説明

国際特許分類[H01F1/06]の内容

国際特許分類[H01F1/06]の下位に属する分類

国際特許分類[H01F1/06]に分類される特許

11 - 20 / 305


【課題】磁気特性に優れる窒化鉄:α"Fe16N2を主成分とする窒化鉄粉末、及びこの窒化鉄粉末を生産性よく製造可能な製造方法を提供する。
【解決手段】磁場を印加した状態で鉄粉をカルボン酸溶液中で溶解してゲルを作製し、ゲルを乾燥してゲルから鉄錯体を生成する。鉄錯体の有機成分を除去して酸化鉄を生成する。更に、酸化鉄を還元・窒化して、窒化鉄:α"Fe16N2を生成することで、窒化鉄粒子からなる窒化鉄粉末が得られる。原料にマイクロオーダーの鉄粉を利用可能であるため、経時的に変質し難く、原料粉末のハンドリング性に優れる上に、安定して窒化鉄を生成可能であり、生産性に優れる。得られた窒化鉄粒子は、微細で、アスペクト比が大きく、形状磁気異方性により磁気特性に優れる。 (もっと読む)


【課題】還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末とその製造方法を提供。
【解決手段】希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cで1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程とを含む希土類−遷移金属系合金粉末の製造方法などにより提供。 (もっと読む)


【課題】α"Fe16N2を主成分とする鉄窒化物粒子の含有量が多い窒化鉄材、及びその製造方法を提供する。
【解決手段】α"Fe16N2を主成分とし、短軸の平均長さが100nm以下の鉄窒化物粒子からなる原料粉末とバインダとを混合して、平均粒径1μm以上の造粒粉を作製する。造粒粉を成形型に充填した後、加圧成形して成形体(窒化鉄材)を作製する。加圧成形は、成形型内を0.9気圧以下に排気しながら、バインダの分解温度±20℃の温度に加熱した状態、かつ2T以上の磁場を印加した状態で行う。加熱により溶融したバインダの存在下で強磁場を印加すると、鉄窒化物粒子の移動や回転を容易にして結晶方位を特定の方向に配向でき、加熱及び排気によりバインダを除去すると、鉄窒化物粒子の充填率を高められる。この製造方法は、鉄窒化物粒子の含有量が多く、配向組織を有する窒化鉄材が得られ、この窒化鉄材は、磁気特性に優れる。 (もっと読む)


【課題】 本発明は、工業的に高純度、且つ優れた磁気特性を示す強磁性粒子粉末及びその製造方法に関する。また、該強磁性粒子粉末を用いた異方性磁石、ボンド磁石、圧粉磁石を提供する。
【解決手段】 メスバウアースペクトルよりFe16化合物相が80%以上の割合で構成される強磁性粒子粉末であり、該強磁性粒子は粒子外殻にFeOが存在するとともにFeOの膜厚が5nm以下である強磁性粒子粉末は、出発原料の一次粒子の(粒子長軸長の偏差平均)/(平均粒子長軸長)が50%以下、Uが1.55以下、Cが0.95以上、C2が0.40以上であり、平均粒子長軸長が40〜5000nm、アスペクト比(長軸径/短軸径)が1〜200である鉄化合物を用い、凝集粒子の分散処理を行い、次いで、メッシュを通した鉄化合物粒子粉末を160〜420℃にて還元処理し、130〜170℃にて窒化処理して得ることができる。 (もっと読む)


【課題】粒子を小さくしても粒子同士の凝集を抑制して粒子の独立性を高くすることができ、磁性塗料に使用した場合に分散性を向上させることができるとともに、嵩密度を高くすることができる、金属磁性粉末およびその製造方法を提供する。
【解決手段】オキシ水酸化鉄(α−FeOOH)のスラリーにカルボキシル基を有する化合物からなる分散剤を添加してオキシ水酸化鉄のスラリーを湿式粉砕し、得られたオキシ水酸化鉄の粒子の表面に(イットリウムを含む)希土類元素から選ばれる1種以上を含む焼結防止成分を被着させた後にオキシ水酸化鉄を還元することにより、金属磁性粉末を製造する。 (もっと読む)


