説明

ステアバイワイヤ式操舵装置

【課題】 転舵用モータが失陥しても転舵を行うことができ、かつトー角調整用モータが失陥してもトー角調整機構を固定して安全に走行でき、しかもトー角調整用モータの容量を小さくでき構成がコンパクトなステアバイワイヤ式操舵装置を提供する。
【解決手段】 転舵用モータ6の回転をステアリングロッド10に伝える転舵動力伝達機構18と、トー角調整用モータ7でトー角を調整するトー角調整動力伝達機構30と、モータ6,7の失陥時に、モータの動力伝達経路を切り換えて転舵可能にする切換機構17とを備える。ステアリングロッド10は、非回転分割軸10Aと回転分割軸10Bをねじ結合してなり、両分割軸を一体に軸方向移動させて転舵する。回転分割軸10Bを回転させ、ねじ結合部10Cの軸方向長さを変えてトー角を調整する。回転分割軸10Bは、転がり軸受を用いたインナーボールジョイント部を介してタイロッドに連結する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、転舵用の転舵軸と機械的に連結されていないステアリングホイールで操舵を行うようにしたステアバイワイヤ式操舵装置に関する。
【背景技術】
【0002】
この種のステアバイワイヤ式操舵装置において、操舵輪を転舵する転舵用モータが失陥しても、補助モータによって操舵輪を転舵するように構成したものが提案されている(特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−349845号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に開示の技術は、転舵用モータの失陥時に補助モータを作動させるフェールセーフ機能を持たせたものであるが、転舵用モータが正常である場合、補助モータは一切機能しておらず不経済である。また、補助モータは、ステアリングロッドを回転させて操舵輪を左右に転舵させるが、ステアリングロッドとタイロッドとを接続するインナーボールジョイトは通常滑り軸受タイプであるため、軸方向荷重が負荷された状態で回転させるときは摩擦トルクが大きくなり、駆動する補助モータの容量を大きくしなければならない。
【0005】
この発明の目的は、転舵用モータが失陥してもトー角調整用モータを転舵の駆動源に転用して転舵を行うことができるフェールセーフ機能を持たせ、かつトー角調整用モータが失陥してもトー角調整機構を固定して安全に走行でき、さらにトー角調整用モータの容量を小さくできて、構成がコンパクトにできるステアバイワイヤ式操舵装置を提供することである。
【課題を解決するための手段】
【0006】
この発明のステアバイワイヤ式操舵装置は、左右両端にタイロッドが設けられたステアリングロッドと、このステアリングロッドに機械的に連結されていないステアリングホイールと、このステアリングホイールの操舵角を検出する操舵角センサと、前記ステアリングロッドを左右に駆動する転舵用モータと、この転舵用モータの回転を前記ステアリングロッドに伝える転舵動力伝達機構と、前記ステアリングロッドのスパンを調整するトー角調整用モータと、このトー角調整用モータの回転によりトー角を調整させるトー角調整動力伝達機構と、前記操舵角センサの検出する操舵角を基に転舵角の指令信号およびトー角の指令信号を生成し、これら指令信号を前記転舵用モータおよびトー角調整用モータにそれぞれ与えるステアリング制御手段とを備える。
このステアバイワイヤ式操舵装置において、前記転舵用モータが失陥したときに、前記転舵用モータを前記転舵動力伝達機構から切り離し、かつトー角の変化を止めておき、前記転舵用モータに代えて前記トー角調整用モータの回転を前記転舵動力伝達機構に伝えて転舵可能とし、前記トー角調整用モータが失陥したときに、前記トー角調整動力伝達機構を動力伝達不能状態として前記転舵用モータによる転舵のみ行わせる切換機構を設け、前記ステアリングロッドは、非回転分割軸と回転分割軸とに軸方向に2分割され、これら両分割軸を軸中心と同心のねじ結合部で互いに結合した軸であって、非回転分割軸および回転分割軸が一体に軸方向移動することで操舵輪を転舵させ、かつ非回転分割軸に対して回転分割軸を回転させて、前記ねじ結合部の螺合長さを調整することで、前記左右のタイロッド間距離を変更して操舵輪のトー角を変える作用をし、前