説明

カーボンナノチューブ形成用CVD装置

【課題】基板を連続的に供給した場合でも、基板全体に均質なカーボンナノチューブを生成し得るCVD装置を提供する。
【解決手段】炉本体2内に設けられた反応室15にカーボンナノチューブ生成用の金属触媒粒子が付着された基板Kを導くと共にカーボンを含む原料ガスGを供給し加熱する熱CVD法によりカーボンナノチューブを形成し得る加熱炉1を具備するCVD装置であって、反応室15における基板Kの下方を区画壁61により複数の反応空間部15a〜15cに区画すると共に、これら各反応空間部の底壁部32〜34にカーボンを含む原料ガスGを供給し得るガス供給管52〜54をそれぞれ設け、さらにこれらガス供給管から供給する原料ガスの供給量をカーボンナノチューブの成長に応じて増加させるようにしたものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カーボンナノチューブ形成用CVD装置に関するものである。
【背景技術】
【0002】
カーボンナノチューブの製造方法としては、炭素が用いられた陰極と陽極との間にアーク放電を発生させてカーボンナノチューブを生成するアーク放電法、また触媒を混ぜた炭素の固まりにレーザ光線を照射し炭素を蒸発させて触媒と反応させることによりカーボンナノチューブを生成するレーザ蒸発法、炭化水素を高温で分解し基板に付着させた触媒を介してカーボンナノチューブを生成する化学気相蒸着法などがある。
【0003】
そして、さらに基板を順次供給してカーボンナノチューブを連続的に生成する化学気相蒸着法(例えば、特許文献1参照)などがある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−053709号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、上記カーボンナノチューブを連続的に生成する装置において、前処理・CVD・冷却等の各工程を連続的に行うと、基板表面におけるカーボンナノチューブの長さ、配向性にばらつきが生じ、均質性に劣るという問題があった。
【0006】
そこで、本発明では、基板を連続的に供給した場合でも、基板全体に均質なカーボンナノチューブが生成し得るカーボンナノチューブ形成用CVD装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明の請求項1に係るカーボンナノチューブ形成用CVD装置は、炉本体内に設けられた反応室にカーボンナノチューブ生成用の金属触媒粒子が付着された基板を導くとともにカーボンを含む原料ガスを供給し加熱する熱CVD法によりカーボンナノチューブを形成し得る加熱炉を具備するCVD装置であって、
上記反応室における基板の下方を区画壁により複数の空間部に区画するとともに、これら各空間部の底壁部にカーボンを含む原料ガスを供給し得るガス供給口をそれぞれ設け、
さらにこれらガス供給口から供給する原料ガスの供給量をカーボンナノチューブの成長に応じて増加させるようにしたものである。
【0008】
また、請求項2に係るカーボンナノチューブ形成用CVD装置は、請求項1に記載のCVD装置において、
基板を反応室に移動させる移動経路の上手側に、基板に付着された金属触媒粒子を所定温度に加熱して微粒化させるための触媒微粒化室を配置したものである。
【0009】
さらに、請求項3に係るカーボンナノチューブ形成用CVD装置は、請求項2に記載のCVD装置において、
反応室と触媒微粒化室との間に排気室を配置したものである。
【発明の効果】
【0010】
上記CVD装置の構成によると、基板の表面に付着された金属触媒粒子に原料ガスを導入しカーボンナノチューブを成長させる反応室内を複数の空間部に区画するとともに、これらの空間部に、基板の移動方向において上手側から下手側に向かって、原料ガスの供給量を増加させるようにしたので、カーボンナノチューブの成長度合いに応じた量の原料ガスを供給することができ、したがってカーボンナノチューブの成長に応じて、原料ガスが金属触媒粒子に到達しにくくなってカーボンナノチューブの成長が低下するのを防止することができる。すなわち、カーボンナノチューブの長さ、配向性にばらつきを防止することができるので、均質なカーボンナノチューブを得ることができる。
