説明

Fターム[5H730BB13]の内容

DC−DCコンバータ (106,849) | 主変換部の型式 (20,669) | 非絶縁型チョッパー方式 (5,778) | BUCK型 (2,646)

Fターム[5H730BB13]に分類される特許

121 - 140 / 2,646


【課題】スイッチングICのスイッチング制御により発生したスイッチングノイズが共通のグランド電極パターンを介してグランドラインから漏洩することを抑制できるDC−DCコンバータを提供する。
【解決手段】DC−DCコンバータ10の絶縁性基板11には、表面にインダクタL1、内部にスイッチング制御IC13、裏面にグランド電極パターン12が設けられている。グランド電極パターン12は、隔離した第1パターン121および第2パターン122と、これらを接続するブリッジパターン123からなる。第1パターン121および第2パターン122には、インダクタL1またはスイッチング制御IC13が接続されている。ブリッジパターン123は、インダクタL1に対向し、幅が第1パターン121および第2パターン122よりも幅が狭くしてある。 (もっと読む)


【課題】過電流保護動作時の発熱を抑える。
【解決手段】過電流保護回路15は、降圧型スイッチング電源装置1の出力電流Ioutが第1過電流保護値I1を上回ってから出力トランジスタ11を強制オフするまでの間に出力電流Ioutを第1過電流保護値I1よりも低い第2過電流保護値I2まで引き下げる過電流保護動作部153を有する。 (もっと読む)


【課題】制御における応答性の向上と、スイッチング素子のエネルギー損失および発熱の抑制とを両立させたチョッパ装置を提供する。
【解決手段】複数のチョッパ部10A,10Bのうち少なくとも一つを、その他のチョッパ部10Aと比較して高いキャリア周波数に設定した高キャリア周波数チョッパ部10Bとし、この高キャリア周波数チョッパ部10Bの制御周期をその他のチョッパ部10Aと比較して短く設定する。前記その他のチョッパ部10Aより、電流指令値Iref*の定常成分である電流を出力し、前記高キャリア周波数チョッパ部10Bにより、チョッパ装置の電流指令値Iref*と前記その他のチョッパ装置10Bの電流との偏差電流I2ref*を出力する。 (もっと読む)


【課題】多相チョッパを構成する各相チョッパ部のスイッチ素子の故障を判定し、電流を制限することで、ある1相のスイッチ素子がオープン破壊となった場合でも、残りの相で、動作が可能な電源装置を提供する。
【解決手段】電流検出器5で検出された電流に基づき各相チョッパ部31,32におけるスイッチ素子311,321の故障を検出する故障判定手段8を備え、故障判定手段8は、各相チョッパ部31,32のスイッチ素子311,321に対する制御信号の立下りエッジのタイミングで、電流検出器5により検出された電流値を取得し、取得した各電流値が異なれば故障と判断して故障信号を発電制御手段13に送信し、発電制御手段13は、故障信号を受信したとき、故障していない各相チョッパ部31,32の耐電流を超えないように発電機11の出力電流を制限する。 (もっと読む)


【課題】入出力される電流が少ない状態であっても、高い効率を維持することが可能な電源システムを提供する。
【解決手段】電源システムPSは、電池モジュール10と、電池モジュール10に対して充放電される直流電力の電力変換を行うDC/DCコンバータ20と、外部から入力される指令信号C(或いは、信号C1)からDC/DCコンバータ20の制御量を示す情報を求め、その情報に基づいたDC/DCコンバータ20の制御を行うコントローラ40とを有する直流電力の充放電が可能な電源装置1を複数備えており、各電源装置1に設けられたコントローラ40は、他の電源装置1に設けられるコントローラ40で求められた制御量が予め設定された閾値を超えるという開始条件が成立した場合に、自らが求めた制御量を示す情報に基づいたDC/DCコンバータ20の制御を開始する。 (もっと読む)


