導体スイッチS1a、S1bに流れる電流の向きが負であるときに、半導体スイッチS1a、S1bのPWMゲート信号のオン信号を間引くゲート生成部11を備えた。 (もっと読む)


【課題】パワーMOSFETを高速駆動する場合であっても、寄生インダクタンスに流れる電流の時間変化に応じて発生する電圧に起因したセルフターンオンの発生を防止できるようにしたパワーMOSFETの駆動回路、また、その素子値決定方法を提供する。
【解決手段】制御回路が、駆動回路によってスイッチを駆動制御することで、(2)区間においてスイッチS2HおよびS2Lをオンすると共にその他をオフとし、(3)区間においてスイッチS1LおよびS3Hをオンすると共にその他をオフとする。すると、(2)〜(3)区間にかけて、ハイサイド側のMOSFETのゲートソース間を所定のインピーダンスに切り替えることができ、リカバリー後半に至ったとしてもハイサイド側のMOSFETのゲートソース間電圧Vgs1を閾値電圧Vt未満に抑制できる。 (もっと読む)


【課題】整数倍の信号成分に起因して、負荷回路やスイッチング素子に余分な電流が流れない電力効率を向上したスイッチング回路を提供する。
【解決手段】スイッチング回路1は、第1端子50a及び第2端子50bを有しており、パルス信号により駆動されて第1端子及び第2端子の導通状態をスイッチするスイッチング素子10と、スイッチング素子の第1端子13に電圧を供給する電源部30と、電源部に並列に接続される負荷回路40と、電源部と負荷回路との接続点Pと、スイッチング素子の第1端子との間に接続され、パルス信号のクロック周波数のN倍(Nは1以上の整数)の周波数において、接続点からスイッチング素子へ流れる電流を抑制する受動回路部50と、受動回路部と接続点との間に接続され、N倍の周波数において共振する共振回路部60と、を備える。 (もっと読む)


【課題】磁気共振型のワイヤレス給電における電力伝送効率を高める。
【解決手段】ワイヤレス給電装置200は、キャパシタCと給電コイルLを共振させることにより、給電コイルLと受電コイルLを磁気共振させる。このときの共振周波数をfとする。ワイヤレス給電装置200は、スイッチングトランジスタQとスイッチングトランジスタQを交互にオン・オフさせることにより、給電コイルLに共振周波数fの交流電力を供給する。 (もっと読む)


【課題】スイッチング素子の損失を低減させるインバータ制御回路を提供することを目的とする。
【解決手段】寄生ダイオード及び外付けダイオードを有さず、且つダイオード動作が可能なスイッチング素子23を上下アーム各々に用いて構成されるスイッチング回路と、スイッチング素子23を駆動させスイッチング素子23のソースとゲート電極間に負バイアス電圧を印加できる駆動回路24と、駆動回路24を制御しブラシレスモータ26を駆動させる制御手段25とを備え、負バイアスを印加する電圧に応じて、デッドタイムを切り換えることで、スイッチング素子23の損失を低減することが可能となる。 (もっと読む)


【課題】伝導ノイズ及び放射ノイズをさらに低減することが可能な半導体装置を提供する。
【解決手段】半導体装置16では、絶縁基板80上に設けられた凸状の絶縁部材102を介してアーム直列回路30の出力端子78が絶縁基板80の上方に配置され、上アームのスイッチング素子34の正極電極はアーム直列回路の正極端子70、負極電極は出力端子78、制御電極は制御端子74に接続される。下アームのスイッチング素子40の負極電極はアーム直列回路の負極端子72、正極電極は出力端子78、制御電極は制御端子76に接続される。 (もっと読む)


【課題】相対的に高い周波数の交流電力から相対的に低い周波数の交流電力への変換を高効率に行う。
【解決手段】交流変換回路は、スイッチング制御部の制御信号に基づいて入力高周波交流電圧を変換し、変換後の電圧を、制御信号に基づいて選択された相に出力するスイッチング部101と、変換後の電圧の高周波成分を除去することにより、変換後の電圧を出力交流電圧に変換するフィルタ部104と、零交差タイミング検出部102から出力される入力高周波交流電圧が0になるタイミング情報に同期して、各相の出力交流電圧に対応した参照信号に基づいてパルス密度変調を行い、パルス密度変調によるパルスの生成状況、および入力交流電圧の極性に基づいて制御信号を生成し、スイッチング部101に送出するスイッチング制御部103とを備えている。 (もっと読む)


