説明

Fターム[5H730FG25]の内容

DC−DCコンバータ (106,849) | 制御態様 (8,760) | モード変更を伴う制御 (1,384) | 基準値、フィードバック値の変更 (603)

Fターム[5H730FG25]に分類される特許

41 - 60 / 603


【課題】従来の高圧電源装置では、圧電トランスの駆動パルスをVCOのフィードバック制御により生成していたので、出力電圧の高速な立ち上げ特性が得られず、印刷速度がA4縦送りにて20(頁/分)以上の高速印刷用の画像形成装置には適用できない。
【解決手段】本発明の高圧電源装置70は、出力開始時から出力電圧S75が目標値SA以下の所定値となるまで初期分周比値に固定し一定の周波数の制御信号で圧電トランスを駆動し、前記所定値に達した時、出力開始から前記所定値になる間での経過時間に応じた経過時分周比値に切り替え、その後、前記検出値S77が前記目標値SAと一致するように、前記経過時分周比値を増減制御している。これにより、出力電圧の高速な立ち上げが可能になり、印刷速度がA4縦送りにて20(頁/分)以上の高速印刷用の画像形成装置にも適用できる。 (もっと読む)


【課題】比較的簡素な構成で高電圧の電力を出力できる電源回路を提供する。
【解決手段】パルス出力回路1は、電源回路を、負荷に重畳する電圧を出力するバウンサー回路10として有している。バウンサー回路10は、パルス幅変調信号を出力する電圧制御回路70と、パルス幅変調信号に応じて、直流電圧を出力する複数のスイッチング回路20とを有している。複数のスイッチング回路20は、出力端側において互いに直列に接続されている。バウンサー回路10は、複数のスイッチング回路20からの出力電圧を積み上げた、高圧の直流電圧を出力できる。各スイッチング回路20は、高電圧に対応可能な特殊な素子を用いることなく、ありふれた素子を用いて簡素に構成可能である。 (もっと読む)


【課題】発光素子を駆動する降圧DC/DCコンバータの動作周波数を安定化する。
【解決手段】電流検出回路10は、スイッチングトランジスタM1に流れる電流IM1が所定のピーク電流に達するとアサートされるオフ信号SOFFを生成する。パルス生成回路30は、オン信号SON、オフ信号SOFFがアサートされる度にレベルが遷移するパルス信号S2を生成する。電流源24は、DC/DCコンバータ6の出力電圧VOUTに応じた充電電流により第1キャパシタ22を充電する。演算回路50は、DC/DCコンバータ6の入力電圧VINおよび出力電圧VOUTに応じたしきい値電圧VC4を、VC4=(VIN−VOUT)×VOUT/VIN×m(mは定数)にもとづいて生成する。第1コンパレータ28は、第1キャパシタ22の電圧がしきい値電圧VC4に達するとアサートされるオン信号SONを生成する。 (もっと読む)


【課題】不定周期でパルス信号を発生させる構成を採用しながら、制御対象による所望の制御を実現できるようにしたパルス発生回路を提供する。
【解決手段】予め定められた所定時間が経過すると、計数回路7のカウンタCO1のカウント値が既定値に達する。すると、計数回路7のカウンタCO1がパルスを出力することで、閾値電圧切換回路8が制御スイッチSW2を用いて比較回路5の比較対象となる閾値を強制的に変更する。その後、インダクタL1の磁気エネルギーが負荷側に伝達されるとノードN4の電圧が低下し、パルス検出回路6がこの電圧低下タイミングを検出するとパルスを出力する。すると、信号発生回路3の出力電圧は初期化される。 (もっと読む)


【課題】最大電力点追従制御を実現することができる電力制御装置を提供する。
【解決手段】電力制御装置1は、太陽電池50から入力された電力を変換して負荷60に供給する電力変換手段11と、電力変換手段11から出力する出力電圧Voutを制御する制御手段40と、電力変換手段11を構成する電子素子13と、電子素子13の温度を検知する温度検知手段20と、出力電圧Voutを変更する電圧変更手段31と、出力電圧Voutを変更する前後で電子素子13の温度を比較する温度比較手段32とを備える。電圧変更手段31は、出力電圧Voutを変更した後に電子素子13の温度が上昇したとき、出力電圧Voutを同一方向に変更し、出力電圧Voutを変更した後に電子素子13の温度が下降したとき、出力電圧Voutを反対方向に変更する。 (もっと読む)


