説明

Fターム[5J500AS13]の内容

増幅器一般 (93,357) | 用途 (4,306) | 通信機器 (2,560)

Fターム[5J500AS13]の下位に属するFターム

送信器 (1,559)

Fターム[5J500AS13]に分類される特許

201 - 220 / 1,001


【課題】 ギガビットオーダーの光信号受信回路で問題となる光信号受信回路内電源配線および接地電位配線および基板を介した高周波ノイズ回りこみによる発振現象を抑制する光信号受信回路を提供する。
【解決手段】 前置増幅器と参照電圧生成回路とが、共通の第1の接地電位配線および第1の電源配線に接続され、第1の接地電位配線の電位が給電される半導体基板上の第1の素子形成領域に形成され、主増幅器が第1の接地電位配線および第1の電源配線とは分離された、第2の接地電位配線および第2の電源配線に接続され、第2の接地電位配線の電位が給電される半導体基板上の第2の素子形成領域に形成され、第1の接地電位配線の電位が給電される第1の基板給電箇所と、第2の接地電位配線の電位が給電される第2の基板給電箇所との最も近接する基板給電間隔が、交流的に十分減衰される基板透過特性が得られる程度に離れた光信号受信回路を構成する。 (もっと読む)


【課題】低容量でオン抵抗が低いMOSトランジスタを用いたトランスインピーダンスアンプを実現する。
【解決手段】トランスインピーダンスアンプの利得切替回路を構成するMOSトランジスタに、半導体基板に対して外部から任意の電位を印加するためのバックゲート端子を設け、MOSトランジスタの動作状態やそのときのドレイン電位やソース電位に応じた電位をバックゲート端子から半導体基板に対して任意の電位を印加する。 (もっと読む)


【課題】特性が安定し、増幅効率の良い増幅回路、集積回路装置及び電子機器等を提供すること。
【解決手段】増幅回路は、出力ノードNPに増幅信号VPを出力する増幅用トランジスター10と、インダクターLA及びキャパシターCA、CBにより構成され、インダクターのインダクタンス値及びキャパシターのキャパシタンス値の少なくとも一方が可変に設定されるLC負荷回路20と、増幅信号VPの電圧振幅を検出する振幅検出回路30と、振幅検出回路30の検出結果に基づいてインダクタンス値及びキャパシタンス値の少なくとも一方を設定し、増幅信号VPの電圧振幅値を極大値に近づける制御を行う制御回路40とを含む。 (もっと読む)


【課題】増幅回路の雑音指数の劣化を抑制すること。
【解決手段】送信端子Txから入力された送信信号を前記共通端子ANTに接続する送信スイッチSW1と、前記共通端子から入力された受信信号を増幅し、受信端子Rxに出力する増幅回路90と、前記共通端子から他のスイッチを介さず入力された前記受信信号を前記増幅回路に接続する第1受信スイッチSW2と、前記共通端子と前記受信端子との間で前記第1受信スイッチとは並列に接続され、前記共通端子から入力された前記受信信号を前記増幅回路とは別の経路で前記受信端子に接続する第2受信スイッチSW3と、を具備する電子回路。 (もっと読む)


【課題】 電源電圧を変更した場合でも、動作電流を予め定めた値に設定することができる高周波増幅器を提供する。
【解決手段】 入力端子から入力した高周波信号を増幅し、出力端子から電源電圧が印加されるとともに、増幅した出力信号を出力する増幅用トランジスタからなる増幅回路と、増幅用トランジスタの制御電極に制御信号を出力するバイアス回路と、バイアス回路の制御信号を調整する調整信号を出力する調整回路とを備え、調整回路は、切替え可能な複数の調整信号を生成する調整信号生成部と、調整信号生成部からバイアス回路に1つの調整信号を出力する切替部とを備えている。 (もっと読む)


【課題】受信回路のチャンネル選択フィルタの信号帯域幅を低い値に設定する際、帰還容量の容量値の増加を軽減して雑音特性の劣化を軽減する。
【解決手段】半導体集積回路は、RF受信信号を受信する受信回路とチャンネル選択フィルタとを具備する。チャンネル選択フィルタは、第1段と第2段のフィルタの従属接続によって構成される。第1段フィルタは、第1段演算増幅器OPA2と、第1入力抵抗R1と、第1帰還容量Cを含む完全積分器によって構成される。第2段フィルタは、第2段演算増幅器OPA1と、第2入力抵抗R1と、第2帰還容量Cと可変帰還抵抗R3との並列接続を含む不完全積分器によって構成される。低カットオフ周波数に設定される際の抵抗値の比(Q=R3/R1)は、高カットオフ周波数に設定される際の抵抗値の比より小さな値に設定される。 (もっと読む)