【課題】ヒステリシス制御のスイッチングレギュレータの周波数を安定化する。
【解決手段】ヒステリシスコンパレータ10は、スイッチングレギュレータ4の出力電圧VOUTに応じたフィードバック電圧VFBを、所定の基準電圧VREFおよびヒステリシスコンパレータ10の出力信号SPWMに応じたヒステリシスを有するしきい値電圧VTHと比較する。ドライバ20は、ヒステリシスコンパレータ10から出力されるパルス変調信号SPWMにもとづき、スイッチングトランジスタM1を駆動する。位相比較器32は、所定の周波数を有する基準クロック信号CKREFと、パルス変調信号SPWMに応じたパルス信号S1との位相差に応じた位相差信号S2を生成する。ループフィルタ34は、位相差信号S2をフィルタリングし、制御電圧VCNTを生成する。ヒステリシスコンパレータ10は、その応答速度が制御電圧VCNTに応じて制御可能に構成される。 (もっと読む)


【課題】太陽光発電装置、蓄電池、負荷側に特別な装置構成を必要とせずに、精度の良い直流電源制御を行う。
【解決手段】太陽光発電装置20、蓄電池40および直流電力系統電源30それぞれと負荷50との間に配置された直流電源制御装置10は、太陽光発電装置20と負荷50の間に配置され太陽光発電装置20に対し最大電力点追従制御を行う最大電力点追従制御手段11と、蓄電池40と負荷50の間に配置され蓄電池40の充放電を制御する充放電制御手段12と、負荷50に並列に接続され負荷50への出力電圧を検出する出力電圧検出手段13と、を備えており、充放電制御手段12は、検出された出力電圧が上昇した場合に、太陽光発電装置20により発電された余剰電力を蓄電池40に充電する処理を開始する。 (もっと読む)


【課題】入出力される電流が少ない状態であっても、高い効率を維持することが可能な電源システムを提供する。
【解決手段】電源システムPSは、直流電力の入出力が行われる電源入出力端T11,T12が並列接続されており、電源入出力端T11,T12を介して直流電力の充放電が可能な電源装置1を複数備えており、各々の電源装置1は、少なくとも1つの電池モジュール10と、電池モジュール10に対して充放電される直流電力の電力変換を行うDC/DCコンバータ20と、外部から入力される指令信号C(或いは、信号C1)からDC/DCコンバータ20の制御量を示す情報を求め、その情報に基づいたDC/DCコンバータ20の制御を予め設定された時間だけ遅延させて行うコントローラ40とを備える。 (もっと読む)


【課題】負荷が外された場合でも出力電圧が過電圧となることを防止することができる電源装置及び照明装置を提供する。
【解決手段】電源装置100は、交流電源1からの交流電圧を整流する整流回路10、整流後の電圧を昇圧して電圧変換部30の入力側電圧Vinを生成する昇圧回路11、入力側電圧Vinを降圧して光源2に供給するための所要の電圧Voutを出力する電圧変換部30、光源2が接続されているか否かを判定するための電圧電流検出部17、光源2に対して並列に接続される第1の抵抗50、第2の抵抗40、光源2が接続されていないと判定された場合に、第1の抵抗50の電圧Voutを所定値以下に制御する出力電圧制御部20などを備える。 (もっと読む)


【課題】スイッチング電源の軽負荷の効率を改善する。
【解決手段】制御回路100dは、軽負荷状態において、スイッチング素子M1をスイッチングさせる駆動期間と、そのスイッチングを停止する停止期間を繰り返すように構成される。パルス信号生成部9は、駆動期間内に少なくともひとつパルスを含む駆動パルス信号S5であって、負荷が軽いほど駆動期間内のパルスの個数が減少する駆動パルス信号S5を生成する。第1ドライバ40aは、駆動パルス信号S5に含まれる少なくともひとつのパルスのうち、所定のK個(Kは自然数)を除くパルスに応じて第1スイッチングトランジスタM1aを駆動する。K個のパルスは、パルスの個数がK個まで減少したときに駆動パルス信号S5に含まれるK個のパルスである。 (もっと読む)