【0011】
また、反応室と触媒微粒化室との間に排気室を配置することにより、両室間を完全に遮断することができるので、各室での処理、すなわち金属触媒粒子の微粒化および原料ガスの加熱を確実に行うことができる。
【図面の簡単な説明】
【0012】
【図1】本発明の実施の形態におけるカーボンナノチューブ形成用CVD装置の概略構成を示す断面図である。
【図2】同CVD装置における基板の平面図である。
【図3】同CVD装置におけるスペーサの平面図である。
【図4】同CVD装置における保護シートの平面図である。
【図5】同CVD装置における基板での温度状態を示すグラフである。
【発明を実施するための形態】
【0013】
以下、本発明の実施の形態に係るカーボンナノチューブ形成用CVD装置について、具体的に示した実施例に基づき説明する。
本実施例においては、カーボンナノチューブ形成用CVD装置として、熱CVD装置を用いたものについて説明する。
【0014】
本実施例においては、図2に示すように、カーボンナノチューブを形成する基板Kとして、ステンレス製の薄板材、すなわちステンレス箔(箔材の場合は20〜300μm程度の厚さのものが用いられ、また薄鋼板である場合には300μm〜数mm程度の厚さのものが用いられる。)を用いるようにしたもので、しかも、このステンレス箔としては、所定幅で長いもの、つまり帯状のものが用いられる。したがって、このステンレス箔はロールに巻き付けられており、カーボンナノチューブの形成に際しては、このロールから引き出されて連続的にカーボンナノチューブが形成されるとともに、このカーボンナノチューブが形成されたステンレス箔は、やはり、ロールに巻き取るようにされている。すなわち、一方の巻出しロールからステンレス箔を引き出し、この引き出されたステンレス箔の表面にカーボンナノチューブを形成(生成)した後、このカーボンナノチューブが形成されたステンレス箔を他方の巻取りロールに巻き取るようにされている。ここで、ステンレス箔について説明しておくと、実際には、その両面には、ロールコータ法やPLD(Pulsed Laser Deposition)法により、二酸化ケイ素(SiO)の膜が形成されるとともに、カーボンナノチューブの形成面(本実施例では下面である)には、カーボンナノチューブを成長させるための金属触媒粒子Cとして、例えば鉄の粒子が塗布(付着)されている。この金属触媒粒子Cは、製品形状に一致するような形状、例えば矩形状領域で且つ所定間隔おきでステンレス箔の表面に塗布される。
【0015】
以下、上述した帯状のステンレス箔(以下、主として基板と称す)の表面に、カーボンナノチューブを熱CVD法により形成するためのCVD装置について説明する。なお、以下の説明において、ステンレス箔の引き出し方向を前後方向と称するとともに、前側を下手側と、後側を上手側とも称する。
【0016】
ところで、このCVD装置には、図3および図4に示すように、基板であるステンレス箔のほかに、当該基板の下面に形成されたカーボンナノチューブを保護するために、帯状のスペーサSおよび帯状の保護シートPが重ねられて、ロールに巻き取られるようにされている。なお、スペーサSには、上記矩形状領域を収容し得る矩形状の穴部Saが形成されており、またその厚さは、形成されるカーボンナノチューブの高さよりも高くされている。
【0017】
すなわち、後述するCVD装置には、基板が移動する基板移動経路と、この基板移動経路の下方でスペーサおよび保護シート(以下、これらを纏めて保護シート等と称す)が移動する保護部材移動経路とが具備されることになる。なお、基板の下面にカーボンナノチューブが形成されるため、基板移動経路は上方に、保護部材移動経路は下方に配置される。
【0018】
以下、図面を用いてCVD装置について詳しく説明する。
図1に示すように、このCVD装置には、炉本体2内にカーボンナノチューブを形成するための細長い処理用空間部として真空容器3が設けられてなる加熱炉1が具備されている。そして、真空容器3内は、所定間隔おきに配置された仕切壁4により、複数の、例えば5つの部屋に仕切られており、また炉本体2内における真空容器3の前後にも、基板および保護シート等を巻き取るためのロールを配置するための空間室が設けられている。