記回転分割軸は前記タイロッドに対して、互い揺動自在に連結するボールジョイント部を介して連結され、かつこのボールジョイント部には転がり軸受が適用されており、前記転舵動力伝達機構は、前記転舵用モータの回転により前記ステアリングロッドの非回転分割軸および回転分割軸を一体に軸方向移動させる機構であり、前記トー角調整動力伝達機構は、前記トー角調整用モータの回転により前記ステアリングロッドの非回転分割軸に対し回転分割軸を回転させる機構であり、これら転舵動力伝達機構およびトー角調整動力伝達機構は、前記ステアリング制御手段の制御により、左右の転舵輪の転舵角が目標値に一致するように互いに協調して動作させられることを特徴とする。前記ボールジョイント部は、具体的にはインナーボールジョイントからなる。
【0007】
この構成によると、転舵用モータとは別にトー角調整用モータを備え、転舵用モータが失陥した際には転舵用モータを装置から切り離してトー角調整用モータで転舵可能とし、トー角調整用モータが失陥した際にはトー角調整用モータを固定して転舵用モータで転舵のみを行う。トー角調整は、ステアリングロッドを2分割構造にしてねじ結合し、螺合長さを変えることで行う。トー角調整を行う際には、ステアリングロッドの一方を回転させるが、タイロッドと結合しているボールジョイント部に回転支持用の転がり軸受を設けためため、摩擦トルクを軽減し、トー角調整用モータの容量を下げることができる。このように、トー角調整とフェールセーフ機器鵜を同時に付加することができ、トー角調整用モータが小型化できる。
【0008】
具体的に説明すると、転舵用モータの回転により、転舵動力伝達機構を介して、ステアリングロッドの非回転分割軸および回転分割軸を一体に軸方向移動させることで、左右のタイロッドを同方向に同距離移動させて、操舵輪を転舵させる。また、トー角調整用モータの回転により、トー角調整動力伝達機構を介して、ステアリングロッドの非回転分割軸に対し回転分割軸を回転させることで、ねじ結合部の螺合長さを調整し、左右のタイロッド間距離を変更して、操舵輪のトー角を変える。このトー角調整の際、転舵動力伝達機構およびトー角調整動力伝達機構は、ステアリング制御手段の制御により、左右の転舵輪の転舵角が目標値に一致するように互いに協調して動作させられる。
転舵用モータが失陥したときには、切換機構により、転舵用モータを転舵動力伝達機構から切り離し、かつトー角の変化を止めておき、転舵用モータに代えてトー角調整用モータの回転を転舵動力伝達機構に伝えて転舵可能とする。これにより、転舵用モータ失陥時でも転舵可能なフェールセーフ機能を持たせられる。また、トー角調整用モータが失陥したときには、切換機構により、トー角調整動力伝達機構を動力伝達不能状態として転舵用モータによる転舵のみ行わせる。これにより、トー角調整用モータ失陥時にトー角調整機構を固定して安全に走行できる。
【0009】
ステアリングロッドを、非回転分割軸と回転分割軸とに軸方向に2分割し、これら両分割軸を軸中心と同心のねじ結合部で互いに結合した軸としたことにより、非回転分割軸に対し回転分割軸を回転させることで、左右のタイロッド間距離を変更させられる。左右のタイロッドは、非回転分割軸および回転分割軸にそれぞれ直接連結することができる。このため、この発明のステアバイワイヤ式操舵装置は、構成がコンパクトで、かつステアリングロッドが設けられている箇所の全体の軸方向長さを短くでき、車両に搭載しやすい。 なお、ステアリングロッドが軸方向に分割されていない場合は、ステアリングロッドの両端に、ステアリングロッドの回転に応じて軸方向に進退する進退部材を設け、これら進退部材に左右のタイロッドを取付ける構成とする必要がある。そのため、ステアリングロッドが設けられている箇所の全体の軸方向長さが長くなる。
また、トー角調整を行う際にはステアリングロッドを回転させるが、その回転分割軸が、ボールジョイント部を介して前記タイロッドに連結されており、かつこのボールジョイト部には転がり軸受が適用されているので、軸方向荷重が負荷された状態でも回転分割軸とタイロッドの間での摩擦トルクを軽減し、トー角調整時における回転トルクを下げることができる。このため、回転分割軸の回転駆動源であるトー角調整用モータの容量を小さくすることができ、ステアバイワイヤ式操舵装置の構成をさらにコンパクトにすることができる。
