説明

エアフィルタ用濾材、それを用いた吹流し形フィルタ、並びにエアフィルタ用濾材の製造方法

【課題】 中・高性能フィルタに好適なエアフィルタ用濾材であり、製造工程が少なく、リサイクル性にも優れ、また袋状加工の際に融着加工が可能であり、使用中に袋状の濾材が膨らんで破損したり、濾材同士が擦れ合って摩滅するという問題がなく、保形性にも優れたエアフィルタ用濾材、それを用いた吹流し形フィルタ、及びその製造方法を提供する。
【解決手段】 極細繊維層と長繊維層とからなり、極細繊維層はメルトブロー法によって製造された平均繊維径が0.1〜10μmの極細繊維と、平均繊維径が10〜100μmの熱融着性繊維とが混在し、この熱融着性繊維が融着して形成されており、長繊維層はスパンボンド法によって製造された熱融着性の長繊維から形成されており、熱融着性の長繊維が極細繊維層を構成する繊維に熱融着することにより極細繊維層と長繊維層とが積層一体化しているエアフィルタ用濾材。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般ビルの空調、工場空調設備、電算室や病院の空調設備などに使用される中・高性能フィルタに好適なエアフィルタ用濾材に関し、特に複数の袋状濾材が取り付け枠に固定されている形態のポケット形フィルタまたは吹き流し形フィルタに好適に使用されるエアフィルタ用濾材、それを用いた吹流し形フィルタ、並びにエアフィルタ用濾材の製造方法に関する。
【背景技術】
【0002】
一般ビルの空調、工場空調設備、電算室や病院の空調設備などに使用される中・高性能フィルタとして、複数の袋状濾材が取り付け枠に固定されている形態の吹き流し形フィルタが知られている。このようなフィルタとしては、例えば特許文献1に、袋状フィルタの対向する濾材壁を、複数列の縫製糸で袋内空間にふくらみ代を残して縫合し、各縫製糸のふくらみ代の両端を濾材壁に接着した吹流し型フィルタが記載されている。そして、このフィルタに用いられる濾材としては、ガラス繊維、合成繊維またはこれらの組み合わせフェルトを主材とし、その外面にガラス繊維、合成繊維、またはこれらの組み合わせ不織布を外被材として一体に重合したものが使用できることが記載されている。また、実用的には、このような濾材として、極細のガラス繊維からなるマットと平均繊維径が10〜100μmのステープル繊維を接着剤で結合してなる不織布とを接着剤や粒子状のホットメルト樹脂によって貼り合わせた濾材が知られている。
【0003】
このように、エアフィルタ用濾材として、極細のガラス繊維を含み且つ厚さが厚い濾材を用いることで、初期の圧力損失が低く、微塵も粗塵も捕集し且つ塵埃保持容量も多くすることが可能である。
【0004】
しかし、前述の実用的な濾材にあっては、積層構造となるため、そのための特別な貼り合わせ工程が必要となり、このため製造工程が多くなりコストアップとなるという問題があった。また、無機繊維を用いるため、熱源としてのリサイクルができず環境に対して負担がかかるなど等の問題があり、また袋状に加工する際に縫製以外の加工方法を採用できないため、さらに手間が掛かかる等、コストアップ要因を多数抱えていた。
【0005】
そこで、本発明者は、特に環境問題を重視して、特許文献2に記載する有機系100%の材料からなる濾材を用いることを検討した。特許文献2は、メルトブロー法によって製造された平均繊維径が0.1〜10μmの極細繊維5mass%以上、50mass%未満と、平均繊維径が10〜100μmの熱融着性繊維50mass%以上、95mass%以下とが混在し、この熱融着性繊維が融着した不織布からなることを特徴とする濾過材である。しかし、この濾過材にあっては、流入空気により袋状の濾材が膨らんだ際に濾材が破損し易く、使用中に袋状の濾材同士が擦れ合って摩滅したり、濾過材が柔軟なため袋形状が保てなかったりするという問題があった。また、補強のため他の不織布と積層構造にしようとすると、前述の積層構造によるコストアップなどのリスクが再び生じてしまうという問題があった。
【0006】
【特許文献1】特開2001−9224号公報
【特許文献2】特開平11−226328号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、上記問題を解決して、初期の圧力損失が低く、微塵も粗塵も捕集し且つ塵埃保持容量も多くすることを可能とした中・高性能フィルタに好適なエアフィルタ用濾材であり、製造工程が少なくコストダウンが可能であり、環境に対する負担も少なく、リサイクル性にも優れ、また袋状に加工する際に縫製以外にも融着加工が可能であり、加工にかかる手間が少なく、コストアップの要因が少なく、且つ流入空気により袋状の濾材が膨らんだ際に濾材が破損したり、使用中に袋状の濾材同士が擦れ合って摩滅するという問題がなく、濾過材の保形性にも優れたエアフィルタ用濾材、それを用いた吹流し形フィルタ、並びにエアフィルタ用濾材の製造方法を提供することを課題とする。
【課題を解決するための手段】
【0008】
上記課題を解決するため、請求項1〜3に係る発明は、極細繊維層と長繊維層とからなるエアフィルタ用濾材であって、前記極細繊維層はメルトブロー法によって製造された平均繊維径が0.1〜10μmの極細繊維と、平均繊維径が10〜100μmの熱融着性繊維とが混在し、この熱融着性繊維が融着して形成されており、前記長繊維層はスパンボンド法によって製造された熱融着性の長繊維から形成されており、前記熱融着性の長繊維が前記極細繊維層を構成する繊維に熱融着することにより前記極細繊維層と前記長繊維層とが積層一体化していることを特徴とするエアフィルタ用濾材である。
【0009】
請求項4〜5に係る発明では、請求項1〜3の何れかに記載のエアフィルタ用濾材を用いたことを特徴とする吹き流し形フィルタである。
【0010】