【0019】
すなわち、この炉本体2内には、ステンレス箔つまり基板Kが巻き取られた巻出しロール21が配置される基板供給室11と、この巻出しロール21から引き出された基板Kを導き予熱を行う予熱室12と、この予熱室12で予熱された基板Kを導き表面に塗布された金属触媒粒子を加熱して微粒化を行う触媒微粒化室13と、この触媒微粒化室13の下手側に配置された排気室14と、この排気室14の下手側に配置され且つ上記触媒微粒化室13で金属触媒粒子が微粒化された基板Kおよび原料ガス(後述する)を導き加熱により金属触媒粒子上にカーボンナノチューブを成長させ形成するための反応室15と、この反応室15でカーボンナノチューブが形成された基板Kを導き後処理として例えば冷却ロール16aにより冷却を行うための後処理室16と、この後処理室16で冷却された基板Kを巻き取るための巻取りロール22が配置された基板回収室(製品回収室ということもできる)17とが具備されている。なお、基板供給室11および製品回収室17以外、すなわち少なくとも、予熱室12、触媒微粒化室13、排気室14、反応室15および後処理室16については、真空容器3内に設けられている。
【0020】
また、上記基板供給室11には、基板Kの巻出しロール21に加えてスペーサSおよび保護シートPが巻き取られたスペーサロール23および保護シートロール24が配置されている。なお、基板回収室17においては、基板Kと一緒にスペーサSおよび保護シートPが巻き取られるため、上述した基板Kの巻取りロール22だけが配置されている。
【0021】
また、真空容器3への基板K、スペーサSおよび保護シートP(以下、これらを纏めて基板等K′と称する)の導入箇所には、真空容器3内の気密を保持しながら基板等K′を案内し得る上下一対の導入用ローラ25aからなる導入部材25が配置され、また真空容器3における基板等K′の導出箇所には、真空容器3内の気密を保持しながら基板等K′を案内し得る上下一対の導出用ローラ26aからなる導出部材26が配置されている。そして、上記真空容器3内の前部には、基板Kを上側の基板移動経路M1に案内するための案内用ローラ27および保護シート等P′を下側の保護部材移動経路M2に案内するための案内用ローラ28が配置されており、さらに真空容器3内の後部には、基板Kおよび保護シート等P′を両導出用ローラ26a間に案内するための案内用ローラ29,30が配置されている。
【0022】
ところで、予熱室12、触媒微粒化室13および反応室15については、基板Kを通過させ得るとともに所定の処理を行い得る空間があればよいため、高さ方向の中間部に底壁部31,32,33がそれぞれ設けられており、各室12,13,15の底壁部31,32,33より下方は、保護シート等P′を通過させ得る通過用空間部にされている。なお、各室12〜15を通過される基板Kは水平面内を移動するようにされている。
【0023】
そして、予熱室12、触媒微粒化室13および反応室15においては加熱が行われるため、それぞれ加熱手段が配置されている。
すなわち、真空容器3の上壁部3aと炉本体2の上壁部2aとの間に設けられた空間部には、各室12,13,15に応じて、それぞれ複数本の円柱形状(棒状ともいえる)の電気抵抗により発熱して赤外線を放射する発熱体41a,42a,43aと、これら発熱体41a,42a,43aに電気を供給する電源と、その温度制御部などからなる加熱装置41,42,43がそれぞれ配置され、またこれら各室12,13,15の上壁部には、発熱体41a,42a,43aから放射される赤外線を通過させ得る石英窓44,45,46がそれぞれ配置されている。
【0024】
上記発熱体41a,42a,43aとしては、特に限定されないが、例えば非金属の抵抗発熱体が用いられ、具体的には、炭化ケイ素、ケイ化モリブデン、ランタンクロマイト、ジルコニア、黒鉛などが用いられる。なお、各発熱体41a,42a,43aの上方には、赤外線の反射板47,48,49がそれぞれ配置されて、上方に放射された赤外線を各室12,13,15に反射させるようにしている。
【0025】
