説明

Fターム[5J500AK19]の内容

増幅器一般 (93,357) | 回路要素 (18,409) | ホールド回路 (118)

Fターム[5J500AK19]に分類される特許

1 - 20 / 118



【課題】パワーアンプの歪補償精度の向上を図る。
【解決手段】アッテネータ15を介して入力したパワーアンプ1の出力信号であるフィードバック信号と疑似ランダムデータとを用いたLMSアルゴリズムによって、パワーアンプ1への入力信号の遅延量を算出する。算出した遅延量に基づきパワーアンプ1への入力信号の遅延量を調整することで、パワーアンプ1への入力信号とフラクショナルディレイを含むフィードバック信号とのタイミングを一致させ、このタイミングが一致した遅延量調整後の入力信号を用いて、パワーアンプ1への入力信号の歪補償を行うことで、DPD方式の歪補償精度の向上を図る。 (もっと読む)


【課題】本実施例の一側面における電力増幅器はトランジスタの入力側と出力側の両方に高調波処理を行う整合回路を設けた場合でも発振が生じるのを抑止し、電力増幅器の安定動作を可能とすることを目的とする。
【解決手段】本実施例の一側面における電力増幅器は、基本波と高調波を含む入力信号を入力ノードで受けとり、入力信号の電力を増幅することにより出力信号を生成し、生成された出力信号を出力ノードから出力する増幅回路と、増幅回路の入力ノードに接続され、入力信号の高調波処理を行う入力整合回路と、増幅回路の出力ノードに接続され、出力信号の高調波処理を行う出力整合回路を含む。増幅回路は、入力信号の電力が所定値より大きい値からその所定値より小さい値に低下したとき、生成される出力信号に含まれる高調波の整合点における出力インピーダンスの位相を回転させる。 (もっと読む)


【課題】トランジスタは作製工程や使用する基板の相違によって生じるゲート絶縁膜のバラツキや、チャネル形成領域の結晶状態のバラツキの要因が重なって、しきい値電圧や移動度にバラツキが生じてしまう影響を排除する。
【解決手段】アナログ信号を入力するトランジスタ、及び定電流源としての機能を有するトランジスタのゲート・ソース間電圧又はしきい値電圧に応じた電圧を取得、保持し、後に入力される信号電位に上乗せすることで、トランジスタ間のしきい値電圧のバラツキやゲート・ソース間電圧のばらつきをキャンセルする半導体装置を提供する。ゲート・ソース間電圧又はしきい値電圧に応じた電圧の取得、保持には、トランジスタのゲート・ソース間及びゲート・ドレイン間に設けたスイッチ、及びゲート・ソース間に設けた容量を用いる。 (もっと読む)


【課題】最小限の構成を用いて、演算増幅器の入出力端子間の寄生容量に起因する増幅回路の演算誤差を補償し、高精度の増幅率を得る。
【解決手段】増幅回路10は、一方の端子が演算増幅器A1の反転入力端子に、他方の端子が演算増幅器A1の反転出力端子に接続された容量CP5と、一方の端子が演算増幅器A1の非反転入力端子に、他方の端子が演算増幅器A1の非反転出力端子に接続された容量CN5とを備えている。 (もっと読む)


【課題】歪補償の精度を向上させる。
【解決手段】歪補償装置10は、増幅器で生じる信号の歪みを補償する。記憶部11は、歪補償に用いられる複数の補償係数を記憶する。選択部12は、信号の電力レベルを示す指標値に対応する補償係数を複数の補償係数の中から選択する。選択部12は、電力レベルが閾値を超えるか否か判定し、判定結果に応じて、対数演算を用いずに算出される第1の指標値または対数演算を用いて算出される第2の指標値を使用する。 (もっと読む)


【課題】EXCITERユニットの簡素化、コスト削減の実現を可能にする。
【解決手段】送信装置は、電力増幅部13と、送出部15と、冷却部27と、温度検出手段181と、出力電力検出手段182と、冷却制御手段183とを備えている。電力増幅部13は、伝送信号を電力増幅する。送出部15は、電力増幅部13の出力を伝送路へ送出する。冷却部17は、電力増幅部13を冷却する。温度検出手段181は、電力増幅部13の温度を検出する。出力電力検出手段182は、電力増幅部13の出力電力を検出する。冷却制御手段183は、温度検出手段181の検出結果及び出力電力検出手段182の検出結果に基づいて、冷却部17の冷却処理を制御する。 (もっと読む)


【課題】ベクトル結合電力増幅のための方法およびシステムが、本明細書で開示される。
【解決手段】一実施形態では、複数の信号は個別に増幅され、次いで加算されて、所望の時変複素包絡線信号が形成される。1つまたは複数のこれらの信号の位相および/または周波数特性は、所望の時変複素包絡線信号の所望の位相、周波数、および/または振幅特性を提供するように制御される。別の実施形態では、時変複素包絡線信号は、複数の定包絡線成分信号に分解される。これらの成分信号は等しくあるいはほぼ等しく増幅され、次いで加算されて、元の時変包絡線信号の増幅されたバージョンが構成される。実施形態はまた、周波数アップコンバージョンをも行う。 (もっと読む)


