説明

Fターム[5J500AH10]の内容

増幅器一般 (93,357) | 回路素子 (16,323) | 半導体素子 (6,058) | FET (3,573) | MOSFET、MISFET(絶縁ゲート形電界効果トランジスタ) (1,872)

Fターム[5J500AH10]に分類される特許

101 - 120 / 1,872


【課題】 G級増幅器の製造ばらつき、負荷の大きさに応じて、最適な条件で増幅部の電源電圧を低下させるモードダウンを実行し、無駄な電力損失を低減する。
【解決手段】 モード制御部301は、増幅部1の出力電圧VOUTに応じて、電源電圧+VBおよび−VBを現状より高い電源電圧に切り換えるモードアップを行うとともに、出力電圧VOUTが所定時間以上に亙って閾値電圧+Vdwn〜−Vdwnの範囲内の電圧値を維持した場合に電源電圧を現状より低い電源電圧に切り換えるモードダウンを行う。逐次比較型A/D変換部330は、モードアップが行われたときの増幅部1の出力電圧VOUTに基づいて閾値電圧+Vdwnおよび−Vdwnを設定する。 (もっと読む)


【課題】加工コストを増大させず、適応型バイアシング出力段を用いた高スイング演算増幅器を提供する。
【解決手段】出力段123は、VDDAノードと出力ノードとの間のプルアップ電流経路内において直列に結合された2つのトランジスタ(スイッチングトランジスタT3及びバイアシングトランジスタT4)を含み、前記出力ノードと接地ノードとの間のプルダウン電流経路内において直列に結合された2つのトランジスタ(スイッチングトランジスタT1及びバイアシングトランジスタT2)も含む。前記バイアシングトランジスタT4,T2を提供することは、前記トランジスタT3,T4において低下される最大電圧を低減させ、それによって前記トランジスタT1〜T4がVDDAよりも低い破壊電圧を有するのを可能にする。 (もっと読む)


【課題】レイアウト面積を大きくすることなく、差動対を高速/高消費電流と、低速/低消費電流の両方で動作させることができるようにした半導体装置を提供する。
【解決手段】差動回路5aは、差動対トランジスタN1,N2と、差動対トランジスタN1,N2に流れる電流量が少なくとも2つのレベルで切替わるように、切替可能なテール電流を供給するテール電流源68とを備える。差動対トランジスタN1,N2は、差動対トランジスタN1,N2に流れる電流の減少に伴って、σ(ΔI/gm)の値が単調に減少する特性を有する、ただし、σは標準偏差、ΔIは、差動対トランジスタN1,N2の電流量の差分、gmは、差動対トランジスタN1,N2のトランスコンダクタンスを表わす。 (もっと読む)


【課題】簡易な構成で歪を抑制しつつ消費電流を低減する。
【解決手段】増幅回路100は、正入力端子T1と負入力端子T2とに供給される電圧の差分を増幅し差分電圧Vaを出力する差動増幅部10と、入力信号Vinの電圧を検出し検出電圧Vbを出力する入力電圧検出部20と、正電源電圧+Vccが供給される正電源端子T6と出力端子Toutとの間に設けられ、出力端子Toutから電流を吐き出すPMOS31と、負電源電圧−Vccが供給される負電源端子T7と出力端子Toutとの間に設けられ、出力端子Toutから電流を吸い込むNMOS32とを有する出力部30とを備える。 (もっと読む)


【課題】複雑な制御を必要とせず、集積回路のトランジスタの閾値電圧バラツキに応じて所望の動作速度に適した電源電圧を提供することができる。
【解決手段】被安定電圧が入力される入力端子1と、安定化された電圧が出力される出力端子2と、入力端子1および出力端子2と電位差を有する一定電圧に設定される共通端子3と、正入力端子および負入力端子を有する差動増幅器4と、差動増幅器4の出力に基づいて入力端子1から出力端子2に流れる電流を制御する電流制御素子5と、出力端子2と共通端子3との間の電位差を分圧し、差動増幅器4の正入力端子に帰還させる分圧回路6と、出力端子2から電力を供給されるが出力端子2の電圧に依存せず、共通端子3の電圧を基準とする当該集積回路のトランジスタの閾値電圧に比例した電圧を差動増幅器4の負入力端子に出力する閾値参照電圧源7とを備える。 (もっと読む)


【課題】プロセスの耐圧を超える電圧が出力でき、要求される装置性能(高速・高電圧)を満足するドライバ集積化回路の構成を提供する。
【解決手段】差動入力回路と、レベルシフト回路と、出力回路が、同一のプロセスで製造され、基板電位(サブ電位)が異なる、3つ以上のチップに分割配置されており、それぞれのチップの基板印加電圧が異なるように設定することにより、プロセス耐圧よりも大きい出力電圧を提供する。 (もっと読む)


