説明

国際特許分類[F01K23/10]の内容

国際特許分類[F01K23/10]に分類される特許

41 - 50 / 585


【課題】コンバインドサイクル発電プラントにおいて、起動時における蒸気損失を低減する。
【解決手段】補助蒸気発生装置7と、主蒸気における圧力、温度、及び流量の少なくとも一つを計測する計測器33,34,35と、ガスタービン2の起動後に蒸気タービン3に供給される蒸気を補助蒸気から主蒸気に切り替える切替手段と、を備えたコンバインドサイクル発電プラント1を用い、切替手段は、排熱回収ボイラ4から発生する主蒸気がST通気前に確実に確保され且つ途中で蒸気量が減少することがないことを示すデータと、計測器によって計測された圧力、温度、及び流量の少なくとも一つとに基づいて、排熱回収ボイラの主蒸気が確実に確保され且つ途中で蒸気量が減少することがないことを判断し、この判断がなされた時点で即座に上記切り替えを行う。 (もっと読む)


【課題】作動流体と熱媒体との熱交換において、熱交換量の増加に対する作動流体の温度上昇の抑制を可能にするランキンサイクルの提供を課題とする。
【解決手段】ランキンサイクル101は、冷媒の循環路に、冷媒と排気ガスとを熱交換させる廃ガスボイラ113、膨張機114、コンデンサ115、及びポンプ111が順次設けられ、廃ガスボイラ113から流出した冷媒温度を検出する温度センサ131と、廃ガスボイラ113を流通する冷媒圧力を検出する圧力センサ132と、廃ガスボイラ113への冷媒流量を調節するバイパス流路3及び流量調整弁130と、流量調整弁130を制御するECU140とを備える。ECU140は、膨張機114に吸入される冷媒の温度及び圧力が、冷媒の温度の上昇に伴って冷媒の密度を増加させるようにして目標圧力を設定する目標圧力線TPL上に沿う関係を満たして遷移するように制御する。 (もっと読む)


【課題】COや有害なガスを発生させないで発電することができる発電システムを提供すること。
【解決手段】植物を粉体にした植物性粉塵を供給させて粉塵爆発させる燃焼筒と、圧縮空気を供給する圧縮空気供給手段と、前記燃焼筒内に供給した前記植物性粉塵と前記圧縮空気との混合物に着火させることで前記粉塵爆発を実施する着火手段と、前記粉塵爆発の爆風により駆動するタービンと、該タービンの駆動により発電する発電装置と、を備えたことを特徴とする発電システムである。このように、爆発を生じやすい粉塵爆発を利用することで、その爆発のエネルギーにより発電させることができ、爆発を生じさせる粉塵を容易に得ることができ、爆発時に化石燃料等を要しない。 (もっと読む)


【課題】熱媒体の温度と作動流体の圧力とを関連付けて制御することで、熱交換器における作動流体の吸熱量の増大を図るランキンサイクルの提供を目的とする。
【解決手段】ランキンサイクル101は、冷媒の循環路に、冷却水ボイラ112、廃ガスボイラ113、膨張機114、コンデンサ115、及びポンプ111が順次設けられている。ランキンサイクル101は、膨張機114の入口の冷媒の圧力を検出する圧力センサ131と、冷却水ボイラ112に流入する冷却水の温度を検出する冷却水温度センサ132と、膨張機114の入口の冷媒の圧力を調節するバイパス流路3及び流量調整弁130と、流量調整弁130を制御するECU140とを備える。ECU140は、冷却水温度センサ132が検出する冷却水温度に対応する冷媒の飽和蒸気圧以下となる目標圧力を算出し、圧力センサ131が検出する圧力が目標圧力となるように流量調整弁130を制御する。 (もっと読む)


【課題】タービン・ローターの冷却空気として使用する圧縮空気からの熱回収効率を向上させたガスタービンを提供する。
【解決手段】圧縮機11と、燃焼器12と、タービン13とを具備し、タービン・ローターを冷却する冷却空気として圧縮機11から燃焼器12に供給される圧縮空気の一部を抽気して使用するガスタービン10Aであって、熱回収流体の燃料ガスがタービン・ローターを冷却する前の冷却空気から吸熱する熱交換により駆動されるスターリング機関30を備えるとともに、該スターリング機関30により駆動される熱回収発電機40を設けた。 (もっと読む)