【課題】所定のS/Nを維持しながら消費電流の増加を抑制することのできる演算増幅器を提供する。
【解決手段】実施形態の演算増幅器は、正相信号Vpと逆相信号Vmが入力される差動増幅回路100と、差動増幅回路100へ動作電流を供給するカレントミラー回路200とを有する。この演算増幅器は、入力信号電圧検出回路1が、正相信号Vpと逆相信号Vmとの間の電圧差を検出し、動作電流制御回路2が、その電圧差の大きさに応じた制御信号を出力する。この制御信号の制御により、可変定電流回路3が、カレントミラー回路200へ入力する定電流の大きさを変化させる。 (もっと読む)


【課題】スイッチング周波数の補正を伴わずに増幅効率の低下を抑制する。
【解決手段】実施形態によれば、電力増幅器は、スイッチ素子と、可変受動素子と、サンプラと、比較器とを含む。スイッチ素子は、第1の端子、第2の端子及び制御端子を持ち、制御端子に供給される入力ドライブパルスの第1のエッジに応じて第1の端子と第2の端子との間を短絡する。可変受動素子は、電力増幅器の共振周波数の増減に影響する。サンプラは、第1のエッジに応じて、第1の端子と第2の端子との間の第1の電圧及び電力増幅器の出力電流を電流−電圧変換した第2の電圧のうち少なくとも一方に基づく注目電圧をサンプルする。比較器は、注目電圧と基準電圧とを比較し、注目電圧と基準電圧との間の差分に基づいて可変受動素子の制御電圧を出力する。 (もっと読む)


【課題】 抵抗及び小さな静電容量を用いた回路により、検出素子の出力信号を直流成分を除いて増幅する小型な信号処理装置を得る。
【解決手段】 入力信号が第1のインピーダンスを介して反転入力端子に入力される第1のオペアンプと、第1のオペアンプの反転入力端子と出力端子とに接続された第2のインピーダンスと、基準電圧が非反転入力端子に入力され、出力端子が第1のオペアンプの非反転入力端子に接続された第2のオペアンプと、第2のオペアンプの反転入力端子と出力端子とに接続された第1の静電容量と第1のスイッチと、第2のスイッチを介して第1のオペアンプの出力端子と前記第2のオペアンプの反転端子とに接続された第3の抵抗と、第3のスイッチを介して第1のオペアンプの出力端子と第2のオペアンプの反転端子とに接続された第4の抵抗とを備えた。 (もっと読む)


【課題】アンテナの負荷インピーダンスによらず、食品を高速に加熱すること。
【解決手段】制御部17で伝送線路15の長さのバラツキの影響を補正することによって、電力増幅器14の出力端での反射係数を高い精度で推測し、さらにその反射係数の値に従って予め用意された参照テーブルをベースにきめ細やかに電力増幅器14への入力電力を過剰に低下することなく制御することによって、高い精度で電力増幅器14の破壊や発振などを防ぎ、アンテナからの高周波出力を高いレベルに維持することが可能となる。 (もっと読む)


【課題】増幅器の出力雑音電圧を抑制する。
【解決手段】正転入力電圧と反転入力電圧の差分を増幅する差動入力回路1と、差動入力回路1の出力信号を増幅して出力端子に出力する出力回路2と、差動入力回路1の電流源MP3と出力回路2の電流源MP4にバイアス電圧を出力するバイアス回路5を備えた増幅器である。差動入力回路1の正転入力電圧と反転入力電圧が共に接地電圧のときに出力端子に現れる出力雑音電圧を検出し、該雑音電圧のレベルが高いほど、バイアス回路5が、電流源MP3,MP4の電流を増大させるバイアス電圧を出力するようにした。 (もっと読む)


【課題】本発明は、利得制御装置に関し、構成の大幅な変更と性能の低下とを伴うことなく、所望の回路の可用性を高く維持できることを目的とする。
【解決手段】回路に入力された入力信号、あるいは前記回路によって出力された出力信号の周波数に適した負帰還を前記回路に施し、前記回路の利得を所定の範囲に維持する利得制御装置であって、前記周波数の特定の帯域における前記回路の利得の偏差が許容可能な限度を超えるときに、前記負帰還に供される帰還路の直線性が前記出力信号の振幅の尖頭値でも確保される値に前記帰還路の利得を設定する制御手段を備える。 (もっと読む)