【課題】適切なリップルインジェクションにより安定したスイッチング制御を行う。
【解決手段】本発明に係るスイッチング電源装置1において、リップルインジェクション部17は、出力トランジスタ11のオン/オフ制御に応じて充放電電流Iを生成する充放電部171と、充放電電流Iを用いて充放電されるキャパシタ172と、基準電圧REFを用いてキャパシタ172の一端をバイアスするgmアンプ173と、を含み、キャパシタ173の一端からリップル基準電圧REF2を出力する。より好ましい構成として、リップルインジェクション部171は、基準電圧REFと帰還電圧FBとの差分を増幅して誤差電圧ERRを生成するエラーアンプ174をさらに含み、gmアンプ173は、誤差電圧ERRを用いてキャパシタ172の一端をバイアスする。 (もっと読む)


【課題】遷移期間においてハイサイドトランジスタQ1がオンしないようにする。
【解決手段】高電位電源ラインと低電位電源ラインとの間に直列に接続されたハイサイドトランジスタとロウサイドトランジスタと,両トランジスタの接続ノードと出力端子との間に設けられたインダクタとを有する電源装置の前記両トランジスタを駆動する駆動回路であって,前記ハイサイドトランジスタのゲートを駆動する第1のゲートドライバと,前記ロウサイドトランジスタのゲートを駆動する第2のゲートドライバとを有し,前記ハイサイドトランジスタがオンでロウサイドトランジスタがオフの第1の状態から,前記ハイサイドトランジスタがオフでロウサイドトランジスタがオンの第2の状態に遷移する遷移期間で,前記第1のゲートドライバは前記ハイサイドトランジスタのゲートを前記低電位電源ラインの電位より低い第1の電圧に駆動する電源装置の駆動回路。 (もっと読む)


【課題】発光素子を駆動する降圧DC/DCコンバータの動作周波数を安定化する。
【解決手段】電流検出回路10は、スイッチングトランジスタM1に流れる電流IM1が所定のピーク電流に達するとアサートされるオフ信号SOFFを生成する。パルス生成回路30は、オン信号SON、オフ信号SOFFがアサートされる度にレベルが遷移するパルス信号S2を生成する。電流源24は、DC/DCコンバータ6の出力電圧VOUTに応じた充電電流により第1キャパシタ22を充電する。演算回路50は、DC/DCコンバータ6の入力電圧VINおよび出力電圧VOUTに応じたしきい値電圧VC4を、VC4=(VIN−VOUT)×VOUT/VIN×m(mは定数)にもとづいて生成する。第1コンパレータ28は、第1キャパシタ22の電圧がしきい値電圧VC4に達するとアサートされるオン信号SONを生成する。 (もっと読む)


【課題】 電源装置の挙動の変化から、平滑用電解コンデンサ(従って、電源装置)の寿命を検知する。
【解決手段】 本発明は、電源出力をモニタしてスイッチング制御信号を形成するスイッチング制御部と、上記スイッチング制御信号に応じてオンオフ動作するスイッチング素子と、自己の充電電圧を上記電源出力とする平滑用電解コンデンサとを少なくとも有する電源装置に関する。そして、スイッチング制御信号の周波数を測定する周波数測定部と、測定された周波数を、予め設定されている閾値と比較する比較部と、測定された周波数が閾値を超えたときに、平滑用電解コンデンサの寿命到来を通知する寿命通知部とを有することを特徴とする。 (もっと読む)


【課題】スイッチ素子の破壊を防止したスイッチング回路及びDC−DCコンバータを提供する。
【解決手段】ハイサイドスイッチと、整流要素と、駆動回路と、を備えたスイッチング回路が提供される。前記ハイサイドスイッチは、高電位端子と出力端子との間に接続されている。前記整流要素は、前記出力端子と低電位端子との間に、前記低電位端子から前記出力端子に向かう方向を順方向として接続される。前記駆動回路は、入力されるハイサイド制御信号に応じて前記ハイサイドスイッチの制御端子に第1の電圧を供給してオンさせ、前記出力端子の電圧が規定値以上に上昇したとき前記ハイサイドスイッチの制御端子に前記第1の電圧よりも高い第2の電圧を供給する。 (もっと読む)