請求項6に係る発明では、極細繊維層と長繊維層とからなるエアフィルタ用濾材の製造方法であって、メルトブロー法によって平均繊維径が0.1〜10μmの極細繊維を形成し、次いでこの極細繊維と平均繊維径が10〜100μmの熱融着性繊維とを混在させて極細繊維ウエブを形成し、次いでこの極細繊維ウエブと熱融着性の長繊維から形成された長繊維不織布とを積層し、次いで極細繊維ウエブの熱融着性繊維を融着して極細繊維層を形成すると共に前記熱融着性の長繊維を前記極細繊維ウエブを構成する繊維に熱融着させることにより、前記極細繊維層と前記長繊維不織布とを積層一体化することを特徴とするエアフィルタ用濾材の製造方法である。
【発明の効果】
【0011】
本発明によって、初期の圧力損失が低く、微塵も粗塵も捕集し且つ塵埃保持容量も多くすることを可能とした中・高性能フィルタに好適なエアフィルタ用濾材であり、製造工程が少なくコストダウンが可能であり、環境に対する負担も少なく、リサイクル性にも優れ、また袋状に加工する際に縫製以外にも融着加工が可能であり、加工にかかる手間が少なく、コストアップの要因が少なく、且つ流入空気により袋状の濾材が膨らんだ際に濾材が破損したり、使用中に袋状の濾材同士が擦れ合って摩滅するという問題がなく、濾過材の保形性にも優れたエアフィルタ用濾材、それを用いた吹流し形フィルタ、並びにエアフィルタ用濾材の製造方法を提供することが可能となった。
【発明を実施するための最良の形態】
【0012】
以下、本発明に係るエアフィルタ用濾材、それを用いた吹流し形フィルタ、並びにエアフィルタ用濾材の製造方法の好ましい実施の形態について詳細に説明する。尚、本発明のエアフィルタ用濾材の製造方法については、エアフィルタ用濾材の説明の中で説明する。
【0013】
本発明のエアフィルタ用濾材は極細繊維層と長繊維層とからなり、微細な塵埃を捕集することができるように、前記極細繊維層はメルトブロー法によって製造された平均繊維径が0.1〜10μmの極細繊維を含んでいる。
【0014】
このメルトブロー法により極細繊維を製造する条件は特に限定するものではないが、例えば、次のような条件で製造することができる。つまり、オリフィス径0.1〜0.5mmで、ピッチ0.3〜1.2mmで配置されたノズルピースを温度220〜370℃に加熱し、1つのオリフィスあたり0.02〜1.5g/分の割合で繊維を吐出する。この吐出した繊維に対して、温度220〜400℃、かつ質量比で繊維吐出量の5〜2,000倍量の空気を作用させて、極細繊維を製造することができる。
【0015】
このようにして製造される極細繊維は平均繊維径0.1〜10μmである。この極細繊維の平均繊維径が0.1未満であると、圧力損失が高くなる傾向があるため、長期間使用できるエアフィルタ用濾材を製造することが困難になり、他方、平均繊維径が10μmを越えると、微細な塵埃を捕集することが困難になる傾向があるためで、平均繊維径0.25〜5μmの極細繊維であるのが好ましい。
【0016】
なお、本発明における平均繊維径とは、繊維(例えば、極細繊維)200点における繊維径の平均値をいう。この繊維径は、例えば、エアフィルタ用濾材を厚さ方向に裁断した裁断面における電子顕微鏡写真から容易に計測することができる。なお、繊維の断面形状が非円形である場合には、その繊維断面積と同じ面積を有する円の直径を繊維径とみなす。
【0017】
このメルトブロー法により製造される極細繊維を構成する樹脂成分としては、例えば、ポリプロピレン系やポリエチレン系などのポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ウレタン系樹脂など1種類以上からなることができる。これらの中でも、極細繊維を製造しやすく、しかもエレクトレット化しやすいポリオレフィン系樹脂を極細繊維表面に含んでいるのが好ましく、ポリプロピレン系樹脂を極細繊維表面に含んでいるのがより好ましい。
【0018】
このような極細繊維の極細繊維層に占める比率は5質量%以上、50質量%未満であることが好ましい。極細繊維が5質量%未満であると、極細繊維の量が少な過ぎて微細な塵埃を捕集することができない恐れがあり、他方、50質量%以上であると、粗大な塵埃によってすぐに目詰まりしてしまう恐れがあるためで、7〜40質量%であるのがより好ましく、10〜35質量%であるのがさらに好ましい。
【0019】
前記極細繊維層は上述のような極細繊維以外に、平均繊維径10〜100μmの熱融着性繊維を含み、この熱融着性繊維が融着している。そのため比較的粗い空間を形成でき、粗大な塵埃を捕集できるとともに、圧力損失を低くすることができるため、長期間使用することが可能である。
【0020】
この熱融着性繊維の平均繊維径は10〜100μmである必要があり、平均繊維径が10μm未満であると、比較的粗い空間を形成できないため圧力損失が高くなり、長期間使用できない傾向があり、他方、平均繊維径が100μmを越えると、熱融着性繊維によって形成される空間が大き過ぎて、極細繊維を混在させたとしても微細な塵埃を捕集することができない傾向があるためで、20〜70μmであるのがより好ましく、20〜55μmであるのが更に好ましい。
【0021】
この熱融着性繊維は、例えば、ポリプロピレン系やポリエチレン系などのポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ウレタン系樹脂など1種類からなる全溶融型、又はこれら樹脂を2種類以上含む複合型であることができる。これらの中でも、後者の複合型であると、融着しない樹脂成分によって繊維形状を維持することができ、熱融着性繊維により形成する空間の保持性に優れているため、好適に使用できる。
【0022】
この好適である複合型熱融着性繊維としては、例えば、(1)高融点の樹脂成分を芯成分とし、この高融点の樹脂成分よりも低融点の樹脂成分を鞘成分(融着成分)とする芯鞘型又は偏芯型のもの、(2)高融点の樹脂成分とこの高融点の樹脂成分よりも低融点の樹脂成分(融着成分)とを貼り合わせたサイドバイサイド型のもの、(3)低融点の樹脂成分(海成分であり融着成分)中に、この低融点の樹脂成分よりも高融点の樹脂成分が多数点在する海島型のもの、などを使用できる。これらの中でも、熱融着する際の熱によって空間を小さくしたり、形態安定性を低下させにくい芯鞘型、偏芯型、或いは海島型の熱融着性繊維を好適に使用できる。