【課題】 回路の複雑化および増幅アンプの動作領域の変動を抑制しながら、電源電圧の変動にかかわらず、安定して電圧を出力することができるDCDCコンバータを提供する。
【解決手段】 電流検出部13で検出された電流値に応じた電圧を増幅部22で増幅し、増幅した増幅電圧と基準電圧を比較する電圧比較部23から出力された信号に応じて、スイッチ素子Trをオン/オフすることによって、主電源部11の電圧を昇圧して出力するDCDCコンバータ1であって、かさ上げ電圧生成部30および基準電圧設定部40は、電源電圧検出部26によって検出された第1電源部21の電圧が低いほど、増幅部22に入力される電圧に加算されるかさ上げ電圧、および基準電圧がより低くなるように、かさ上げ電圧および基準電圧をそれぞれ切り換える。 (もっと読む)


【課題】安定した調光制御を実現できる電源装置および照明器具を提供する。
【解決手段】電源装置10において、DC−DCコンバータ20は、半導体発光素子6に接続されたインダクタ22と、制御信号CSの論理レベルに応じてオン・オフするスイッチング素子21とを含む。電流検出部25は、スイッチング素子21を流れる電流を検出する。制御回路40は、半導体発光素子6の光出力の設定値に対応した基準信号VRと電流検出部25による電流検出信号とを受ける。制御回路40は、スイッチング素子21をオフ状態にする第1の論理レベルからスイッチング素子21をオン状態にする第2の論理レベルに制御信号CSの論理レベルを切替えた後、インダクタ22を流れる電流が次第に増加することによって電流検出信号の大きさが基準信号VRの大きさを超えたときに、制御信号の論理レベルを第2の論理レベルから第1の論理レベルに切替える。 (もっと読む)


【課題】複数のコンバータを並列に繋いで大きな負荷に対応する電源ユニットであって、各コンバータが安定した電流を出力できる電源ユニットを提供する。
【解決手段】電源ユニット10は、バッテリ12の電源電圧を降圧する複数のコンバータ(主コンバータ14とサブコンバータ18)と、コンバータを制御するコントローラ16を備える。主コンバータ14とサブコンバータ18の夫々の出力端は、負荷機器90に並列に接続されている。コントローラ16は、主コンバータ14とサブコンバータ18の夫々に対して異なる目標出力電圧を指令する。負荷機器90が要求する電流が小さい間は主コンバータ14だけが電流を供給し、負荷機器90が要求する電流が主コンバータの定格出力電流を超えると、サブコンバータ18から不足分が補われる。 (もっと読む)


【課題】
保安動作を行うとともに、部品点数を低減して直流制御電圧を生成する際の電力損失が少なくて、しかも小形で安価な電源装置を提供する。
【解決手段】
電源装置は、スイッチング電源と、直流制御電圧生成手段、駆動信号発生手段、保安動作モード切替手段および保安動作信号出力端子を備えていて、駆動信号発生手段は入力電源投入の所定時間後にスイッチング電源のスイッチング素子に駆動信号を供給してスイッチング電源を起動し、保安動作モード切替手段は駆動信号発生手段を保安動作モードに切り替え、保安動作信号出力端子から保安動作信号を出力する制御ICと、電源投入時から所定時間後に駆動信号のスイッチング素子への供給を開始させ、保安動作信号の入力時には低消費電力モードに切り換わるマイコンと、スイッチング電源の動作中に直流電圧を生成して制御ICに供給する補助電源回路とを具備している。 (もっと読む)


