説明

国際特許分類[C22C19/00]の内容

化学;冶金 (1,075,549) | 冶金;鉄または非鉄合金;合金の処理または非鉄金属の処理 (53,456) | 合金 (38,126) | ニッケルまたはコバルトを基とする合金 (1,875)

国際特許分類[C22C19/00]の下位に属する分類

国際特許分類[C22C19/00]に分類される特許

31 - 40 / 269


【課題】従来とは全く異なるアプローチにより、耐食性に優れた新たな水素吸蔵合金を提供せんとする。
【解決手段】水素吸蔵合金原料を混合し溶解して鋳造する鋳造工程と、鋳造された合金を熱処理する熱処理工程とを備えた水素吸蔵合金の製造方法であって、当該熱処理工程において、目的とする温度(「保持温度」と称する)を保持する前に、当該保持温度よりも高温の温度に昇温させた後、前記保持温度まで降温させる予備熱処理(この予備熱処理を、本明細書では「オーバーシュート」と称する)を行うことを特徴とする水素吸蔵合金の製造方法を提案する。 (もっと読む)


【課題】水素吸蔵あるいは水素化されてから迅速に水素放出あるいは脱水素化を行うことができる水素吸蔵合金及びこれを用いた水素センサを提供する。
【解決手段】Mg−Ni系合金とZr−Ti系合金とを含む水素吸蔵合金を用い、基板2と、該基板2上に設けられ、前記Mg−Ni系合金と前記Zr−Ti系合金とを含む水素反応層3と、該水素反応層3上に設けられ、前記Mg−Ni系合金の水素化を促進するための第1の触媒層4とを備えた。 (もっと読む)


【課題】部分充放電サイクルの初期段階での水素吸蔵合金の微粉化により出力を向上させるとともに、その表面状態を維持させて生涯仕事量が向上するアルカリ蓄電池用水素吸蔵合金およびアルカリ蓄電池ならびにアルカリ蓄電池システムを提供する。
【解決手段】本発明のアルカリ蓄電池用水素吸蔵合金は、組成式がLaxReyMg1-x-yNin-m-vAlmTv(Re:Yを含む希土類元素、T:Co,Mn,Zn、0.17≦x≦0.64、3.5≦n≦3.8、0.60≦m≦0.22、v≧0)と表され、主相の結晶構造がA5B19型構造であり、表面層のNiに対するAlの濃度比率Xとバルク層のNiに対するAlの濃度比率Yの比X/Yが0.36以上、0.85以下である。そして、本発明のアルカリ蓄電池は該水素吸蔵合金を負極に備えており、本発明のアルカリ蓄電池システムは部分充放電制御するようになされている。 (もっと読む)


【課題】横向溶接法及びそれに適した接合構造を提供する。
【解決手段】 2つの部品間に溶接接合部を形成する方法であって、本方法は、第1の部品(100)と第2の部品(200)を整列させて、第1の部品(100)と第2の部品(200)の間に、第1の部品(100)の突出部(122)と第2の部品(200)の陥凹部(222)とを含む接合部(300)であって、突出部(122)と陥凹部(222)とが相補的な形状を有する接合部(300)を形成するステップと、各々の主軸線(140,240)が縦向きに配向されるように第1の部品(100)と第2の部品(200)を配向するステップと、接合部(300)に沿って位置した略横向配向根元開口部(310)で第1の部品(100)と第2の部品(200)を溶接するステップ(730)とを含む。 (もっと読む)


【課題】金属または合金中を拡散する水素または重水素密度を高精度で計測することができる水素吸蔵金属または水素吸蔵合金の製造方法を提供する。
【解決手段】水素吸蔵金属または水素吸蔵合金を、真空中にて850℃以上1100℃以下の温度で、1時間以上99時間以下の条件で加熱する第1アニール処理と、該第1アニール処理が施された前記水素吸蔵金属または前記水素吸蔵合金を、水素雰囲気中に保持し、前記水素吸蔵金属または前記水素吸蔵合金中に水素を吸蔵させる水素吸蔵処理と、前記水素を吸蔵させた前記水素吸蔵金属または前記水素吸蔵合金を、真空中にて600℃以上900℃以下の温度で、1時間以上99時間以下の条件で加熱する第2アニール処理とを含む水素吸蔵金属または水素吸蔵合金の製造方法。 (もっと読む)