【課題】回転駆動力を出力する燃焼機関に膨張機が直結している廃熱回収装置における廃熱利用の効率を向上する。
【解決手段】ランキンサイクル回路13は、廃熱回収機器14を構成する膨張機72、凝縮器29、ギヤポンプ67、第1熱交換器20、及び第2熱交換器21によって構成されている。第1熱交換器20は、エンジン12を冷却した冷却水の熱を冷媒に伝達する。第2熱交換器21は、エンジン12から排気された排気ガスの熱を冷媒に伝達する。第1流路22にはバイパス流路32が分岐接続されている。バイパス流路32は、第1熱交換器20を迂回して接続流路25に合流接続されており、バイパス流路32上には電磁開閉弁33が設けられている。電磁開閉弁33が励磁されると、バイパス流路32が開かれ、電磁開閉弁33が励消磁されると、バイパス流路32が閉じられる。 (もっと読む)


【課題】蒸気タービンで使用されずに廃棄される余剰蒸気を抑えてメインエンジンの燃費を向上させる。
【解決手段】メインエンジンの過給機の上流側から抽気された排ガスによって駆動されるパワータービン7と、メインエンジンの排ガスを用いて蒸気を生成する排ガスボイラ(排ガスエコノマイザ)11と、排ガスボイラ11にて生成された蒸気によって駆動される蒸気タービン9と、パワータービン7および蒸気タービン9に接続されたタービン発電機25と、を備えた発電システムにおいて、メインエンジンの運転状態から蒸気タービン供給可能出力を算出し、蒸気タービン9の出力を蒸気タービン供給可能出力以下となるように決定し、蒸気タービン9の出力と需要電力との差分を補うように、パワータービン7の出力を決定することを特徴とする。 (もっと読む)


【課題】熱機関の暖機時間の短縮化を図りつつ廃熱回収の効率低下を回避する。
【解決手段】ランキンサイクル回路13は、膨張機31、熱交換器47、凝縮器49、ポンプ41及びボイラ42によって構成されている。ボイラ42で加熱された高温高圧の冷媒は、供給流路46を介して膨張機31に導入される。膨張機31の下流には熱交換器47が設けられている。熱交換器47の下流には凝縮器49が設けられている。膨張機31で膨張した低圧の冷媒は、熱交換器47を経由して凝縮器49へ送られる。熱交換器47は、放熱部471と吸熱部472とを備える。排出流路48と接続流路50とは、放熱部471を介して接続されている。吸熱部422は、エンジン12に接続された冷却水循環経路52の分岐流路521上に設けられている。 (もっと読む)


【課題】膨張機がロックした場合にも発電をすることができる廃熱回収機器を提供する。
【解決手段】オルタネータ43を構成する回転軸40は、エンジンからプーリを介して回転駆動力を得る。回転軸40の内端部には筒部44が形成されている。出力軸70には小径端部59が形成されている。小径端部59は、筒部44の筒内に突入されており、筒部44の筒内440の内周面442と小径端部59の外周面591との間にはトルクリミッタ58が介在されている。出力軸70は、トルクリミッタ58を介して回転軸40と同軸に連結されている。 (もっと読む)


【課題】従来の排熱利用装置に、一つの改善された、または、少なくとも一つの他の実施形態を提案すること
【解決手段】特に、車両の燃焼機関(3)用排熱利用装置であって、作業媒体が循環する排熱利用回路(2)、上記作業媒体を蒸発するために上記排熱利用回路(2)内に配置され、上記燃焼機関(3)から排ガスが供給可能な蒸発器(6)、上記蒸発器(6)の下流において上記排熱利用回路(2)内に配置され、上記作業媒体を膨張させる膨張機(7)、上記膨張機(7)の下流において上記排熱利用回路(2)内に配置され、上記作業媒体を凝縮させる凝縮器(8)、上記凝縮器(8)の下流において上記排熱利用回路(2)内に配置され、上記排熱利用回路(2)内の作業媒体を駆動する搬送装置(9)、および蓄熱器(12)を備え、上記蓄熱器(12)は、上記排熱利用回路(2)に内蔵され、上記作業媒体により供給可能であることを特徴とする。 (もっと読む)


41 - 50 / 585