【0023】
なお、複合型熱融着性繊維の高融点成分と低融点成分(融着成分)との融点差は、いずれの樹脂成分も溶融しないように10℃以上あるのが好ましく、20℃以上あるのがより好ましい。また、この熱融着性繊維を融着させる際に極細繊維も融着させてしまうと、微細な塵埃の捕集ができなくなるため、熱融着性繊維の低融点成分(融着成分)は極細繊維の融点(極細繊維が複数の樹脂成分からなる場合には、最も低い融点を有する樹脂成分を基準)よりも10℃以上低いのが好ましく、20℃以上低いのがより好ましい。例えば、前述のように、極細繊維が好適であるポリプロピレン樹脂からなる場合、熱融着性繊維の融着成分の融点は150℃以下であるのが好ましく、140℃以下であるのがより好ましい。この場合、熱融着性繊維の融着成分がポリエチレン樹脂からなるのが好ましい。
【0024】
この熱融着性繊維は長繊維であっても短繊維であっても良いが、極細繊維と均一に混合した状態で存在できるように、短繊維であるのが好ましい。短繊維である場合、繊維長は5〜160mmであるのが好ましく、極細繊維と絡まりやすいように25〜110mmであるのがより好ましい。
【0025】
また、この熱融着性繊維は延伸されたものであると、強度的及び剛性的に優れており、熱融着性繊維によって形成する比較的粗い空間を維持することができるため好適に使用できる。
【0026】
この熱融着性繊維は比較的粗い空間を形成できるように、エアフィルタ用濾材の50質量%以上を占め、極細繊維を混合することが好ましく、95質量%以下を占めていることが好ましい。より好ましくはエアフィルタ用濾材の60〜93質量%を占め、さらに好ましくは65〜90質量%を占めている。
【0027】
また、この熱融着性繊維は1種類からなる必要はなく、繊維径、組成、或いは繊維長などの点で相違する2種類以上の熱融着性繊維を混合していることも可能である。また、繊維径の異なる熱融着性繊維を2種類以上混合することにより、より適切な空間を形成することが可能であり、平均繊維径の点において、10〜50μm程度の差がある熱融着性繊維を2種類以上混合するのが好適である。
【0028】
前記極細繊維層は極細繊維と熱融着性繊維とを主体として構成されているが、これら繊維以外に、ナイロン繊維、ビニロン繊維、ポリエステル繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリウレタン繊維などの合成繊維や、様々な特性を付与するために機能性繊維を混合することができる。
【0029】
この機能性繊維としては、例えば、難燃性を付与するためにビニリデン繊維、ポリ塩化ビニル繊維、ポリクラール繊維、或いは変性アクリル繊維を混合したり、抗菌性を付与するために銀や銅などを含む繊維を混合することができる。この他にも、帯電防止性、脱臭性、消臭性、吸湿性などの機能を有する機能性繊維を混合することができる。なお、これらの機能を有する機能性物質を前記極細繊維中及び/又は熱融着性繊維中に混入させることも可能である。なお、ポリオレフィン系繊維とアクリル繊維及び/又は変性アクリル繊維とを混合すれば、摩擦により帯電させることができる。
【0030】
この極細繊維と熱融着性繊維以外の繊維(以下、「他の繊維」という)は、極細繊維による微細な塵埃の捕集、及び熱融着性繊維による比較的粗い空間の形成を妨げないように、極細繊維層の45質量%以下であることが好ましい。なお、この他の繊維は長繊維であっても短繊維であっても良いが、極細繊維や熱融着性繊維と均一に混合した状態で存在できるように、短繊維であるのが好ましい。短繊維である場合、繊維長が5〜160mmであるのが好ましく、25〜110mmであるのがより好ましい。
【0031】
更に、この他の繊維は熱融着性繊維を融着させる際の熱によって溶融しないように、熱融着性繊維の融着成分の融点よりも10℃以上高い融点を有するのが好ましく、20℃以上高い融点を有するのがより好ましい。
【0032】
前記極細繊維層は上述のような繊維が混在、好適には均一に混在しており、熱融着性繊維が融着している。なお、極細繊維層は上述のような有機繊維のみから構成することができ、エアフィルタ用濾材の使用寿命がきた時点で焼却処理することができるため廃棄上も好適である。
【0033】
前記極細繊維層の厚さは1〜30mmであるのが好ましい。極細繊維層の厚さが1mm未満であると、熱融着性繊維によって比較的粗い空間を形成できないため圧力損失が高く、長期間使用できない傾向があり、厚さが30mmを越えると、エアフィルタ用濾材が緻密であっても粗くても濾過に関与しない部分が多くなる傾向があり、また、袋状などに加工する場合にはその加工が困難になる傾向があるためで、厚さ2〜20mmであるのがより好ましく、3〜15mmであるのが更に好ましい。なお、この厚さは単位面積1cm2あたり1g荷重時の値をいう。
【0034】
また、前記極細繊維層の面密度は50〜450g/m2であるのが好ましい。面密度が50g/m2未満であると、繊維の密度が低くなり過ぎて微細な塵埃を捕集することが困難になる傾向があり、他方、450g/m2を越えると、繊維の密度が高くなり過ぎて、粗大な塵埃によりすぐに目詰まりを生じ、長期間使用できなくなる傾向があるためで、75〜400g/m2であるのがより好ましく、100〜300g/m2であるのが更に好ましい。
【0035】
更に、前記極細繊維層の見掛密度は0.001〜0.1g/cm3であるのが好ましい。見掛密度が0.001g/cm3未満であると、微細な塵埃を捕集することが困難になる傾向があり、他方、0.1g/cm3を越えると、粗大な塵埃によってすぐに目詰まりを生じ、長期間使用できなくなる傾向があるためで、0.01〜0.05g/cm3であるのがより好ましい。
