説明

Fターム[5J500AH10]の内容

増幅器一般 (93,357) | 回路素子 (16,323) | 半導体素子 (6,058) | FET (3,573) | MOSFET、MISFET(絶縁ゲート形電界効果トランジスタ) (1,872)

Fターム[5J500AH10]に分類される特許

141 - 160 / 1,872


【課題】電力増幅器を高効率化及び高信頼性化する。
【解決手段】一つの実施形態によれば、送信器は、第1のバッファ、第2のバッファ、論理回路、及びE級電力増幅器が設けられる。第1のバッファは、第1の正弦波信号が入力され、第1の正弦波信号を第1の矩形波信号に変換する。第2のバッファは、第1の正弦波信号よりも位相が遅れた第2の正弦波信号が入力され、第2の正弦波信号を第2の矩形波信号に変換する。論理回路は、第1及び第2の矩形波信号が入力され、第1及び第2の矩形波信号を論理演算して所定のデューティーを有するロジック信号を生成する。E級電力増幅器は、ロジック信号が入力され、ロジック信号に基づいて増幅動作する。 (もっと読む)


【課題】入力信号のタイプを自動的に判別し、そのタイプに最適な特性の出力信号を共通の出力端子から出力することのできる半導体装置を提供する。
【解決手段】実施形態の半導体装置は、利得を変化させることのできる可変利得増幅器1と、入力信号SIGの周波数を計測するカウンタ2と、を備え、切り替え部3が、入力信号SIGの周波数に応じて、入力信号SIGを、可変利得増幅器1を介して出力端子OUTへ出力するか、そのまま出力端子OUTへ出力するか、を切り替える。また、この半導体装置では、入力信号SIGを可変利得増幅器1を介して出力端子OUTへ出力する場合には、出力先インピーダンス判定部4が、出力端子OUTに接続される機器の入力インピーダンスの高低を判定し、利得調整部5が、出力端子OUTに接続される機器の入力インピーダンスの高低に応じて可変利得増幅器1の利得を調整する。 (もっと読む)


【課題】低ノイズ特性を持つプリアンプ回路を提供すること
【解決手段】プリアンプ回路は、ソースフォロアとして機能するPMOSトランジスタM1A及びM1Bを備える。さらにプリアンプ回路は、差動増幅器として対となって機能するPMOSトランジスタM2A及びM2Bを備える。M1AのゲートとM2Bのゲートとが、可変容量C2を介して接続される。M1BのゲートとM2Aのゲートとが、可変容量C1を介して接続される。M1Aのソースと、M2Aのドレインと、が接続される。M1Bのソースと、M2Bのドレインと、が接続される。M2Aのソースと、M2Bのソースと、が接続される。 (もっと読む)


【課題】縦続接続することが可能な感圧性増幅段を提供する。
【解決手段】感圧性増幅段10は、第1及び第2のユニポーラ型の圧力センサ用トランジスタ12,14,16、18を2組備えており、それぞれ圧電抵抗性の電流経路12d、14d、16d、18dを有し、2つのブリッジ部22,24を有する圧力測定ブリッジとして接続されている。該電流経路12d、14d、16d、18dは直列に接続されている。2つのユニポーラ型の制御トランジスタ26,28を更に備えられており、制御端子26a,28aと第1の端子26b,28b及び第2の端子26c,28cの間に配置された電流経路26d,28dとを有し、第1の端子26b,28b同士及び第2の端子26c,28c同士は互いに接続されており、制御端子26a,28aは、2つのブリッジ部における第1及び第2の圧力センサ用トランジスタの間の接続点22a,24aに夫々接続されている。 (もっと読む)