次に、上記予熱室12および触媒微粒化室13について簡単に説明すると、予熱室12では、導かれた基板Kを上方に配置された発熱体41aにより所定温度(例えば、300℃程度)に加熱して予熱が行われる。また、上記触媒微粒化室12の底壁部32には、不活性ガス[例えば、ヘリウムガス(He)]Nを供給し得る不活性ガス供給管51が接続されており、不活性ガスの雰囲気下で発熱体42aにより例えば700〜900℃程度の高温に加熱されて、金属触媒粒子(ここでは鉄粒子が用いられる)の微粒化が行われる。
【0026】
次に、上記反応室15について詳しく説明する。
この反応室15においては、下方からカーボンを含む原料ガス(反応ガスともいい、例えばアセチレンガス、エタンガス、エチレンガスが用いられる)Gが供給されることになるが、本実施例においては、その供給量が場所によって変化されている。例えば、3段階でもってその供給量が、上手側から下手側に向かって順次増加するようにされている。
【0027】
すなわち、反応室15の底壁部33には、所定高さの2つの区画材61が所定間隔でもって設けられて、その内部が、第1反応空間部15a、第2反応空間部15bおよび第3反応空間部15cに区画されるとともに、これら各空間部15a〜15cに対応する底壁部33には、それぞれ原料ガスを供給するための原料ガス供給管52,53,54が接続されている(つまり、原料ガスの接続口が設けられている)。これら各原料ガス供給管52,53,54に供給される原料ガス量は制御装置(図示せず)により自動的に制御されており、また発熱体41a,42a,43aについても、自動的にその温度が制御されている。なお、図5に、各室12,13,15における基板Kの温度分布[(イ)〜(ニ)は、図1で示した真空容器3での位置に対応する位置を示す]を示しておく。
【0028】
そして、反応室15においては、熱CVD法により、カーボンナノチューブが形成(生成)されるが、カーボンナノチューブの形成時には、内部は所定の真空度(負圧状態)に維持された状態で行われるため、反応室15の適所には、例えば仕切壁4には、当該反応室15内の空気を排出して所定の減圧下(真空下)にするための排気管55が接続されている。勿論、排気管55には真空ポンプなどの排気装置(図示せず)が接続されている。反応室15の減圧値(真空度)としては、数Pa〜1000Paの範囲に維持される。例えば、数十Pa〜数百Paに維持される。なお、減圧範囲の下限である数Paは、カーボンナノチューブの形成レート(成膜レートである)を保つための限界値であり、上限である1000Paは煤、タールの抑制という面での限界値である。
【0029】
また、上記排気室14においては、反応室15内の原料ガスGが触媒微粒化室13に流れ込むのを防止するために、内部の空気が常時排出されるように構成されており、したがって当該排気室14内には、真空容器3および炉本体2の底壁部3b,2bから真空ポンプ(図示せず)に接続された排気管56が挿入されている。なお、原料ガスGの触媒微粒化室13への流れ込みを防止するために、触媒微粒化室13内に供給される不活性ガスNの流量を多くするとともにその圧力を反応室15内のそれよりも高く維持することにより、反応室15から漏れ出た原料ガスが触媒微粒化室13に流入せずに排気室14から排出するようにされている。
【0030】
また、真空容器3内には、仕切壁4により5つの部屋が形成されているが、当然ながら、各仕切壁4には基板Kを通過させ得る連通用開口部(スリットともいう)4aがそれぞれ形成されている。
【0031】
ところで、上記真空容器3の構成材料としてステンレス鋼が用いられている。すなわち、各室12〜15の壁部についてはステンレス壁であるため、赤外線による輻射熱が遮られるため、従来におけるセラミックファィバやグラスファイバなどの断熱材は必要としないので、有害となる材料の混入や蓄積を抑制することができる。
【0032】