【課題】動作開始時と動作停止時の基準電圧を切り替えて動作開始時と動作停止時の電圧にヒステリシスを持たせる電源装置において、安価な構成で安定した動作開始及び動作停止を実現すること。
【解決手段】交流電圧を整流した電圧が供給されるトランス9と、トランス9に供給される電圧をオンオフするスイッチング素子5、6の動作を制御する発振制御回路11と、交流電圧を整流した電圧を検知する直列に接続された電圧検知抵抗12、13、15と、発振制御回路11の動作を開始及び停止させるための信号を出力するために電圧検知抵抗12、13、15により検知した電圧と基準電圧とを比較するコンパレータ22とを備え、発振制御回路11の動作を開始させるときと停止させるときとで基準電圧を切り替える電源装置であって、抵抗13に並列に接続されたツェナーダイオード41を有し、ツェナーダイオード41は、交流電圧に応じて導通と非導通が切り替わる。 (もっと読む)


【課題】高効率で動作可能な電源装置及びその制御方法。
【解決手段】力率を改善するための力率改善回路2と、力率改善回路の出力電圧を変換して他の直流電圧を出力するDC/DCコンバータ3と、力率改善回路に入力される入力電圧を検出する入力電圧検出部1と、入力電圧検出部で検出された入力電圧値とDC/DCコンバータの出力に接続される負荷への出力電流値又は負荷の出力電力値と入力電圧瞬断出力保持時間の設定値とに基づき力率改善回路の出力電圧を制御する電圧指令を生成し、力率改善回路に出力する力率改善回路出力電圧制御部5とを備える。 (もっと読む)


【課題】商用電源の出力電圧によらず商用電源の入力電流のピークカットを可能とする。
【解決手段】バス電圧指令信号とバス電圧を検出したバス電圧信号との偏差を増幅して商用電源の出力電力制限するための第1リミット部へ入力し、第1リミット部のリミット値以内の第1偏差と第1リミット値の範囲を超える第2偏差に分割し、第1偏差に基づいてインバータを制御するインバータコントローラと、第2偏差に基づいてDC/DCコンバータを制御するDC/DCコンバータコントローラとを有する。 (もっと読む)


【課題】試験電圧信号の傾きを容易に調整できる信号生成回路を提供する。
【解決手段】信号生成回路100は、電源装置200を試験するための試験電圧信号Vtestを生成する。信号生成回路は、傾き制御信号生成部13と、積分器14と、信号制限部15と、を備える。制御信号生成部は、基準電圧と傾き制御電圧SLとの間でステップ状に変化する傾き制御信号VSLを生成する。積分器は、傾き制御信号を積分した積分信号Vintを出力する。信号制限部は、積分信号の最大値と最小値を制限し、この制限された信号に基づいて試験電圧信号を出力する。 (もっと読む)


【課題】スイッチング周波数の所定パターンでの変更を繰返す際にラジオに混入する、繰返し周波数成分のノイズに伴う異音を抑えることができる電力変換装置を提供する。
【解決手段】スイッチング信号に基づいてスイッチングするスイッチング回路10と、時間の経過に伴ってスイッチング信号のスイッチング周波数を所定パターンで変更するとともに、スイッチング周波数の所定パターンでの変更を繰返し時間毎に繰返す制御回路14とを備えたコンバータ装置1(電力変換装置)において、繰返し時間の逆数である繰返し周波数が、ラジオ放送を受信するラジオが音声として復調できる周波数帯と重ならないように、繰返し時間が設定されている。この構成によれば、繰返し周波数成分のノイズが混入しても、ラジオは、それを音声として復調することはできない。従って、繰返し周波数成分のノイズに伴う異音を抑えることができる。 (もっと読む)


【課題】簡易かつ安価な構成で、太陽電池が発生し得る最大電力を効率よく利用可能な、モータ駆動装置およびエアコンを提供する。
【解決手段】太陽電池(2)の出力電圧を昇圧して出力するDC−DCコンバータ(30)は、変換回路(35)と、スイッチング制御回路(IC1)と、DC−DCコンバータの入力端子の電圧が所定電圧値より小さくならないよう、スイッチング制御回路をフィードバック制御する入力電圧制御回路(IC2)と、を有する。 (もっと読む)