【課題】精度の高い電流制御、電圧制御を提供する。
【解決手段】主端子と基準端子と制御端子を有する第一のスイッチと、第二のスイッチまたは整流器、入力側コンデンサと出力側コンデンサを各1以上持ち、インダクタを持つ電力変換回路であって、相互接続点と基準電位または出力または入力間の電流によって生じる電圧を利用して、出力の制御や保護を行う回路であって、印刷基板を用いたものであって、前記電圧の生じている素子のうち相互接続点でない側と接合された印刷基板上の導体と、その導体と回路図上は同電位となるべき基準電位または入力または出力のいずれかと結合された入力コンデンサあるいは出力コンデンサの端子と接合された導体が、最短距離で結合されないように、空隙によって分断された構造を持つもの。 (もっと読む)


【課題】電力変換装置において、電界効果トランジスタのボディダイオードの結晶劣化をより確実に抑制できるようにする。
【解決手段】電力変換装置において、電界効果トランジスタ(Su,Sv,…)と該電界効果トランジスタ(Su,Sv,…)に逆並列接続された還流ダイオード(Du,Dv,…)とを設ける。電界効果トランジスタ(Su,Sv,…)と還流ダイオード(Du,Dv,…)とを接続する共通接続ノード(Nd)から還流ダイオード(Du,Dv,…)までのインピーダンスを、共通接続ノード(Nd)から電界効果トランジスタ(Su,Sv,…)のボディダイオード(Db)までのインピーダンスよりも小さくする。 (もっと読む)


【課題】ノイズやサージを対策しつつ、温度上昇を抑制可能な電力変換装置を提供する。
【解決手段】電解コンデンサC1は、上側電源ラインと下側電源ラインの間に電気的に接続される。パワーモジュール4は、少なくともひとつのパワートランジスタを内蔵する。ゲートドライブ回路6は、少なくともひとつのパワートランジスタを駆動する。スナバ回路8は、上側電源ラインおよび下側電源ラインと電気的に接続される。第1基板20は、その第1面S1にパワーモジュール4が実装され、その第2面S2にゲートドライブ回路6およびスナバ回路8の構成部品が実装される。第2基板22は、その第1面S3に電解コンデンサC1が実装される。 (もっと読む)


【課題】ノイズやサージを対策しつつ、温度上昇を抑制可能な電力変換装置を提供する。
【解決手段】パワーモジュール4は基板20の第1面S1に実装され、ゲートドライブ回路6、複数の電解コンデンサC1およびスナバ回路8の構成部品は基板20の第2面S2に実装される。複数の電解コンデンサC1は、基板20の中心にクリアランス21を有するように2つの領域23、25に隔てて配置される。スナバ回路の構成部品は、複数の電解コンデンサC1に囲まれる領域29に配置される。 (もっと読む)


【課題】電源回路において、規定値以上の電圧が入力されても平滑化用のコンデンサの防爆弁が働かないようにする対策を安価に実現する。
【解決手段】電源回路1は、第2のスイッチング素子である接合形トランジスタ7が導通状態と非導通状態に切換えられて、第1のスイッチング素子である電界効果トランジスタ6が導通状態と非導通状態に切換えられることによって、トランス5の2次側コイル52から所定の電圧を出力する。そして、電源回路1は、整流回路部3に規定値以上の電圧が入力されると、ヒューズ溶断回路14の働きによって、接合形トランジスタ7が電界効果トランジスタ6を非導通状態にしようとする作用に抗して、電界効果トランジスタ6が導通状態になる。これにより、ヒューズ13に過電流が流れて、平滑化用のコンデンサ4の防爆弁が働く前に、ヒューズ13が溶断される。 (もっと読む)


81 - 100 / 1,588