【0036】
本発明のエアフィルタ用濾材は、以上説明した極細繊維層と長繊維層とからなっており、この長繊維層はスパンボンド法によって製造された熱融着性の長繊維から形成されており、前記熱融着性の長繊維が前記極細繊維層を構成する繊維に熱融着することにより前記極細繊維層と前記長繊維層とが積層一体化している。
【0037】
長繊維層が積層一体化していることにより、エアフィルタ用濾材全体の強度が向上すると共に表面耐性にも優れ、例えば袋状の濾材として使用した場合、流入空気により袋状の濾材が膨らんだ際に濾材が破損したり、使用中に袋状の濾材同士が擦れ合って摩滅するというリスクがなく、濾材の保形性にも優れるという利点がある。また、熱融着繊維による積層一体化であるため、積層一体化のための接着剤やホットメルト樹脂を準備する工程や、その後貼り合わせる工程を新たに設ける必要がなく、加熱するだけの簡単な工程で製造可能であるので、製造工程が少なくコストダウンが可能であるという利点がある。
【0038】
また、有機質のみから構成することができるので、ガラス繊維のように廃棄処理により環境に対して負担をかけるということがなく、熱源としてのリサイクル性にも優れという利点がある。またガラス繊維のマットと不織布を貼り合わせた素材の場合、袋状に加工する際に縫製が必要となるが、本発明では縫製以外にも融着加工が可能であり、またセパレータなどの不織布をこの濾材に接合する場合も熱融着のみで接合が可能となり、加工にかかる手間が少なく、コストダウンを図ることができるという利点がある。
【0039】
前記長繊維層を構成するスパンボンド法によって製造された熱融着性の長繊維としては、例えば、ポリプロピレン系やポリエチレン系などのポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ウレタン系樹脂などの樹脂を2種類以上含む複合型であることが好ましい。複合型であることにより、融着しない樹脂成分によって繊維形状を維持することができ、熱融着性の長繊維により長繊維層を構成する繊維同士を熱融着して強固な構造とすることができると共に極細繊維層を構成する繊維とも熱融着して極細繊維層と長繊維層とを積層一体化した構造となりうる。
【0040】
この好適である複合型熱融着性長繊維としては、例えば、(1)高融点の樹脂成分を芯成分とし、この高融点の樹脂成分よりも低融点の樹脂成分を鞘成分(融着成分)とする芯鞘型又は偏芯型のもの、(2)高融点の樹脂成分とこの高融点の樹脂成分よりも低融点の樹脂成分(融着成分)とを貼り合わせたサイドバイサイド型のもの、(3)低融点の樹脂成分(海成分であり融着成分)中に、この低融点の樹脂成分よりも高融点の樹脂成分が多数点在する海島型のもの、などを使用できる。これらの中でも、熱融着の効果の優れた芯鞘型、偏芯型、或いはサイドバイサイド型の熱融着性長繊維を好適に使用できる。
【0041】
なお、複合型熱融着性長繊維の高融点成分と低融点成分(融着成分)との融点差は、いずれの樹脂成分も溶融しないように10℃以上あるのが好ましく、20℃以上あるのがより好ましい。また、この熱融着性長繊維を極細繊維層の構成繊維に融着させる際に極細繊維も融着させてしまうと、微細な塵埃の捕集ができなくなるため、熱融着性長繊維の低融点成分(融着成分)は極細繊維の融点(極細繊維が複数の樹脂成分からなる場合には、最も低い融点を有する樹脂成分を基準)よりも10℃以上低いのが好ましく、20℃以上低いのがより好ましい。例えば、前述のように、極細繊維が好適であるポリプロピレン樹脂からなる場合、熱融着性長繊維の融着成分の融点は150℃以下であるのが好ましく、140℃以下であるのがより好ましい。この場合、熱融着性長繊維の融着成分がポリエチレン樹脂からなるのが好ましい。
【0042】
前記熱融着性長繊維の平均繊維径は10〜100μmであることが好ましく、20〜50μmであるのがより好ましい。平均繊維径が10μm未満であると、エアフィルタ用濾材の圧力損失が高くなり、長期間使用できない傾向があり、他方、平均繊維径が100μmを越えると、剛性が高くなり過ぎて、袋状などの加工性に劣ったり、極細繊維層との一体化が困難になる恐れがある。また、この熱融着性長繊維は1種類からなる必要はなく、繊維径、組成、或いは繊維長などの点で相違する2種類以上の熱融着性長繊維を混合していることも可能である。
【0043】
前記長繊維層の厚さは0.1〜2mmであるのが好ましい。長繊維層の厚さが0.1mm未満であると、濾材の強度向上効果、表面耐性向上効果、および保形性向上効果などが不十分になる恐れがあり、厚さが2mmを越えると、剛性が高くなり過ぎて、袋状などに加工し難くなる恐れがあるためで、厚さ0.2〜1.5mmであるのがより好ましく、0.3〜1mmであるのが更に好ましい。なお、この厚さは単位面積1cm2あたり1g荷重時の値をいう。
【0044】
また、前記長繊維層の面密度は5〜100g/m2であるのが好ましい。面密度が50g/m2未満であると、濾材の強度向上効果、表面耐性向上効果、および保形性向上効果などが不十分になる恐れがあり、他方、100g/m2を越えると、剛性が高くなり過ぎて、袋状などに加工し難くなる恐れがあるためで、7.5〜80g/m2であるのがより好ましく、10〜60g/m2であるのが更に好ましい。
【0045】
また、本発明のエアフィルタ用濾材の厚さは1〜30mmであるのが好ましい。厚さが1mm未満であると、塵埃を保持する空間が十分に確保されないため、長期間使用できない恐れがあり、厚さが30mmを越えると、エアフィルタ用濾材が緻密であっても粗くても濾過に関与しない部分が多くなる傾向があり、また、袋状などに加工する場合にはその加工が困難になる傾向があるためで、厚さ2〜20mmであるのがより好ましく、3〜15mmであるのが更に好ましい。なお、この厚さは単位面積1cm2あたり1g荷重時の値をいう。