【課題】デジタル化されたオーディオ信号入力を受入れ、デジタル・アナログ変換なしにスピーカのような負荷を駆動するD級オーディオ増幅器を開示する。
【解決手段】この増幅器は、(1)複数のデジタル値の形式のデジタル化されたオーディオ信号を受取る手段と、(2)デジタル値に応じてパルス波形をパルス幅変調する手段と、(3)変調された波形に対して動作し、デジタル化されたオーディオ信号のアナログ表示を発生する復調器とを含む。 (もっと読む)


第1出力(Vo−)を規定し、第1入力端子(330A)に結合されるゲートを各トランジスタ(315A、320A)が有する第1対のトランジスタ(305A)、第2出力(Vo+)を規定し、第2入力端子(330B)に結合されるゲートを各トランジスタ(315B、320B)が有する第2対のトランジスタ(305B)、第2出力端子(310B)に及び第1対のトランジスタの第1トランジスタ(315A)のゲートに結合される第1キャパシタ(350A)、第2出力端子(310B)に及び第1対の第2トランジスタ(320A)のゲートに結合される第2キャパシタ(355A)、第1出力端子(310A)に及び第2対の第3トランジスタ(315B)のゲートに結合される第3キャパシタ(350B)、及び第1出力端子(310A)に及び第2対の第4トランジスタ(320B)のゲートに結合される第4キャパシタ(355B)を含む増幅器(230)。

(もっと読む)


【課題】入出力範囲を電源電圧まで可能とする。
【解決手段】入力段に第1の演算増幅器51が、出力段に第2の演算増幅器52が、それぞれ配されると共に、第1の演算増幅器51の帰還路に第1のトランスコンダクタンス増幅器53が、第1及び第2の演算増幅器51,52の間に、第2のトランスコンダクタンス増幅器54が、それぞれ配されてなり、第1の演算増幅器51には第1の抵抗器61を介して入力信号を印加可能とし、その第1の抵抗器51に流れる電流と、第1の演算増幅器51の負帰還電流を等しくする一方、第2の演算増幅器52の入出力端子間に第2の抵抗器62を設けると共に、第2の演算増幅器52には、その終段がフルスイング可能に構成されたものを用い、第2の抵抗器62に流れる電流と第2のトランスコンダクタンス増幅器54の出力電流を等しくすることで、入出力範囲が電源電圧まで広げられたものとなっている。 (もっと読む)


【課題】変換利得のばらつきを極めて小さく抑制された周波数変換回路を実現する。
【解決手段】入力電圧信号を電流信号に変換するGMアンプ10と、該変換して得られた電流信号をローカル信号でミキシングして周波数変換を行うスイッチング回路部(ミキサ)20と、該周波数変換によって得られた電流信号を電圧信号に変換するIV変換部(IV変換アンプ)30と、GMアンプ10へバイアス電圧を供給するバイアス回路(GM校正回路)40と、を備えGM校正回路40は、GMアンプ10に用いるトランジスタとそのサイズあたりの相互コンダクタンスを同一としたトランジスタを用いたレプリカアンプを内部に有し、該レプリカアンプに、抵抗と第1電流源からの電流との積に相当するDC電圧を入力し、該レプリカアンプからの電流出力が所定値になるように、該レプリカアンプの電圧バイアスを設定し、抵抗の分割点の電圧をGMアンプ10に供給する。 (もっと読む)


【課題】帰還抵抗を極端に大きくすることなく、高感度に広帯域な動作を実現できる光受信器を提供する。
【解決手段】同一極性方向に直列接続された2個の受光素子より構成されたバランスドフォトダイオードと、このバランスドフォトダイオードの出力信号が入力されるチェリーホッパー型増幅部と、このチェリーホッパー型増幅部を構成している差動入力ペアトランジスタからのそれぞれの出力信号をレベルシフトするエミッタフォロワ部と、このエミッタフォロワ部の出力信号を前記チェリーホッパー型増幅部の各入力端子に帰還する経路に設けられた第1および第2の帰還抵抗と、この第2の帰還抵抗と前記チェリーホッパー型増幅部を構成している差動増幅回路の一方のトランジスタのベースに接続されている第1のコンデンサとを有することを特徴とする。 (もっと読む)


アクティブデバイスに対するバイアス電圧を発生する装置が開示され、第1の電圧源と、第1の電圧源に応答してチャージを発生するように適応されたキャパシティブエレメントと、アクティブデバイスに対するバイアス電圧を発生するためにチャージを供給するように適応された第1のスイッチングエレメントとを備える。本装置は、アクティブデバイスの1以上の特性に基づいてキャパシティブエレメントをコントロールするように適応されコントローラを備えるかもしれない。コントローラは、リファレンス電圧に基づいて、すなわちアクティブデバイスの1以上の特性に基づいて前記キャパシティブエレメントのキャパシタンスをコントロールかもしれない。
(もっと読む)


【課題】消費電流の増大を抑制しつつ、差動増幅回路の線形性と利得の両立を図る。
【解決手段】差動信号Vin、Vinbの一方が入力されるソースフォロア回路を構成する電界効果トランジスタM11と、ソースフォロア回路に直列接続され、差動信号Vin、Vinbの他方が入力されるソース接地回路を構成する電界効果トランジスタM12とを備える。 (もっと読む)