【課題】チョッパ型のコンバータにおいて、各スイッチング素子の冷却性能を保ちつつ、小型化および低コスト化を実現する。
【解決手段】コンバータ10は、制御装置30からの信号PWCに基づいて、正極線PL2および負極線NL間の電圧を直流電源Bの出力電圧以上の電圧に昇圧する。コンバータ10は、直流電源Bの正極に一端が結合されるリアクトルL1と、リアクトルL1の他端と正極線PL2との間に設けられる第1スイッチング素子Q1と、リアクトルL1の他端と直流電源Bの負極との間に設けられる第2スイッチング素子Q2とを備える。第1スイッチング素子Q1は、第2スイッチング素子Q2よりも、素子面積が小さくなるように形成される。 (もっと読む)


【課題】スイッチングロスを低減し電力変換効率を向上することができるとともに装置の小型化を実現できる2コンバータ方式電源装置の制御方法及び電源装置を提供する。
【解決手段】第1のコンバータCV1と第2のコンバータCV2との間に選択スイッチング素子Qsを接続するとともに、整流回路2と第2のコンバータCV2との間に逆止用ダイオードDsを接続する。電圧検出回路10は、整流回路2からの電源電圧が予め定めた値以上かどうかを判定し、電源電圧が予め定めた値以上と判定したとき、選択スイッチング素子Qsをオフさせて整流回路2からの電源電圧Vddを逆止用ダイオードDsを介して第2のコンバータCV2に入力させる。 (もっと読む)


【課題】最大電力点追従制御を実現することができる電力制御装置を提供する。
【解決手段】電力制御装置1は、太陽電池50から入力された電力を変換して負荷60に供給する電力変換手段11と、電力変換手段11から出力する出力電圧Voutを制御する制御手段40と、電力変換手段11を構成する電子素子13と、電子素子13の温度を検知する温度検知手段20と、出力電圧Voutを変更する電圧変更手段31と、出力電圧Voutを変更する前後で電子素子13の温度を比較する温度比較手段32とを備える。電圧変更手段31は、出力電圧Voutを変更した後に電子素子13の温度が上昇したとき、出力電圧Voutを同一方向に変更し、出力電圧Voutを変更した後に電子素子13の温度が下降したとき、出力電圧Voutを反対方向に変更する。 (もっと読む)


【課題】フィードバック用整流回路と制御回路を接続する配線パターンと、制御回路とスイッチング素子を接続する配線パターンの交差を防止し、ノイズによる悪影響を抑えることができる電力変換装置を提供する。
【解決手段】ダイオード143fと出力電圧安定化回路145を接続する配線パターンW101は、ダイオード143f側の接続点A10と出力電圧安定化回路145側の接続点B10とを結ぶ直線L10によって区画される2つの領域のうち、後側の領域に形成されている。出力電圧安定化回路145とMOSFET141を接続する配線パターンW102は、直線L10及び配線パターンW101によって囲まれる領域以外の領域に形成されている。そのため、配線パターンW101と配線パターンW102の交差を防止することができる。従って、パルス信号に伴うノイズによる悪影響を抑えることができる。 (もっと読む)


【課題】 コンバータ出力側のインダクタンス、静電容量特性の影響を軽減できるパルス幅変調制御信号を提供し、正確な制御及びコスト削減の効果を有するパルス幅変調制御回路を提供する。
【解決手段】コンバータは、アップ、ダウンブリッジエレメントQ1、Q2が入力電源VINに電気的に接続され、位相ノードAを通じてアップ、ダウンブリッジエレメントQ1、Q2を接続し、位相ノードAがドライバー91により駆動されてアップ、ダウンブリッジエレメントQ1、Q2にスイッチング動作を行わせる。位相ノードAが出力インダクタンス92、出力コンデンサ93に接続し、出力インダクタンス92の電流を出力コンデンサ93に充電するよう制御して出力電圧VOUTを生成する。仮想電流リップルのパルス幅変調回路1が位相ノードAの電圧信号を入力すると共に出力電圧VOUT信号に反応し、スイッチング動作を行わせるよう制御する。 (もっと読む)


121 - 140 / 2,646