【課題】電源回路の稼働時に入力電圧の急激な上昇が発生した場合に於いても、出力電圧のオーバーシュートを低減可能とする。
【解決手段】スイッチング電源回路40は、入力電圧Vigを、電界効果トランジスタTR40によって、スイッチング信号をトランス41の一次巻線に流し、二次巻線に生成された電力を整流ダイオードD40と平滑コンデンサC40によって、所定の二次側電圧Voに変換して出力する。このスイッチング電源回路40は、入力電圧Vigの微分値dv/dtの所定量以上の変化を検出した場合に、電界効果トランジスタTR40を駆動するPWM信号のオン・デューティを狭くするオーバーシュート低減回路52を有している。 (もっと読む)


【課題】比較的簡単な回路構成で、互いに絶縁された複数の出力電圧の変動を抑制することができる電源装置を提供する。
【解決手段】電源装置1は、一対の第1の出力端子21間に接続されたブリーダ抵抗51および切替部52の直列回路と、切替部52を制御する制御部53と、第2の出力端子22の出力電圧を検出する検出部54とを備えている。制御部53は、第1の出力端子21に接続されている負荷が規定値よりも小さくなる軽負荷時に、一対の第1の出力端子21間にブリーダ抵抗51が挿入され、負荷だけでなくブリーダ抵抗51にも電流が流れるように、切替部52をオンオフ制御する。制御部53は、第1の出力端子21が軽負荷か否かを検出部54の検出結果を用いて判断し、軽負荷であると判断すると切替部52をオンする。 (もっと読む)


【課題】比較的簡単な回路構成を用いながらも、広範囲な充電条件の変化に対して共振動作を利用することによって高効率かつ低雑音を可能にする。
【解決手段】ハーフブリッジ型のスイッチング電源であって、複合共振のための共振回路を備える。充電制御回路CNは、充電が開始されてから電池電圧が規定の目標電圧に達するまでは充電電流が定電流になるように、スイッチング素子Q1,Q2のオンオフを制御する。また、充電制御回路CNは、電池電圧が切替電圧未満の領域では、電池電圧が低いほどスイッチング素子のオン期間の時比率を小さくするように時比率を変化させ、電池電圧が切替電圧以上の領域では、スイッチング素子のオン期間の時比率を一定に保つとともに、電池電圧が高いほどスイッチング素子の駆動周波数を引き下げる。切替電圧は、駆動周波数が電流共振と電圧共振との境界で規定される。 (もっと読む)


【課題】送信電力増幅器によって増幅されたRF(Radio Frequency)送信信号の過渡応答の品質を良化し、且つ、送信電力増幅器に電源供給するDC−DCコンバータを低消費電力で小規模な回路により実現する。
【解決手段】送信パワー設定信号に基づいてRF信号を増幅する送信電力増幅器に対して、電源電圧を供給するDC−DCコンバータにおいて、送信パワー設定信号に基づいて電源電圧を設定すると共に、電源電圧が変化する過渡期間においてのみ、高いスイッチング周波数を設定するように制御する。これにより、過渡期間の品質が良化し、過渡期間以外では、スイッチング損失を抑制することにより低消費電力化が可能になる。また、送信パワー設定信号を用いて、電源電圧の設定及びスイッチング周波数の設定を制御するため、特別なハードウェアを必要とせずに、小規模な回路で実現することができる。 (もっと読む)


【課題】整流用のダイオードが外れると、スイッチング(SW)端子の電位が上昇する。
【解決手段】スイッチングトランジスタM1は、スイッチング(SW)端子と接地端子の間に設けられる。誤差増幅器10は、出力電圧VOUTに応じたフィードバック電圧VFBと所定の基準電圧VREFとの誤差を増幅し、誤差電圧VERRを生成する。パルス変調器12は、誤差電圧VERRに応じてデューティ比が調節されるパルス信号Sを生成する。ドライバ14は、パルス信号SにもとづきスイッチングトランジスタM1を駆動する。過電圧検出回路20は、スイッチング(SW)端子の電圧VSWを、所定のしきい値電圧VTHより高くなるとアサートされる過電圧保護(OVP)信号を生成する。制御回路100は、OVP信号がアサートされると、所定の保護処理を行う。 (もっと読む)


41 - 60 / 603