【課題】一対の信号線に差動の信号を出力する差動出力駆動回路を備える半導体集積回路において、立ち上がり時間と立ち下がり時間とをそれぞれ独立に調整できるようにする。
【解決手段】一対の信号線4a,4bのそれぞれとGNDとの間に出力容量Ca,Cbを備えるとともに、それぞれの信号線4a,4bに直列に第1の抵抗R1a,R1bを介在し、かつ前記信号線4a,4bを第2の抵抗R2a,R2bによって電源電位にプルアップする。そして、該半導体集積回路1を基板に実装した後に測定された立ち上がり時間と立ち下がり時間とに応じて、抵抗値調整回路Aa,Abが、前記抵抗R1a,R2a;R1b,R2bの抵抗値をそれぞれ調整する。したがって、立ち上がり時間と立ち下がり時間とをそれぞれ独立に調整できるようになり、それらの対称性を維持しなければならないような規格に対しても対応可能となる。 (もっと読む)


【課題】複数の増幅器を有するマイクロ波受信機において、小形な保護回路で、大電力のマイクロ波信号が入力されたときの後段増幅器の破壊・劣化を防ぐとともに、前段増幅器への反射電力を抑圧する。
【解決手段】この発明のマイクロ波受信機の前段増幅器の出力端と後段増幅器の入力端の間に挿入接続される保護回路は、その入力端子から出力端子へ至る使用周波数で約4分の1波長の伝送線路と、前記入力端子に一端が接続された第1の抵抗と、前記第1の抵抗の他端にカソード端子が接続されアノード端子が接地されたダイオードと、前記バイアス端子と前記ダイオードのカソード端子間に接続された第2の抵抗と、前記ダイオードのカソード端子と前記ゲートバイアス回路間に接続された第3の抵抗と、から構成した。 (もっと読む)


【課題】差動信号生成回路におけるS/N比の改善を図ること。
【解決手段】差動信号生成回路31は、入力されたRF信号を増幅するソース接地回路311と、増幅されたRF信号の差動信号RF,RFを生成するドレイン接地回路312と、生成された差動信号RF,RFの位相差を調整する容量部313とを備えて構成される。また、ドレイン接地回路312における第1の抵抗R1及び第2の抵抗R2によって、差動信号RF,RFの振幅が同じとなるとともに、容量部313によって、差動信号RF,RFの位相差がほぼ180度となるように調整される。 (もっと読む)


【課題】差動出力信号間のオフセット電圧を充分に抑圧し、出力信号のデューティ比の悪化を防ぐこと。
【解決手段】差動振幅制限増幅器30と、該差動振幅制限増幅器の出力差動信号をオフセット電圧抑制のために前記差動振幅制限幅器の入力側にフィードバックする差動アクティブ・ローパスフィルタ回路40と、からなる回路を、2段以上に亘って縦続接続したて構成する。 (もっと読む)


【課題】 電源電圧依存性および温度依存性の低い参照電圧発生回路を提供し、もって受信感度の良好な受信回路を実現する。
【解決手段】 受信回路は、AMI符号化された一対の信号を増幅する差動増幅回路(11)と、差動増幅回路の出力と所定の参照電圧とを比較して入力信号の論理レベルを判別する受信データ判定回路(12)と、前記参照電圧を発生する参照電圧発生回路(13)とを備え、参照電圧発生回路は電源電圧を基準にした温度依存性の低い参照電圧を発生するように構成した。 (もっと読む)


【課題】高速信号を処理するトランスインピーダンスアンプの消費電流を低減すること。
【解決手段】差動増幅回路9と、メインTIAコア5及びダミーTIAコア7とを有する。メインTIAコア5は、受光素子1からの電流信号を電圧信号に変換して差動増幅回路9に出力し、ダミーTIAコア7は、基準信号を差動増幅回路9に出力する。ダミーTIAコア7の出力インピーダンスの絶対値は、低周波側では、メインTIAコア5の出力インピーダンスの絶対値よりも高く、高周波側では、メインTIAコア5の出力インピーダンスの絶対値と同様となる。 (もっと読む)


【課題】簡素な構成で広い受信帯域を有する受信回路、集積回路装置及び電子機器等を提供すること。
【解決手段】受信回路は、アンテナ110から整合回路120を介して入力される入力信号を増幅する低雑音増幅器130と、低雑音増幅器130の後段に設けられる周波数変換回路140と、周波数変換回路140の後段に設けられるフィルター150とを含み、整合回路120の共振周波数を第1の周波数とし、低雑音増幅器130が有する共振回路の共振周波数を第2の周波数とした場合に、第2の周波数が、受信帯域の幅によって規定される周波数だけ第1の周波数からシフトされた周波数に設定される。 (もっと読む)


201 - 220 / 1,001