説明

国際特許分類[B22F9/02]の内容

国際特許分類[B22F9/02]の下位に属する分類

国際特許分類[B22F9/02]に分類される特許

11 - 20 / 98


【課題】連続した試薬流のレーザ熱分解によりナノメートルサイズまたはサブミクロンサイズの粉体を高いエネルギー収率で製造するシステム及び方法を提供する。
【解決手段】第1の軸に沿ってレーザ光線11を照射するレーザ10と、第1の軸と垂直な方向から試薬流13を流し第1の相互作用ゾーン15でレーザ光線と交差するように構成された第1の注入装置と、第1の軸に沿って第1の相互作用ゾーンの下流側に第2の相互作用ゾーン15’を形成する第2の試薬流13’を与える第2の注入装置と、レーザ光線のエネルギーをレーザ光束の幅及び高さを独立して変更可能な光学部材12を備え、レーザ光密度が第1の相互作用ゾーンと第2の相互作用ゾーンにおいて同一の水準にすることが可能なシステムを用い、試薬流のレーザ熱分解によりナノメートルサイズまたはサブミクロンサイズの粉体を高いエネルギー収率で製造する。 (もっと読む)


【課題】この発明は、プラズマにおける高温場と反応場周辺の液体による急冷によって、高速にナノ粒子を合成する方法を提供することを目的とする。
【解決手段】上記の課題を解決するために、本発明に係るナノ粒子製造方法は、ナノ粒子の原料である金属よりなる電極1の先端部1aを液体中に設置し、電極1の他端側に高周波電源5を接続し、電極1の先端部の断面積よりも広い表面積の対向電極11を電極1の先端部1aに対向して設置し、高周波電源5より高周波を電極1に供給することにより液体中にプラズマを発生させてナノ粒子を生成する。 (もっと読む)


【課題】高品質なCu−Ga合金粉末を容易に製造することができるCu−Ga合金粉末の製造方法及びCu−Ga合金粉末、並びにCu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲットを提供する。
【解決手段】Cu粉末とGaとが質量比で85:15〜55:45の割合で配合された混合粉末を、不活性雰囲気中で30〜700℃の温度で攪拌して合金化することにより、Cu−Ga合金粉末を得る。また、このCu−Ga合金粉末を成型し、焼結することにより、Cu−Ga合金スパッタリングターゲットを得る。 (もっと読む)


【課題】大気中でも安定した水素発生材料等を提供する。
【解決手段】その表面が徐酸化処理されたMgナノ粒子を含み、該徐酸化処理されたMgナノ粒子が水と反応して水素を発生する水素発生材料。該Mgナノ粒子の比表面積が70m/g未満3m/g超である上記水素発生材料。標準電極電位がMgよりも正方向に大きな金属の粉末を更に含む上記水素発生材料。少なくとも以下のステップ(ア)および(イ)の工程を備えた上記の水素発生材料の製造方法。
(ア)Mg金属塊を水素、窒素、Arまたは、これらの混合ガス雰囲気中でアーク溶解してMgナノ粒子を得る工程。
(イ)前記Mgナノ粒子の表面を徐酸化処理する工程。 (もっと読む)


【課題】 真球状で結晶性に優れ、粗大粒子の混入が従来品より大幅に少ないニッケル微粉と工業的に容易なその製造方法を提供する。
【解決手段】 硫黄含有量が0.1〜0.5質量%となるようにニッケル原料を調製する原料調製工程と、還元雰囲気中において、ニッケル原料を熱プラズマにより気化させ、ニッケル蒸気を凝縮させて微粉化させる微粉化工程と、得られた微粉化ニッケルを連続的に水冷ジャケット式サイクロン内に導入して粗大粒子を除去するとともに冷却する粗大粒子除去工程と、微粉化ニッケルを回収する回収工程と、回収した微粉化ニッケルを、弱酸化性の不活性ガス雰囲気中で保持して微粉化ニッケル表面を徐酸化し、ニッケル微粉を得る徐酸化工程とを有する。 (もっと読む)