【0046】
また、エアフィルタ用濾材の面密度は50〜500g/m2であるのが好ましい。面密度が50g/m2未満であると、繊維の密度が低くなり過ぎて塵埃を保持する空間が十分に確保されないため、長期間使用できない恐れがあり、他方、500g/m2を越えると、繊維の密度が高くなり過ぎて、粗大な塵埃によりすぐに目詰まりを生じ、長期間使用できなくなる傾向があるためで、75〜400g/m2であるのがより好ましく、100〜350g/m2であるのが更に好ましい。
【0047】
また、エアフィルタ用濾材の見掛密度は0.001〜0.1g/cm3であるのが好ましい。見掛密度が0.001g/cm3未満であると、微細な塵埃を捕集することが困難になる傾向があり、他方、0.1g/cm3を越えると、粗大な塵埃によってすぐに目詰まりを生じ、長期間使用できなくなる傾向があるためで、0.01〜0.05g/cm3であるのがより好ましい。
【0048】
また、本発明のエアフィルタ用濾材の濾過性能は、中高性能用のフィルタとして機能することが好ましく、具体的には、JIS B−9908形式1に規定される試験方法において、風速0.1m/秒にて大気塵を供給して、計数法により評価すると、0.3〜0.5μmの粒子に対する粒子捕集効率が20〜99%であることが好ましく、粒子捕集効率が30〜99%であることが好ましく、粒子捕集効率が35〜99%であることが更に好ましい。粒子捕集効率が20%未満である場合は粒子捕集が不十分であり、粒子捕集効率が99%を超える場合は、エアフィルタ用濾材の開孔径が細かくなり過ぎるため、すぐにエアフィルタ用濾材前後の圧力損失が限界に達して寿命が短くなり中高性能用のフィルタとして使用できない恐れがある。
【0049】
また、本発明のエアフィルタ用濾材の初期の圧力損失は、試験条件が風速0.10m/秒の時に、100Pa以下が好ましく、75Pa以下がより好ましく、50Pa以下が更に好ましい。
【0050】
また、本発明のエアフィルタ用濾材の難燃性が(社)日本空気清浄協会No.11A−2003「空気清浄装置用ろ材燃焼試験方法指針」のクラス3に適合することが好ましい。
【0051】
本発明のエアフィルタ用濾材は例えば次のようにして製造することができる。まず、図1に示すように、前述のような条件でメルトブロー装置1から吐出される極細繊維2の流れに対して、開繊機3により開繊した熱融着性繊維4(場合により他の繊維も含む)を供給し、両者を混合した後、この混合した繊維をコンベアなどの捕集体5で捕集して極細繊維ウエブ6を形成する。次いで、熱融着性の長繊維から形成された長繊維不織布7の上に極細繊維ウエブ6を載置するようにして積層する。次いで、この積層物を熱処理することにより、熱融着性繊維4を融着させて極細繊維層を形成すると共に熱融着性の長繊維を極細繊維ウエブ6を構成する繊維に熱融着させる。このようにして、極細繊維層と長繊維不織布7とを積層一体化させて、エアフィルタ用濾材8を製造することができる。
【0052】
この熱融着性繊維4を供給する開繊機3としては、カード機やガーネット機などを例示できるが、図2に示すような複数の開繊シリンダ31をハウジング32内に収納した開繊機3は、極細繊維2の流れに対して勢い良く熱融着性繊維4を衝突させることができ、極繊維ウエブ6の厚さ方向に対しても極細繊維2と均一に混合することができるため好適に使用できる。また、この開繊機3は本発明において好適である繊維長が25〜110mm程度の繊維であっても均一に開繊することができる。
【0053】
また、開繊機3によって熱融着性繊維4を供給する際に、極細繊維2とより均一に混合できるように、極細繊維2の流れに対して、できるだけ直角方向から供給するのが好ましい。例えば、メルトブロー装置1から吐出される極細繊維2の流れが水平方向に形成される場合には、この極細繊維2の流れよりも上方から熱融着性繊維4を自然落下させて供給しても良いが、一般的にメルトブロー装置1から吐出される極細繊維2の流れは重力の働く方向と同じであるため、開繊機3から供給される熱融着性繊維4は、重力の働く方向に対して直角な方向から供給するのが好ましい。図2の開繊機3においては、このような角度で熱融着性繊維4を供給できるように、エアを供給することのできるエアノズル33を設けている。
【0054】
なお、極細繊維2に対して熱融着性繊維4を供給する角度を調節することによって、極細繊維ウエブ6の厚さ方向における熱融着性繊維4の存在比率を変えて、厚さ方向に粗密構造を形成させることもできる。
【0055】
この極細繊維2と熱融着性繊維4とが混合した極細繊維ウエブ6を捕集する捕集体5はロール状のものであっても、ネット状のものであっても良いが、これら繊維を搬送する気流との衝突によって繊維ウエブ6が乱れたり飛散しないように、捕集体5は通気性であるのが好ましく、しかも捕集面とは反対側に気流を吸引除去できる装置を備えているのが好ましい。
【0056】
この製造例では、熱融着性の長繊維から形成された長繊維不織布7を用いる。この長繊維不織布は、熱融着性の長繊維によって長繊維同士が熱融着して形成された不織布であることが好ましい。つまり長繊維同士は必ずしも熱融着している必要はなく、スパンボンド製造装置から搬送された熱融着していない長繊維ウエブであることも可能である。熱融着していなくてもその後の熱処理によって長繊維同士が熱融着して長繊維層を形成することができるからである。しかし、工程上での取り扱い易さを考慮すると、長繊維同士が熱融着して形成された不織布であることが好ましい。
【0057】
本発明における熱処理は、熱融着性繊維4の融着成分の融点以上、かつ極細繊維2(場合によっては他の繊維も含む)の融点より低い温度で、実質的に加圧しない状態で加熱処理するのが好ましい。このようにすることにより、極細繊維2がフィルム化せず、本来の捕集性能を発揮することができ、しかも熱融着性繊維により形成される比較的粗な空間が損なわれず、圧力損失が高くならないので、長期間使用できるエアフィルタ用濾材8を製造することができる。また、融着がエアフィルタ用濾材8の表面近傍に偏ったりせず、エアフィルタ用濾材8の内部においてもしっかりと融着した嵩高なエアフィルタ用濾材8を製造することができる。