【課題】R−T−B系焼結磁石と支持体との溶着の発生を減少させる蒸着拡散処理用ケース及びその蒸着拡散処置用ケースを用いたR−T−B系焼結磁石の製造方法を提供すること。
【解決手段】棒状部材を用いた支持体を介して、RH供給源とR−T−B系焼結磁石を上下方向へ交互に多段配置する。これにより、従来用いられている格子状の網などの支持体とくらべて、R−T−B系焼結磁石と支持体との溶着の発生を大幅に低減した蒸着拡散処理用ケース及びそのケースを用いたR−T−B系焼結磁石の製造方法を提供することができる。 (もっと読む)


【課題】高鉄濃度組成を有するSm−Co系磁石で大きな保磁力を発現させることを可能にした永久磁石を提供する。
【解決手段】実施形態の永久磁石は、組成式:RpFeqZrrsCutCo100-p-q-r-s-t(R:希土類元素、M:TiおよびHfから選ばれる少なくとも1種、10≦p≦15、24≦q≦40.5、1.5≦r≦4.5、0≦s≦2.3、1.5≦r+s≦4.5、0.8≦t≦13.5(原子%))で表される組成を有する。永久磁石は、Th2Zn17型結晶相からなる主相と、主相の結晶粒界に存在し、Zr濃度が4原子%以上35原子%以下の結晶相を有する粒界相とを備える。 (もっと読む)


【課題】保磁力が向上し製造工程が短縮された磁性材料用粉末の製造方法及び保磁力が向上した永久磁石を提供する。
【解決手段】磁性材料用粉末の製造方法は、磁性材料用粉末の原料及び前記原料に拡散させる拡散材料を反応炉内へ投入する原料投入工程と、前記反応炉内へ水素を供給すると共に前記反応炉内を加熱しつつ、前記原料及び前記拡散材料を撹拌する撹拌工程と、前記撹拌工程で撹拌された前記原料を前記反応炉内で水素化分解させて分解生成物を得る水素化分解工程と、前記反応炉内で前記分解生成物から水素を放出させ、前記分解生成物の水素濃度を低減し磁性材料粉末を得る脱水素再結合工程と、を含む。 (もっと読む)


【課題】拡散材として使用する希土類化合物の量を低減しても十分に高い保磁力を有する異方性磁粉を製造する。
【解決手段】異方性磁粉の製造方法は、水素化分解・脱水素再結合法によってHDDR粉を得る工程と、希土類化合物を含む拡散材とHDDR粉を混合して混合粉末を調製する工程と、混合粉末を加熱して拡散材に含まれる元素をHDDR粉に拡散させる工程とを備え、拡散材は、Dy、Tb、Nd、Pr又はLaの水素化物、フッ化物及び鉄化合物からなる群から選ばれる少なくとも一種の化合物の粉末を含有し且つアルミニウム粉末を更に含有する。 (もっと読む)


【課題】耐環境性に優れたボンド磁石等が得られる希土類磁石粉末を提供する。
【解決手段】本発明の希土類磁石粉末は、希土類元素(R)とホウ素(B)と遷移元素(TM)との正方晶化合物であるRTM14型結晶の集合体である基本磁石粒子と、この基本磁石粒子の表面を被覆する熱硬化性樹脂が熱硬化してなる熱硬化樹脂被膜と、により構成される被覆磁石粒子からなることを特徴とする。この希土類磁石粉末を用いて製造されたボンド磁石は、耐酸化性に優れた熱硬化樹脂被膜で被覆された被覆磁石粒子からなるため耐環境性に優れ、厳しい環境下に曝されても磁気特性が劣化し難い。こうして本発明の希土類磁石粉末を用いれば、非常に耐環境性に優れるボンド磁石が得られる。 (もっと読む)


11 - 20 / 305