【課題】 バックオフが最小化されC/Nの良い電力増幅器とその信号ピークレベル調整方法を提供する。
【解決手段】。CFR部1の入出力と、DPD部2の出力とアンテナへ出力される信号のループバック信号とのCCDFをCCDFモニタ部11、13、22、24でそれぞれ測定し、CCDFモニタ部24で測定したCCDFのPAPRがCCDFモニタ部13のそれよりも狭くならないようにピーク設定部14と、ピーク調整部12を制御する。 (もっと読む)


【課題】利得可変回路の出力振幅の温度依存性を低減する。
【解決手段】自動利得調整回路は、利得可変回路3の出力信号のピーク電圧を検出するピーク検出回路10と、利得可変回路3の出力信号の平均値電圧を検出すると共に、平均値電圧に利得可変回路3の所望の出力振幅の1/2の電圧を加える平均値検出・出力振幅設定回路11と、ピーク検出回路10の出力電圧と平均値検出・出力振幅設定回路11の出力電圧との差分を増幅して、増幅結果を利得制御信号として利得可変回路3の利得を制御する高利得アンプ12とを備える。ピーク検出回路10の入力端子から出力端子までの経路に挿入されるトランジスタのベース−エミッタ接合の数と、平均値検出・出力振幅設定回路11の入力端子から出力端子までの経路に挿入されるトランジスタのベース−エミッタ接合の数とは同一である。 (もっと読む)


【課題】隣接した駆動電極のカップリングキャパシタンスの変化の差を検出し、タッチスクリーンパネルに対するタッチ有無を感知することでディスプレイノイズを除去することができるタッチ感知回路の提供。
【解決手段】第1駆動電極に印加された駆動信号と第1駆動電極に隣接した第2駆動電極に印加された駆動信号の入力をそれぞれ受け、微分して第1微分信号及び第2微分信号を生成する微分器と、第1微分信号及び第2微分信号の入力を受け、増幅して増幅信号(out_amp)を出力する増幅器、及び、差動増幅信号の入力を受け、直流信号に変換された検出信号を出力する検出器を具備し、第1駆動電極と第1受信電極、及び、第2駆動電極と第2受信電極が交差するノードに形成された第1カップリングキャパシタンス、及び、第2カップリングキャパシタンスの変化の差をセンシングし、タッチスクリーンパネルのタッチ可否を感知するタッチ感知回路。 (もっと読む)


【課題】 出力アンプのオフセット電圧を適切に低減して表示品質の悪化を防止することができる液晶駆動用のソースドライバのオフセット低減出力回路を提供する。
【解決手段】 基準電圧がオペアンプの非反転入力端に印加されたオペアンプと、少なくとも通常出力動作時にオペアンプの反転入力端に接続される第1の接続点に各々の一端が接続された第1の入力コンデンサ及び第1の出力コンデンサと、リセット動作時に第1の入力コンデンサ及び第1の出力コンデンサ各々の両端を短絡してその両端に基準電圧を印加し、リセット動作後の通常出力動作時に第1の入力コンデンサの他端に階調電圧を印加しかつ第1の出力コンデンサの他端をオペアンプの出力端に接続する第1のスイッチ素子回路と、を備え、第1のスイッチ素子回路は、第1の接続点とオペアンプの出力端との間に接続され、リセット動作時にオンとなり、通常出力動作時にオフとなる直列接続の第1及び第2のスイッチ素子を有し、通常出力動作時には第1及び第2のスイッチ素子の直列接続点に基準電圧を印加する。 (もっと読む)


【課題】通常動作中のフィードバックデータが存在しない振幅の大きい領域の誤差データを推測し、その推測データも利用して補償動作することにより、補償誤差を大幅に低減して補償精度を向上する。
【解決手段】補償部103は、スイッチ部102により選択された信号を補償係数計算部105からの補償係数の値に基づき歪の逆特性を付加するプリディストーションの処理を行う。誤差抽出部104は、入力信号又は基準信号とPA出力からのフィードバック信号との歪誤差データを抽出する。補償係数計算部105は、誤差抽出部104で抽出された歪誤差データと基準誤差推測計算部107で計算された基準誤差推測データとを基に歪の逆特性となる補償係数を計算する。基準誤差推測計算部107は、基準誤差データと補償係数計算部105からの補償係数とから基準誤差推測データを計算する。 (もっと読む)


【課題】光信号の電力が小さい状態においても、受光電力を正確に示すデジタル値を得ることにより、受光電力の測定範囲を十分に確保する。
【解決手段】受光パワーモニタ回路31は、光信号を受信するための受光素子の出力電流に対応する電流を供給するための受光電流供給回路51と、受光電流供給回路51から供給される電流のレベルをデジタル値に変換するためのデジタル変換回路52と、デジタル変換回路52に供給される電流、または電流が変換された電圧であってデジタル値に変換される電圧のオフセットを調整するためのオフセット調整回路53とを備える。 (もっと読む)


1 - 20 / 118