【0058】
また、この熱処理によって、長繊維不織布7に含まれる熱融着性の長繊維が極細繊維ウエブ6を構成する繊維に熱融着し、その結果極細繊維層と長繊維不織布7とを積層一体化させることができる。すなわち、もともと極細繊維層を形成するために熱処理工程は必要であったわけであり、この必須工程に対して長繊維不織布7の上に極細繊維ウエブ6を載置するだけで、極細繊維層と長繊維不織布7とを積層一体化することができる。このように、この製造方法によれば、従来必要であった極細繊維層と他の素材との複合工程を省くことができ、工程費を大きく削減できるという利点がある。
【0059】
このような加熱処理を行うことのできる熱処理装置10としては、例えば、熱風循環型ドライヤー、サクション型エアスルードライヤーなどがある。例えば、極細繊維がポリプロピレン樹脂からなり、熱融着性繊維の融着成分がポリエチレン樹脂からなる場合、熱処理装置10の雰囲気温度を140〜150℃に設定して融着するのが好ましい。
【0060】
なお、この熱処理後にエアフィルタ用濾材の厚さを調整するために、エアフィルタ用濾材8を構成するいずれの繊維の融点よりも低い温度下にてロール間を通したり、平板プレス間を通すことも可能である。また、捕集効率をより高めるために、融着処理の後にエレクトレット化処理を実施することも可能である。なお、エレクトレット化処理する場合には、その効率をより高めるために、水洗や湯洗などにより熱融着性繊維の繊維油剤をできるだけ少なくするのが好ましい。
【0061】
次に、本発明のエアフィルタ用濾材の好ましい使用方法を説明すると、図3に例示するように、前記エアフィルタ用濾材8を袋状に成形したもの複数を並設して保持枠9に固定した吹流し形フィルタや、図4に例示するように、前記エアフィルタ用濾材8をジグザグ状に折ったものを保持枠9に固定したポケット形フィルタなどがある。
【0062】
なお、保持枠9としては、例えば、アルミニウム、アルミニウム合金、ステンレス、或いは各種樹脂からなるものを使用することができる。また、図3または図4に示すフィルタにおいては、エアフィルタ用濾材同士の接合は、熱シールや縫製により行うことができる。更に、エアフィルタ用濾材8の保持枠9への固定は、例えば、ポリ酢酸ビニルなどの熱可塑性のホットメルト樹脂を保持枠9とアフィルタ用濾材8との間に介在させることにより行うことができる。
【0063】
前述の吹流し形フィルタ又はポケット形フィルタの濾過性能は、中高性能用のフィルタとして機能することが好ましく、具体的には、JIS B−9908形式2に規定される試験方法において、比色法により評価すると、試験条件が風速2.5m/秒の時に、粒子捕集平均効率が40〜99%であることが好ましく、粒子捕集平均効率が50〜99%であることが好ましく、粒子捕集平均効率が60〜99%であることが更に好ましい。粒子捕集平均効率が40%未満である場合は粒子捕集が不十分であり、粒子捕集平均効率が99%を超える場合は、エアフィルタ用濾材の開孔径が細かくなり過ぎるため、すぐにフィルタ前後の圧力損失が限界に達して寿命が短くなり中高性能用のフィルタとして使用できない恐れがある。
【0064】
図3に例示する吹流し形フィルタ11には、セパレータ12が設けられており、図5に示すように、袋状のエアフィルタ用濾材8を構成する濾材片8aと濾材片8bとの間には、セパレータ12が縫製13、或いは熱シール又は超音波融着などにより断面コの字状に接合されている。これにより、エアフィルタ用濾材8の間隔が保持され、使用時にエアフィルタ用濾材8が脹らみすぎて、隣のエアフィルタ用濾材8と接触してデッドスペースが生じないように、エアフィルタ用濾材8の袋形状を所定の大きさに保っている。
【0065】
また、セパレータ12の形態としては、図6に例示するように、二枚の濾材片8aと濾材片8bの間に凹凸部を有する凹凸シートからなるセパレータ12が配されており、このセパレータ12の各凹部又は凸部が前記二枚の濾材片内側に接合した形態であることも好ましい。
【0066】
また、前記セパレータ12の構造や材質としては特に限定されず、織物、編物、不織布などを適用することができる。また、セパレータ12の材質の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系繊維、ナイロン6、ナイロン66などのポリアミド系繊維、ポリプロピレン、ポリエチレンなどのポリオレフィン系繊維、ポリアクリロニトリルなどのアクリル系繊維、ポリビニルアルコール繊維および合成パルプなどの合成繊維に限らず、レーヨンなどの半合成繊維、綿およびパルプ繊維などの天然繊維などを単独で、又は複数種の繊維を組み合わせたものを適用することができる。
【0067】
また、前記セパレータ12の厚さも特に限定されないが、厚さは0.1〜2mmであるのが好ましい。厚さが0.1mm未満であると、エアフィルタ用濾材8にセパレータ12を接合し難くなるという恐れがあり、厚さが2mmを越えると、剛性が高くなり過ぎて、袋状などに加工し難くなる恐れがあるためで、厚さ0.2〜1.5mmであるのがより好ましく、0.3〜1mmであるのが更に好ましい。なお、この厚さは単位面積1cm2あたり0.5g荷重時の値をいう。
【0068】
また、前記セパレータ12の面密度も特に限定されないが、面密度は5〜100g/m2であるのが好ましい。面密度が5g/m2未満であると、エアフィルタ用濾材8の間隔を保持する機能が十分に働かなくなる恐れがあり、他方、100g/m2を越えると、剛性が高くなり過ぎて、袋状などに加工し難くなる恐れがあるためで、7.5〜80g/m2であるのがより好ましく、10〜60g/m2であるのが更に好ましい。