【課題】フィルタ回路の遮断周波数精度を悪化させること無く、回路規模を低減することができるフィルタ回路を提供する。
【解決手段】駆動電流生成回路303は、容量C1に第1の基準電流を一定期間充電することにより生成される充電電圧を用いて、容量C1と第1の基準電流の比に比例した第1の駆動電流を生成する。OTA301は、正入力端子と負入力端子間の電位差に応じて、第1の駆動電流から、容量C1と第1の基準電流の比に逆比例した第2の駆動電流を生成して電圧に変換し、この電圧に応じて第2の基準電流を分配する。OTA301は、第2の基準電流を分配した電流と同量の電流を折り返して供給するカレントミラー回路を有し、正入力端子と負入力端子間の電位差に応じた電流をカレントミラー回路により折り返して負荷容量302に供給する。 (もっと読む)


【課題】特別な部品を付加したり、正負の電源を用いることなく、精度良く温度補償を行うことができる電力検出装置を提供する。
【解決手段】電力検出回路51aと電力検出回路51bは、入力信号を除いて回路構成が同じである。すなわち、FET2a、2b、FET3a、3b、FET4、キャパシタ5、FET12a、12b、FET13a、13b、FET14、キャパシタ15で構成されている。電力検出回路51aと電力検出回路51bとは回路特性が同じであるため、電力検出回路51aの検波出力と電力検出回路51bのリファレンスとの差を引算回路にて求めると、温度変化による信号の変動成分が精度良くキャンセルできる。 (もっと読む)


【課題】コンパレータを使用せずに、調整電圧の傾きの切り替えを滑らかに行って温度特性の補正精度を向上させることのできる温度特性補正回路及びセンサ用増幅回路を提供すること。
【解決手段】所定の温度特性を備えた温度依存電圧Vtあるいはその温度依存電圧Vtを反転させた反転電圧XVtと、温度に関わらず一定電圧である基準電圧Vrefとに基づいて、第1及び第2補正電圧Vc1,Vc2をそれぞれ生成する補正用増幅器20,30を備えた。この補正用増幅器20,30の各出力端子をワイヤードオア接続した。 (もっと読む)


【課題】歪みやノイズの発生箇所を問わず、Dクラスアンプの音質の劣化を改善することができるオーディオ信号増幅装置及びオーディオ信号増幅方法を提供する。
【解決手段】出力フィルタ14aは、出力段トランジスタ13pで増幅された正相PWM信号を復調し、正相出力オーディオ信号を生成する。また、出力フィルタ14aは、出力段トランジスタ13nで増幅された逆相PWM信号を復調し、逆相出力オーディオ信号を生成する。出力検出回路20は、正相出力オーディオ信号と逆相出力オーディオ信号との電圧の差分をとることにより、出力オーディオ信号を生成する。出力可変電源装置17は、出力オーディオ信号と入力オーディオ信号との差分を示す差分信号に基づいて、出力段トランジスタ13pに印加される電圧を制御する。 (もっと読む)


【課題】より十分な出力電流を流せる出力回路を提供する。
【解決手段】PMOSトランジスタ12のドレイン電流が大きい場合、PMOSトランジスタ13は非飽和領域で動作する。このときNMOSトランジスタ14及び17のゲート電圧は電源端子電圧付近まで上昇している。このため、NMOSトランジスタ17のゲート・ソース間電圧は大きくなり、十分な出力電流が流れる。 (もっと読む)


【課題】セトリング速度を向上させる。
【解決手段】差動入力信号を増幅する差動対(M1、M2、M19)と、差動対の一方および他方の出力端にそれぞれ接続される一方および他方のカスコード増幅器対(M9、M10)と、カスコード増幅器対の一方および他方の出力端にそれぞれゲートを接続し、差動対の一方および他方の出力端にそれぞれドレインを接続するソース接地の第1のMOSトランジスタ対(M11a、M12a)と、を備える。カスコード増幅器対の一方および他方の出力端にそれぞれゲートを接続し、差動対の他方および一方の出力端にそれぞれドレインを接続する、第1のMOSトランジスタ対と同一の導電型であるソース接地の第2のMOSトランジスタ対(M3a、M4a)をさらに備える。 (もっと読む)