【課題】シンタリングが防止され、信頼性、耐久性がより高い水素発生材を提供する。
【解決手段】水の接触により水素を発生し、水素の接触により水を発生する水素発生材において、酸化還元によって水素を吸蔵・放出できる水素吸蔵金属を母材とし、前記水素吸蔵金属の表面に、金属又は金属酸化物の少なくとも一方の物質がALD法又はLPD法を用いて添加されている。 (もっと読む)


【課題】高出力性能と高信頼性能を兼ね備えるとともに、負極にA19構造を有する水素吸蔵合金を用いた場合でも耐久性に優れるアルカリ蓄電池を提供することを目的とする。
【解決手段】
本発明のアルカリ蓄電池は、希土類元素、ニッケル、マグネシウムを主元素とするとともにA19構造相を含む水素吸蔵合金及びスチレン−ブタジエン系ラテックス(SBR)を含み、極板容量Xに対する極板面積Yの比(Y/X)が60cm/Ah以上である水素吸蔵合金負極を用いたアルカリ蓄電池であって、前記水素吸蔵合金の粒径αが15〜25μmであり、前記水素吸蔵合金の粒径αと前記SBRの粒径βとの比(β/α)が0.007〜0.018であり、前記水素吸蔵合金負極に含まれるSBRが、負極の内部から表面にかけて多くなっていることを特徴としている。 (もっと読む)


【課題】高容量を維持し、かつ高いサイクル特性を有する合金で、MgおよびAlを含む水素吸蔵合金およびその製造方法を提供することにある。
【解決手段】本発明の水素吸蔵合金は、RaMgbNicAlde(RはYを含む希土類元素、Zr、HfおよびCaから選ばれる少なくとも1種、MはR、Mg、Ni、Al以外の元素から選ばれる少なくとも1種、0.75≦a≦0.85、0.15≦b≦0.25、3.30≦c≦3.65、0.15≦d≦0.25、0≦e≦0.20、a+b=1、0.33≦b+d≦0.45、3.45≦c+d+e≦3.80である。)で表される組成を有する水素吸蔵合金であって、ストリップキャスティング法により製造された、合金の断面組織のEPMAによる500倍のCOMP像およびMgとAlの元素マッピング像で確認される母相よりも、Mg濃度が高い相およびAl濃度が高い相の占める割合の合計が全体の5.0%以下であることを特徴とする。 (もっと読む)


【課題】 主相が六方晶系の結晶構造をもつ水素吸蔵合金を用いた高容量のアルカリ蓄電池におけるサイクル寿命を向上させる。
【解決手段】 アルカリ蓄電池の負極に、一般式Ln1-xMgxNiyAz(式中、Lnは、Yを含む希土類元素,Ca,Zr,Tiから選択される少なくとも1種の元素、Aは、Co,Fe,Mn,V,Cr,Nb,Al,Ga,Zn,Sn,Cu,Si,P,Bから選択される少なくとも1種の元素であり、0.15≦x≦0.30、0<z≦1.5、2.8≦y+z≦4.0の条件を満たす。)で表され、主相が六方晶系または菱面体晶系の結晶構造をもつ水素吸蔵合金であって、その断面における10μm×10μmの範囲に存在する太さが50nm以上の線状の副相の本数の平均値が3本以下になったものを用いた。 (もっと読む)


【課題】廃ニッケル水素電池から回収された負極活物質或いは負極活物質主体組成物を、負極活物質構成元素の合金溶湯に投入して加熱溶解させる際に溶解効率を高めることができる方法を提案する。
【解決手段】負極主体回収物と同時又は順次にアルミニウムを合金溶湯に加えることで、負極活物質或いは負極活物質主体組成物の溶解効率を飛躍的に高めることができる。 (もっと読む)


31 - 40 / 269