また、基板Kとしては、厚さが20〜300μm以下に圧延加工されてコイル状に巻き取られたステンレス箔が用いられており、このような基板Kには、コイルの巻き方向に引張りの残留応力が存在するため、金属触媒粒子の微粒化および熱CVD時に、残留応力の開放により、基板Kに反りが発生する。このような反りの発生を防止するために、コイル巻き方向で張力を付加する機構、具体的には、巻出しロール21と巻取りロール22との間で張力を発生させて(例えば、両ロールの回転速度を異ならせることにより張力を発生させる。具体的には、一方のモータで引っ張り、他方のモータにブレーキ機能を発揮させればよい。)基板Kを引っ張るようにしてもよい。また、巻取りロール22側に錘を設けて引っ張るようにしてもよい。
【0033】
次に、上記CVD装置により、カーボンナノチューブを形成する方法について説明する。
まず、巻出しロール21から基板Kを引き出し、予熱室12、触媒微粒化室13、排気室14、反応室15および後処理室16における各仕切壁4の連通用開口部4aを挿通させ、つまり基板移動経路M1に沿ってその先端を巻取りロール22に巻き取らせる。このとき、基板Kには張力が付与されて真っ直ぐな水平面となるようにされる。
【0034】
そして、基板Kと同様に、スペーサSおよび保護シートPについても、保護部材移動経路M2に沿ってその先端を導入用ローラ25aから導出用ローラ26aまで案内させた後、巻取りロール22に巻き取らせる。
【0035】
この後、反応室15では、排気管55を介して排気装置により所定の減圧下に、例えば数Pa〜1000Paの範囲に、具体的には、上述したように数十Pa〜数百Paに維持される。そして、これと一緒に、排気室14においても、空気が排出されて、触媒微粒化室13ともども減圧下に維持されるとともに当該触媒微粒化室13には不活性ガスNが供給されて不活性ガス雰囲気下にされる。
【0036】
そして、各発熱体発熱体41a,42a,43aにより、各室12,13,15内を予め設定された温度にそれぞれ加熱する。
この状態で、各ロールを回転させて、基板等K′をゆっくりと下手側から上手側に移動させる。
【0037】
すなわち、下面に金属触媒粒子Cとして鉄粒子が塗布された基板Kが予熱室12で予熱された後、触媒微粒化室13に移動され、ここで所定温度例えば800℃に加熱されて、鉄粒子の微粒化(微細化)が行われる。
【0038】
微粒化が行われると、排気室14を経て反応室15に移動され、ここで、原料ガスGとして例えばアセチレンガス(C)が供給されて、所定の反応を行わせることにより、基板K下面に付着された金属触媒粒子Cである鉄粒子上にカーボンナノチューブCNTを生成(成長)させる(図2参照)。
【0039】
ところで、この反応室15においては、3つの反応空間部に分かれているが、最初の第1反応空間部15aにおいては、原料ガスが少ない供給量でもって供給されてカーボンナノチューブが生成され、この部分が移動して第2反応空間部15bに到ると、より多い量でもって原料ガスが供給されてカーボンナノチューブがより成長され、そして第3反応空間部15cに移動されると、さらに多い原料ガスが供給されてカーボンナノチューブがさらに成長される。
【0040】
このように、3段階に亘って原料ガスGがしかもその供給量が順次増加されるため、カーボンナノチューブの成長につれて原料ガスが基板Kの表面に到達しにくくなる場合でも、それぞれの場所で十分に原料ガスを供給することができ、したがってカーボンナノチューブを効率良く且つ均質に形成し得るので、良品質の製品を得ることができる。
【0041】
そして、この後、カーボンナノチューブが形成された基板Kは後処理室16内に移動されて冷却ロール16aにより冷却が行われる。
冷却が済むと、基板Kは導出用ローラ26aにて、下方から移動されるスペーサSおよび保護シートPが重ねられて、製品回収室17内に移動される。勿論、スペーサSに形成された穴部Saに、基板Kの表面に形成されたカーボンナノチューブが挿入されるとともに、その表面が保護シートPにより覆われて完全に保護される。そして、保護シート等P′により保護された基板Kは巻取りロール22に巻き取られて、製品として回収されることになる。なお、カーボンナノチューブが形成された基板Kが全て巻取りロール17に巻き取られると、外部に取り出されることになる。
【0042】