【課題】雑音特性を改善したソースフォロア回路を提供すること。
【解決手段】このソースフォロア回路は、電界効果型トランジスタ(M1,M2)によって構成されるソースフォロア回路部と、電界効果型トランジスタ(M3,M4,M5)によって構成されるカレントミラー回路部と、を備える。電界効果型トランジスタ(M4,M5)のゲートにクロスカップルに容量(C1,C2)を接続することにより、カレントミラー回路部をアンプとして機能させる。 (もっと読む)


【課題】 入力電圧の変化による増幅率の変化を抑制した、温度依存性を調整可能な演算増幅器を提供する。
【解決手段】 入力端子及び出力端子と、反転入力端子と非反転入力端子とを有する演算増幅器10と、入力抵抗回路20と、帰還抵抗回路30とを有する演算増幅回路において、入力/帰還抵抗回路は、それぞれ互いに温度係数の異なる抵抗Rとトリミング抵抗TRとを直列接続して形成し、トリミング抵抗を形成するMOSトランジスタはそのソース・ドレイン経路が抵抗Rと演算増幅器の反転入力端子との間に設けられ、その基板電位は演算増幅器の反転入力端子の電位とする。 (もっと読む)


【課題】 2つの出力素子の入力が共にハイレベルになり次に電源オン状態に移行する際に動作を開始することができないとい問題を解決する。
【解決手段】 電源制御手段16は、スイッチングアンプ10が電源オフ状態に移行する場合に、スイッチSWがオフ状態になり、コンデンサC102を強制的に放電させ、第2電源電圧V2に対する基準電位V3を強制的に低下させる。基準電位V3に対するロジック電源電圧Vddは、基準電位V3と同じだけ低下していくので、基準電位V3から見たロジック電源電圧Vddは固定される。定電流回路は、第2電源電圧V2に対する基準電位V3の低下に伴い、定電流Iを減少させ、第1の電流I1および第2の電流I2を減少させる。従って、基準電位V3から見たロジック電源電圧Vddが低下しないうちに、第1の電流I1、第2の電流I2を減少させ、パルス発生手段の動作を正常な状態で終了できる。 (もっと読む)


【課題】差動増幅回路における入力オフセット電圧の上昇を抑制しつつ、同相入力電圧範囲を拡張する。
【解決手段】本発明による差動増幅回路は、ソース及びバックゲートが第1電流源205に共通接続された差動対トランジスタ201、202を備える差動入力段回路111と、差動入力段回路111の出力端子に接続される出力段回路121と、第1電流源205と出力段回路121の第2電流源206のそれぞれの電流I1、I2を、差動入力段回路111への入力電圧VIN1、VIN2に応じた大きさに調整する電流制御回路101とを具備する。 (もっと読む)


【課題】差動入力部を有するとともに、出力部を構成するカレントミラー回路のミラー比を調整して入力オフセット電圧をもたせた電圧電流変換回路において、差動入力部および入力オフセット電圧の温度特性を平坦なものにする。
【解決手段】平坦な温度特性を有する第1の定電流Ib1に正の温度特性を有する第2の定電流Ib2を加えた電流をバイアス電流として、MP10及びMP11からなる差動入力部に供給することにより、差動入力部の温度特性とバイアス電流の温度特性とを相殺させて差動入力部の温度特性をゼロ(平坦なもの)にすることができる。また、電流吐き出し型の第1のカレントミラー回路の出力と、電流吸い込み型の第2のカレントミラー回路の出力との接続点を電圧電流変換回路の出力端子Out2とし、この接続点に第1の定電流Ib1に比例した電流を加える構成により、温度特性のない入力オフセット電圧も実現することができる。 (もっと読む)


【課題】通信信号を増幅する絶縁破壊に耐えるトランジスタ構造を提供する。
【解決手段】入力無線周波数信号を受信するため接地点と第1のゲートに接続されたソースを有する第1のNMOSトランジスタ12は、第1のトランスコンダクタンスと第1の破壊電圧とを有する。また第2のNMOSトランジスタは、第1のNMOSトランジスタのドレインに接続されたソースと、基準DC電圧に接続されたゲートと、増幅された無線信号の出力を与えるドレインと、基準DC電圧と第2のNMOSトランジスタのドレインとの間に配置された負荷とを有する。第2のNMOSトランジスタ14は第2のトランスコンダクタンスと第2の破壊電圧とを有し、第2の絶縁体は第1の絶縁体よりも厚い。この結果、第1のトランスコンダクタンスは第2のトランスコンダクタンスよりも大きく、第2の破壊電圧は第1の破壊電圧よりも大きい。 (もっと読む)


【課題】追加プロセスなしに、コモンモード入力電圧が定格電源電圧の任意倍数の電圧でも耐えることができる高耐圧の入力段とすることが可能な増幅回路を提供する。
【解決手段】増幅回路の入力段は、入力端子IN1,IN2が接続された第1の差動対トランジスタ10と、N1VDDに接続された第1の入力段電流バイアス手段20と、第1の差動対トランジスタ10と第1の入力段電流バイアス手段20に接続された第1の入力段カスコードトランジスタ群30と、第1の差動対トランジスタ10に接続された第2の入力段カスコードトランジスタ群40と、0VからN1VDDまで変化するコモンモード入力電圧が入力されたときに、第1の差動対トランジスタ10、第1の入力段カスコードトランジスタ群30、第2の入力段カスコードトランジスタ群40のVGSとVGDの絶対値がVDD以内となるバイアス電圧に調整する入力段バイアス調整回路60を備えている。 (もっと読む)