【0069】
また、前記セパレータ12は、好ましくは、前記エアフィルタ用濾材8の繊維と同様の合成樹脂からなる繊維を含むことが好ましく、例えば前記エアフィルタ用濾材8の繊維がポリオレフィン系繊維からなる場合は、セパレータ12もまたポリオレフィン系繊維を含むことが好ましい。同種類の繊維を含むことにより、熱シール又は超音波融着加工によって、エアフィルタ用濾材にセパレータが強固に接合するので、袋状のエアフィルタ用濾材の形状を強固に保つことができるという利点がある。この点からして、前記セパレータ12の材質はより好ましくは、前述の長繊維層と同じ材質のものが好ましい。すなわちスパンボンド法によって製造された熱融着性の長繊維であることが好ましい。
【0070】
前述のような、エアフィルタ用濾材8同士の接合やセパレータを配するには、熱シール又は超音波融着などによる加工であれば、縫製による加工と比較して加工の手間が少なくても済むという利点があり、この点で本発明のエアフィルタ用濾材8は、熱シール又は超音波融着などによる加工が可能であり、吹流し形フィルタまたはポケット形フィルタの素材として特に好ましい素材である。
【0071】
以下、本発明の実施例につき説明するが、これは発明の理解を容易とするための好適例に過ぎず、本発明はこれら実施例の内容に限定されるものではない。
【実施例】
【0072】
(エアフィルタ用濾材の濾過性能試験方法−計数法)
JIS B9908形式1に規定される試験方法において、風速0.1m/秒にて大気塵を供給して、0.3〜0.5μmの粒子に対する粒子捕集効率(%)を求める。
(吹流し形フィルタ又はポケット形フィルタの濾過性能試験方法−比色法)
JIS B−9908形式2に規定される試験方法において、吹流し形フィルタ又はポケット形フィルタの空気流入口において、風速2.5m/秒の時に、比色法により、粒子捕集平均効率(%)を求める。
【0073】
(実施例1)
オリフィス径0.2mm、ピッチ0.8mmで配置されたメルトブロー用のノズルピースを温度320℃に加熱し、1つのオリフィスあたり0.04g/分の割合で、ポリプロピレン繊維を吐出した。この吐出したポリプロピレン繊維に対して、温度340℃、質量比75倍量の空気を作用させて、重力の働く方向と同じ方向に繊維径1〜2μm(平均繊維径1.5μm)の極細繊維2の流れを形成した。
【0074】
次いで、この極細繊維2の流れに対してほぼ直角に、図2に示すような2本の開繊シリンダ31をハウジング32内に収納し、エアノズル33を備えた開繊機3から、芯成分がポリプロピレン樹脂(融点160℃)からなり、鞘成分がポリエチレン樹脂(融点135℃)からなる、繊維径30μm、繊維長64mmの延伸された芯鞘型熱融着性繊維100質量%を供給し、ポリブロピレン極細繊維2と混合した。この混合した繊維をメッシュ状コンベアにより捕集して極細繊維ウエブ6を形成した。なお、コンベアの捕集面とは反対側から空気を吸引除去し、極細繊維ウエブ6の乱れを防いだ。
【0075】
次いで、スパンボンド法によって製造され芯がポリエステル樹脂で鞘がポリエチレン繊維からなる熱融着性の長繊維(平均繊維径10μm)が熱融着した長繊維不織布7(面密度50g/m2、厚さ0.15mm)を準備して、この長繊維不織布7の上に極細繊維ウエブ6を載置するようにして積層する。次いで、この積層物を温度140℃雰囲気のドライヤー中に3分間通すことにより、芯鞘型熱融着性繊維の鞘成分(ポリエチレン成分)のみを融着させて、面密度175g/m2、厚さ5.5mm、見掛密度0.032g/cm3のエアフィルタ用濾材8を製造した。なお、このエアフィルタ用濾材8はポリプロピレン極細繊維2を10g/m2(7質量%)含んでおり、芯鞘型熱融着性繊維を135g/m2(93質量%)含んでいた。
【0076】
得られたエアフィルタ用濾材8の風速0.10m/秒における圧力損失を、JIS B 9908に規定する圧力損失測定機(形式1)により測定したところ、30Paであった。また、濾過性能試験により計数法の捕集効率が40%であることが確かめられた。また、このエアフィルタ用濾材8の難燃性は(社)日本空気清浄協会No.11A−2003「空気清浄装置用ろ材燃焼試験方法指針」のクラス3に適合していた。
【0077】
(実施例2)
実施例1と同様にして極細繊維2の流れを形成した。次いで、この極細繊維2の流れに対してほぼ直角に、図2に示すような2本の開繊シリンダ31をハウジング32内に収納し、エアノズル33を備えた開繊機3から、芯成分がポリプロピレン樹脂(融点160℃)からなり、鞘成分がポリエチレン樹脂(融点135℃)からなる、繊維径30μm、繊維長64mmの延伸された芯鞘型熱融着性繊維70質量%と、芯成分がポリプロピレン樹脂(融点160℃)からなり、鞘成分がポリエチレン樹脂(融点135℃)からなる、繊維径47μm、繊維長76mmの延伸された芯鞘型熱融着性繊維30質量%とを供給し、ポリブロピレン極細繊維2と混合した。この混合した繊維をメッシュ状コンベアにより捕集して極細繊維ウエブ6を形成した。なお、コンベアの捕集面とは反対側から空気を吸引除去し、極細繊維ウエブ6の乱れを防いだ。
【0078】
次いで、スパンボンド法によって製造され芯がポリエステル樹脂で鞘がポリエチレン繊維からなる熱融着性の長繊維(平均繊維径10μm)が熱融着した長繊維不織布7(面密度50g/m2、厚さ0.20mm)を準備して、この長繊維不織布7の上に極細繊維ウエブ6を載置するようにして積層する。次いで、この積層物を温度140℃雰囲気のドライヤー中に3分間通すことにより、芯鞘型熱融着性繊維の鞘成分(ポリエチレン成分)のみを融着させて、面密度280g/m2、厚さ11.5mm、見掛密度0.024g/cm3のエアフィルタ用濾材8を製造した。なお、このエアフィルタ用濾材8はポリプロピレン極細繊維2を50g/m2(22質量%)含んでおり、芯鞘型熱融着性繊維を180g/m2(78質量%)含んでいた。
【0079】