【課題】原料金属粉末から製造されるナノ粒子の粒径制御や、ナノ粒子同士の数珠つなぎ・ネッキング発生状況の制御を行うことが可能なナノ粒子製造装置を提供する。
【解決手段】本発明のナノ粒子製造装置1は、原料金属粉末とキャリアガスの混合物を、加熱空間での加熱・溶融、冷却空間Yでの冷却ならびに捕集空間Zでの捕集処理を行い、ナノ粒子を製造するナノ粒子製造装置であって、前記加熱空間X、冷却空間Yならびに捕集空間Zが連続した逆流のない流路を形成し、かつ、前記加熱空間Xならびに前記冷却空間Yの断面積に対して、捕集空間の断面積Zを大きく設定し、また、前記加熱空間Xの加熱・溶融温度は、前記原料金属粉末の融点以上の第1温度に保たれ、前記冷却空間Yは、前記原料金属粉末の融点より低い第2温度に保たれ、前記捕集空間Zは、前記冷却空間の第2温度より低い第3温度に保たれていることを特徴とする。 (もっと読む)


【課題】 粒度の揃った金属粒子を担体の表面に強い吸着力で担持することができる複合粒子製造方法を提供すること。
【解決手段】 金属粒子と溶媒とを含有するコロイド溶液を準備する準備工程と、前記コロイド溶液と担体とを混合して、混合溶液を作製する混合溶液作製工程と、前記混合溶液にアルコールを混合して、前記担体の表面に金属粒子が接合又は担持された複合粒子を作製する複合粒子作製工程とを含むことを特徴とする。 (もっと読む)


【課題】小さな平均粒径で分散が可能で、分散性、分散安定性、高濃度分散性等が良好な金属微粒子分散体の製造方法を提供すること、更には、こうして得られた金属微粒子分散体に対して溶媒置換を施す、分散性、分散安定性、高濃度分散性、分散媒多様性等が良好な金属微粒子分散液の製造方法を提供すること。
【解決手段】金属の気体9を低蒸気圧液体3に接触させることによって、該金属を該低蒸気圧液体3に分散させる金属微粒子分散体の製造方法であって、該低蒸気圧液体3中に、脂肪酸類、脂肪族アミン類又は脂肪酸エステル類を溶解させておくことを特徴とする金属微粒子分散体の製造方法、その金属微粒子分散体中の低蒸気圧液体を他の分散媒に置換したものであることを特徴とする金属微粒子分散液、及び、他の分散媒に置換する際に、1級アミン類又は2級アミン類を加えた後に他の分散媒を加える上記金属微粒子分散液の製造方法。 (もっと読む)


【課題】ナノワイヤ変形現象を低減又は除去し、同時にゲルマニウムリッチナノワイヤを製造する実行容易な方法を提供する。
【解決手段】基板2は、第1シリコン層3と、第1及び第2固定領域と少なくとも1つの接続領域を含む3次元パターンを形成するシリコンゲルマニウム合金系材料からなるターゲット層1を備える。第1シリコン層3は引張応力がかかり、及び/又は、ターゲット層1は炭素原子を含む。第1シリコン層3は接続領域において除去される。接続領域のターゲット層1は、ナノワイヤ8を形成するために熱酸化される。第1シリコン層3の格子パラメータは、第1シリコン層3の除去後、サスペンデッドビームを構成する材料の格子パラメータと同一である。 (もっと読む)


【課題】金属微粒子を製造する製造時間を短縮できる金属微粒子の製造装置、金属微粒子の製造方法、及び、複合微粒子の製造方法を提供する。
【解決手段】金属微粒子の製造装置1は、レーザ光Lを照射するレーザ装置2と、レーザ光Lのビーム径を拡大するビームエキスパンダ4と、拡大されたレーザ光Lのエネルギー分布を長軸方向で平均化する長軸用ホモジナイザ6とを備えている。 (もっと読む)


11 - 20 / 98