【課題】上限あるいは下限付近のデューティー比でも効率よく容量性負荷を駆動する。
【解決手段】容量性負荷駆動回路は、駆動信号COMの基準となる駆動波形信号WCOMを発生する駆動波形信号発生回路210と、WCOMをパルス変調して変調信号MCOMを生成する変調回路230と、MCOMを電力増幅して電力増幅変調信号ACOMを生成するデジタル電力増幅器240と、複数のインダクター251と複数のインダクター251の少なくともひとつを選択可能な接続手段252で構成され、かつACOMを平滑化することによってCOMを生成する平滑フィルター250と、デジタル電力増幅器240から平滑フィルター250に流れる電流の方向がMCOMの一変調周期内で逆転する逆転条件下では、一変調周期内での電流の最大値及び最小値の絶対値が所定の閾値以上となるように、接続手段252における選択を切り替える切替制御部270とを含む。 (もっと読む)


【課題】良好な逆回復特性と良好なEMCとを同時に実現することが出来て、かつ、従来の半導体装置よりも安価である半導体装置及び電子機器を提供する。
【解決手段】半導体装置1は、FET3のソースとMOSFET4のドレインとが接続されるとともに、一端が、FET3のゲートに接続され、他端が、MOSFET4のソースに接続される抵抗Rgsと、アノードが、FET3のゲートに接続され、カソードが、MOSFET4ソースに接続されるダイオードD1とを備える。 (もっと読む)


【課題】高音の音声信号が所定のレベル以上で所定時間以上入力されたときに、利得を低減させて高音過電流が発生することを防止する。
【解決手段】出力ドライバのパワートランジスタに流れる電流が所定時間以上にわたって所定値を超えた場合に高音過電流検出信号を発生する高音過電流検出手段と、前記高音過電流検出信号が発生されると前記プリアンプの通過周波数帯域を低くさせる通過周波数帯域切替手段とを設けた。 (もっと読む)


【課題】監視対象の素子の破壊を直接的に検知することを可能にする。
【解決手段】監視対象の半導体素子近傍にモニタ用配線を敷設する一方、所定のクロックを出力するクロック出力手段を当該モニタ用配線の一端に接続し、同モニタ用配線の他端に監視手段を接続する。そして、クロック出力手段からモニタ用配線へ出力されるクロックを伝播を監視手段に監視させ、クロックの伝播が途絶えたことを検出した場合に、監視対象の半導体素子の破壊が生じた旨を通知する破壊通知信号を出力させる。 (もっと読む)


【課題】基本波周波数のゲイン変化を生じさせることなく、2次高調波のみを抑圧および低減した回路面積の小さい差動増幅回路の実現。
【解決手段】差動対をなし、差動信号S,ZSが入力される2個のMOSトランジスタTr1,Tr2と、2個のMOSトランジスタTr1,Tr2のドレイン間に直列に接続された2個の容量素子C1,C2と、2個の容量素子C1,C2の接続ノードとバイアス電源端子GND間に接続されたインダクタンス素子L1と、を有する差動増幅回路。 (もっと読む)


【課題】変調信号のオンデューティー比が上限付近の状態が継続しても、D級増幅器を正
常に動作させて駆動信号を出力が可能とする。
【解決手段】駆動波形信号から生成した変調信号を電力増幅した後、平滑化することによ
って駆動信号を生成する。変調信号を電力増幅するデジタル電力増幅器では、電源とグラ
ンドとの間で2つのNチャンネル(以下ch)MOSFETをプッシュ・プル接続し、更
に、電源側のNchMOSFETに対して並列にPchMOSFETを接続する。こうす
れば、電源側のNchMOSFETをONにするためのブートストラップコンデンサーに
蓄えられた電荷が不足してNchMOSFETをONにすることができない場合でも、P
chMOSFETをONにすることで電力増幅を行うことができ、駆動信号を出力するこ
とが可能となる。 (もっと読む)


【課題】低い電源電圧に対応する生産プロセスで生産された製品に対して高い電源電圧を供給した場合にも、ホットキャリアに起因するオペアンプ特性の劣化を回避することができるオペアンプを提供する。
【解決手段】バイアス電源回路が、2つのカレントミラー回路の間に挿入された一対の抵抗部を有して定電流バイアス電位の他に付加バイアス電位を生成し、差動増幅器が、差動入力トランジスタ対と能動負荷トランジスタ対との間に挿入され且つ当該付加バイアス電位によってバイアスされる電圧降下用トランジスタ対を含むオペアンプ。 (もっと読む)


101 - 120 / 1,872