得られたエアフィルタ用濾材8の風速0.10m/秒における圧力損失を、JIS B 9908に規定する圧力損失測定機(形式1)により測定したところ、40Paであった。また、濾過性能試験により計数法の捕集効率が35%であることが確かめられた。
【0080】
(実施例3)
実施例1で得られたエアフィルタ用濾材8を用いて、エアフィルタ用濾材8の下流側に長繊維層(長繊維不織布)が配置されるようにして、図3に示す吹流し形フィルタを製作した。この吹流し形フィルタは、前記エアフィルタ用濾材8を奥行き860mmの袋状に成形したもの6個を並設して空気流入口の寸法が595mm×595mmの合成樹脂性の保持枠9に固定した吹流し形フィルタである。また、袋状に成形するにあたり、図5に示すように、袋状のエアフィルタ用濾材8を構成する濾材片8aと濾材片8bとの間に、セパレータ12を縫製13により断面コの字状に接合した。これにより、エアフィルタ用濾材8の間隔が保持され、使用時にエアフィルタ用濾材8が脹らみすぎて、隣のエアフィルタ用濾材8と接触してデッドスペースが生じないように、エアフィルタ用濾材8の袋形状を所定の大きさに保つようにした。なお、セパレータ12は、実施例2で用いた長繊維不織布7を用いた。得られた吹流し形フィルタは、濾過性能試験により、比色法の粒子捕集平均効率が90%であることが確かめられた。
【0081】
(実施例4)
実施例1で得られたエアフィルタ用濾材8を用いて、エアフィルタ用濾材8の下流側に長繊維層(長繊維不織布)が配置されるようにして、図3に示す吹流し形フィルタを製作した。この吹流し形フィルタは、前記エアフィルタ用濾材8を奥行き860mmの袋状に成形したもの6個を並設して空気流入口の寸法が595mm×595mmの合成樹脂性の保持枠9に固定した吹流し形フィルタである。また、袋状に成形するにあたり、図6に示すように、袋状のエアフィルタ用濾材8を構成する濾材片8aと濾材片8bとの間に、このセパレータ12の各凹部又は凸部が前記二枚の濾材片内側に接合した形態となるように、ジグザグ状にセパレータ12を設けた。またこの接合は超音波融着によって行なった。これにより、エアフィルタ用濾材8の間隔が保持され、使用時にエアフィルタ用濾材8が脹らみすぎて、隣のエアフィルタ用濾材8と接触してデッドスペースが生じないように、エアフィルタ用濾材8の袋形状を所定の大きさに保つようにした。なお、セパレータ12は、実施例2で用いた長繊維不織布7を用いた。得られた吹流し形フィルタは、濾過性能試験により、比色法の粒子捕集平均効率が90%であることが確かめられた。
【図面の簡単な説明】
【0082】
【図1】本発明のエアフィルタ用濾材の製造工程の一例を示す工程図である。
【図2】開繊機の一例の断面模式図である。
【図3】本発明のエアフィルタ用濾材を用いたフィルタの一例を示す図である。
【図4】本発明のエアフィルタ用濾材を用いたフィルタの別の一例を示す図である。
【図5】図3のフィルタのセパレータの取り付け方法を説明する模式図である。
【図6】図3のフィルタのセパレータの別の取り付け方法を説明する模式図である。
【符号の説明】
【0083】
1 メルトブロー装置
2 極細繊維
3 開繊機
31 開繊シリンダ
32 ハウジング
33 エアノズル
4 熱融着性繊維
5 捕集体
51 吸引装置
6 極細繊維ウエブ
7 長繊維不織布
8 エアフィルタ用濾材
9 保持枠
11 吹流し形フィルタ
12 セパレータ
13 縫製
14 熱シールまたは超音波融着

【特許請求の範囲】
【請求項1】
極細繊維層と長繊維層とからなるエアフィルタ用濾材であって、前記極細繊維層はメルトブロー法によって製造された平均繊維径が0.1〜10μmの極細繊維と、平均繊維径が10〜100μmの熱融着性繊維とが混在し、この熱融着性繊維が融着して形成されており、前記長繊維層はスパンボンド法によって製造された熱融着性の長繊維から形成されており、前記熱融着性の長繊維が前記極細繊維層を構成する繊維に熱融着することにより前記極細繊維層と前記長繊維層とが積層一体化していることを特徴とするエアフィルタ用濾材。
【請求項2】
前記極細繊維層及び前記長繊維層がポリオレフィン系合成繊維から構成されていることを特徴とする請求項1に記載のエアフィルタ用濾材。
【請求項3】
前記エアフィルタ用濾材の難燃性が(社)日本空気清浄協会No.11A−2003「空気清浄装置用ろ材燃焼試験方法指針」のクラス3に適合することを特徴とする請求項1または2に記載のエアフィルタ用濾材。
【請求項4】
請求項1〜3の何れかに記載のエアフィルタ用濾材を用いたことを特徴とする吹き流し形フィルタ。
【請求項5】
前記長繊維層と同じ構成繊維からなるセパレータが前記エアフィルタ用濾材に融着により接合されていることを特徴とする請求項4に記載の吹き流し形フィルタ。
【請求項6】
極細繊維層と長繊維層とからなるエアフィルタ用濾材の製造方法であって、メルトブロー法によって平均繊維径が0.1〜10μmの極細繊維を形成し、次いでこの極細繊維と平均繊維径が10〜100μmの熱融着性繊維とを混在させて極細繊維ウエブを形成し、次いでこの極細繊維ウエブと熱融着性の長繊維から形成された長繊維不織布とを積層し、次いで極細繊維ウエブの熱融着性繊維を融着して極細繊維層を形成すると共に前記熱融着性の長繊維を前記極細繊維ウエブを構成する繊維に熱融着させることにより、前記極細繊維層と前記長繊維不織布とを積層一体化することを特徴とするエアフィルタ用濾材の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−55270(P2008−55270A)
【公開日】平成20年3月13日(2008.3.13)
【国際特許分類】
【出願番号】特願2006−233008(P2006−233008)
【出願日】平成18年8月30日(2006.8.30)
【出願人】(000229542)日本バイリーン株式会社 (378)
【Fターム(参考)】