【課題】歪みやノイズの発生箇所を問わず、Dクラスアンプの音質の劣化を改善することができるオーディオ信号増幅装置及びオーディオ信号増幅方法を提供する。
【解決手段】PWM変換回路11は、入力オーディオ信号をパルス幅変調し、PWM信号を生成する。出力段トランジスタ13は、生成されたPWM信号に基づいてスイッチングし、出力可変電源装置17から印加された電圧に基づいて、PWM信号を増幅する。出力フィルタ14は、増幅されたPWM信号を復調し、出力オーディオ信号を生成する。出力可変電源装置17は、出力オーディオ信号と入力オーディオ信号との差分に基づいて、出力段トランジスタ13に印加される電圧を制御する。 (もっと読む)


【課題】ローパスフィルタのインダクターの回生電流に起因するデジタル増幅器の電源雑音を低減する。
【解決手段】半導体集積回路は、ハイサイドとローサイドの出力デバイス31、32とドライバ33を含むデジタル増幅器30と、正の動作電圧Vopが供給され正と負の電源電圧+Vcc、−Vccを生成するチャージポンプユニット50を具備する。デジタル増幅器30の出力端子はインダクター36と容量37を含むローパスフィルタLPFと接続され、ユニット50はスイッチング制御される第1スイッチSW1乃至第6スイッチSW6と第1容量C1乃至第4容量C4を含む。インダクター36とオン状態のハイサイド出力デバイス31またはローサイド出力デバイス32とを介して容量37と正の電源電圧+Vccまたは負の電源電圧−Vccとの間の回生電流を、第6スイッチSW6をオン状態に制御して、第2容量C2で吸収する。 (もっと読む)


【課題】他の回路との磁気的結合による干渉を引き起こしにくい無線周波送信機回路のための差動シングルエンド変換回路を提供する。
【解決手段】異なる位相を有する複数の差動入力波形から無線周波波形を受信するための複数の入力361a、361bと、波形を複数の差動入力波形から非反転入力波形とほぼ同じ位相に反転させるためのインバータ回路366とを具備する回路が開示される。回路は、反転及び非反転入力波形を出力波形に組み合わせるためのコンバイナノード368をさらに具備する。 (もっと読む)


【課題】 電源効率の高い電力増幅合成回路ならびにそれを用いた電力増幅回路,送信装置および通信装置を提供する。
【解決手段】 ソース端子に第1入力信号が、ゲート端子に第2入力信号と同相の信号が入力されるトランジスタ33と、ソース端子に第2入力信号が、ゲート端子に第1入力信号と同相の信号が入力されるトランジスタ34と、ゲート端子が第1のトランジスタのドレイン端子に接続され、ソース端子が定電流源6を介してグランド電位に接続されるトランジスタ4と、トランジスタ4のドレイン端子および電源電位を接続する低域通過フィルタ回路8と、トランジスタ4のドレイン端子に接続された出力整合回路16と、第1入力信号および第2入力信号の位相差が増加すると定電流源を流れる電流が減少するように定電流源を制御する電流制御信号を出力する電流制御回路19とを備える電力増幅合成回路とする。 (もっと読む)


【課題】寄生スイッチングデバイスのアクティビティを減らす電力変換器の増幅器システムを提供すること。
【解決手段】
電力変換器のための増幅器システムは、少なくとも、半導体の基板における集積回路に形成された第1のスイッチングデバイスおよび第2のスイッチングデバイスを含む。第1のスイッチングデバイスおよび第2のスイッチングデバイスは、ハーフブリッジの構成で形成され得、半導体の出力ノード上に増幅出力信号を生成するために、協働的に切り替え可能であり得る。抵抗器およびコンデンサは、半導体に含まれる、電源入力ノードと基板ノードとの間に並列に連結され得る。コンデンサは、集積回路に現れる寄生スイッチングデバイスのバイアスを逆転させるために、第1スイッチングデバイスおよび第2のスイッチングデバイスのスイッチングサイクルの間に、選択的にバイアスを下げる電圧に充電され得る。 (もっと読む)