上記熱CVD装置の構成によると、基板の表面に付着された金属触媒粒子に原料ガスを導入しカーボンナノチューブを成長させる反応室内を複数の反応空間部に区画するとともに、これらの反応空間部に、基板の移動方向において上手側から下手側に向かって、原料ガスの供給量を増加させるようにしたので、カーボンナノチューブの成長度合いに応じた量の原料ガスを供給することができ、したがってカーボンナノチューブの成長に応じて、原料ガスが金属触媒粒子に到達しにくくなってカーボンナノチューブの成長が低下するのを防止することができる。すなわち、カーボンナノチューブの長さ、配向性にばらつきを防止することができるので、均質なカーボンナノチューブが得られる。
【0043】
また、反応室と触媒微粒化室との間に排気室を配置することにより、両室間を完全に遮断することができるので、各部屋での処理、すなわち金属触媒粒子の微粒化および原料ガスの加熱を確実に行うことができる。
【0044】
また、上記熱CVD装置の構成によると、基板を反応室内に導くとともに原料ガスを導入してその表面にカーボンナノチューブを形成する際に、巻出しロールに巻き取られた基板を巻取りロールに巻き取るようにするとともに、その途中の基板の表面にカーボンナノチューブを形成するようにしたので、連続的に、基板にカーボンナノチューブを形成することができ、したがってバッチ式でカーボンナノチューブを形成する場合に比べて、効率良くカーボンナノチューブを形成することができる。
【0045】
また、発熱体を基板のカーボンナノチューブの形成面とは反対の上面側に配置したので、原料ガスの反応がスムーズに行われる。この理由は、発熱体が直接基板を温めるとともにガスが発熱体と反対の面から供給されるため、ガスは基板に真っ先に供給されてその極近傍でガス分解が生じるからである。なお、ガスが発熱体を通過した場合には、その近傍でガス分解されて温度が高温から低温に変化する箇所で煤が生成し易くなると同時に、基板に供給される炭素が少なくなってしまう。
【0046】
ところで、上記実施例においては、反応室を3つに区画したが、3つに限定されるものではなく、例えば2つまたは4つ以上に区画してもよい。
また、上記実施例においては、各発熱体を各室の外側に、つまり真空容器の外側に配置したが、それぞれ内側に配置してもよい。
【符号の説明】
【0047】
K 基板
S スペーサ
P 保護シート
1 加熱炉
2 炉本体
3 真空容器
4 仕切壁
11 基板供給室
12 予熱室
13 触媒微粒化室
14 排気室
15 反応室
15a 第1反応空間部
15b 第2反応空間部
15c 第3反応空間部
16 後処理室
17 基板回収室
21 巻出しロール
22 巻取りロール
23 スペーサロール
24 シートロール
41〜43加熱装置
41a〜43a発熱体
52〜54原料ガス供給管
55 排気管
61 区画材

【特許請求の範囲】
【請求項1】
炉本体内に設けられた反応室にカーボンナノチューブ生成用の金属触媒粒子が付着された基板を導くとともにカーボンを含む原料ガスを供給し加熱する熱CVD法によりカーボンナノチューブを形成し得る加熱炉を具備するCVD装置であって、
上記反応室における基板の下方を区画壁により複数の空間部に区画するとともに、これら各空間部の底壁部にカーボンを含む原料ガスを供給し得るガス供給口をそれぞれ設け、
さらにこれらガス供給口から供給する原料ガスの供給量をカーボンナノチューブの成長に応じて増加させるようにしたことを特徴とするカーボンナノチューブ形成用CVD装置。
【請求項2】
基板を反応室に移動させる移動経路の上手側に、基板に付着された金属触媒粒子を所定温度に加熱して微粒化させるための触媒微粒化室を配置したことを特徴とする請求項1に記載のカーボンナノチューブ形成用CVD装置。
【請求項3】
反応室と触媒微粒化室との間に排気室を配置したことを特徴とする請求項2に記載のカーボンナノチューブ形成用CVD装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2011−168418(P2011−168418A)
【公開日】平成23年9月1日(2011.9.1)
【国際特許分類】
【出願番号】特願2010−31897(P2010−31897)
【出願日】平成22年2月17日(2010.2.17)
【出願人】(000005119)日立造船株式会社 (764)
【Fターム(参考)】