【課題】負荷に流れる電流の異常を検出する。
【解決手段】負荷30の両端に互いに逆相または同相である一対のPWM信号を印加して負荷を駆動する。異常検出回路40は、一対のPWM信号(PWM+,PWM−)の変化状態を検出し、少なくとも一方のPWM信号の変化がなくなった場合にカウントを行い、カウント値が所定値となった場合に、異常検出信号を出力する。 (もっと読む)


【課題】電流源の誤差やカレントミラーのミラー精度の誤差による同相出力電圧の出力オフセット電圧を補正し、より正確に同相出力電圧を制御することができる演算増幅回路を提供する。
【解決手段】入力切替回路14がコモンモード参照電圧を選択してコモンモード基準電圧として出力したときの全差動増幅回路10の同相出力電圧をコモンモード検出回路11が検出した後、S/H回路12がコモンモード検出回路11の出力のサンプル及びホールドを行い、演算回路13がS/H回路12の出力とコモンモード参照電圧とのずれ量とコモンモード参照電圧とに基づく電圧を出力し、入力切替回路14が演算回路13の出力を選択してコモンモード基準電圧として出力する。 (もっと読む)


【課題】電源ノイズによる受信感度の劣化を防ぐとともに、ダイナミックレンジの減少を防ぐことが可能な半導体集積回路、増幅器および光モジュールを提供する。
【解決手段】半導体集積回路101は、供給された第1の電源電圧によって動作する。半導体集積回路101は、受けた信号を増幅するための増幅回路2と、第1の電源電圧から第2の電源電圧を生成するための安定化電源5と、第1の電源電圧および第2の電源電圧を受けて、増幅回路2に対して供給する電圧として、第1の電源電圧と第2の電源電圧とを選択可能な電源選択回路6とを備える。 (もっと読む)


【課題】消費電力を低減すること。
【解決手段】送信信号が入力される第1の内部入力端子と、送信信号に比べて振幅が1/2であり、かつ、送信信号と同相の信号が入力される第2の内部入力端子と、特性インピーダンスZを有する伝送路に接続された外部入出力端子と、外部入出力端子から入力された受信信号が出力される内部出力端子と、ソースが電流源及び外部入出力端子に接続され、ゲートが第1の内部入力端子に接続され、ドレインが第2のMOSトランジスタのソース及び内部出力端子に接続された第1のMOSトランジスタと、ソースが第1のMOSトランジスタのドレイン及び内部出力端子に接続され、ゲートが第2の内部入力端子に接続された第2のMOSトランジスタと、を備え、第1及び第2のMOSトランジスタのトランスコンダクタンスが1/Zとなる、全二重伝送回路が提供される。 (もっと読む)


【課題】演算増幅回路を安定に動作させつつスルーレートを向上させる。
【解決手段】第1差動増幅部(311)は、P型差動対(P1/P2)のソースと正側電源電圧(VDD)との間に、並列に接続される第1電流源(I1)と第1容量(C1)とを備え、P型差動対(P1/P2)のソースと第1容量(C1)との間に挿入される第1スイッチ(SW1)をさらに備える。第2差動増幅部(312)は、N型差動対(N1/N2)のソースと負側電源電圧(VSS)との間に、並列に接続される第2電流源(I2)と第2容量(C2)とを備え、N型差動対(N1/N2)のソースと第2容量(C2)との間に挿入される第2スイッチ(SW2)をさらに備える。第1スイッチ(SW1)と第2スイッチ(SW2)とは、第1差動増幅部(311)および第2差動増幅部(312)に入力される入力差動信号に同期して交互に回路を開閉する。 (もっと読む)


141 - 160 / 1,872