【0010】
この発明において、前記トー角調整機構によって回転されるステアリングロッドの回転分割軸側のボールジョイント部に適用される転がり軸受が転がり球面軸受であっても良いし、玉軸受と球面滑り軸受とでなるものであっても良い。
【0011】
この発明において、前記トー角調整用モータを中空モータとし、この中空モータからなるトー角調整用モータの中空モータ軸内に前記ステアリングロッドを挿通させても良い。また、前記転舵用モータを中空モータとし、この中空モータからなる転舵用モータの中空モータ軸内に、前記切換機構の構成部品を挿通させても良い。
上記各構成とすれば、トー角調整用モータおよび転舵用モータと、ステアリングロッド転舵軸および切換機構の構成部品とを、コンパクトに配置できる。
【0012】
この発明において、前記ステアリングロッドの非回転分割軸にボールねじ軸部を設け、このボールねじ軸部に螺合するボールナットを回転のみ自在に設け、前記転舵動力伝達機構は、前記転舵用モータの回転により前記ボールナットを回転させて前記ステアリングロッドを軸方向に移動させ転舵を行うものとするのが良い。
この構成によれば、転舵動力伝達機構の動作箇所を最低でボールナットだけにすることができるため、転舵動力伝達機構の構成を簡略にできる。
【0013】
前記ボールナットは、ボールの循環方式をこま式とし、このボールナットを複列アンギュラ玉軸受および深溝玉軸受で支持しても良い。
こま式のボールナットは、外径を小さくでき、しかも回転バランスが良好である。複列アンギュラ玉軸受および深溝玉軸受を組み合わせてボールナットを支持すると、ボールナットに作用する軸方向荷重およびモーメント荷重の両方を受けることができる。
【0014】
前記ステアリングロッドの非回転分割軸におけるボールねじ軸部の外径面を滑り軸受で支持するのが良い。
軸方向に2分割された構造であるステアリングロッドは、両分割軸の結合部付近の剛性が低く、この結合部付近の支持剛性を高める必要がある。また、ボールねじ軸部にモーメント荷重が加わることは極力避けなければならない。ボールねじ軸部の外径面を滑り軸受で支持すれば、両分割軸の結合部付近の支持剛性を向上させると共に、ボールねじ軸部にモーメント荷重が加わることを避けられる。滑り軸受の軸方向位置を、非回転分割軸および回転分割軸の結合部とボールナットとの間とすれば効果的である。
【0015】
前記ステアリングロッドの非回転分割軸が軸回りに回転するのを防止する回り止め手段を設ける。その場合、前記回り止め手段は、前記ステアリングロッドの非回転分割軸に形成されて、軸方向と垂直な断面の外形が軸中心の同心円とは異なる非同心円部と、装置のハウジングに固定して設けられ、前記非同心円部が軸方向に摺動自在に嵌合する滑り軸受とで構成できる。
上記回り止め手段は、構成が簡単で、転舵軸の非回転分割軸を確実に回り止め可能である。
【0016】
この発明において、前記ステアリングロッドの回転分割軸にスプライン軸部を設け、このスプライン軸部に軸方向に相対移動自在に噛み合うスプラインナットを回転自在に設け、前記トー角調整動力伝達機構は、前記トー角調整用モータで前記スプラインナットを回転させることにより、前記ステアリングロッドの回転分割軸を回転させて、前記非回転分割軸および回転分割軸のねじ結合部の螺合長さを調整することにより、ステアリングロッドの長さを変更して操舵輪のトー角を変えるものとするのが良い。
この構成によれば、トー角調整動力伝達機構の動作箇所を最低でスプラインナットだけにすることができるため、トー角調整動力伝達機構の構成を簡略にできる。
【0017】
上記構成とする場合、前記転舵軸の前記スプライン軸部のスプライン歯と前記スプラインナットのスプライン歯が滑り接触していても、転がり接触していても良い。いずれであっても、スプラインナットからスプライン軸部へ、力を良好に伝達することができる。
【0018】
前記ねじ結合部は、ねじの種類が角ねじまたは台形ねじであるのが良い。
ねじの種類が角ねじまたは台形ねじであるねじ結合部は、非回転分割軸と回転分割軸との結合が堅固である。
【0019】
この発明において、前記非回転分割軸および回転分割軸のうち前記ねじ結合部の雌ねじが設けられている方の分割軸に、軸中心と同心の内径孔を設け、かつ前記ねじ結合部の雄ねじが設けられている方の分割軸に、前記内径孔に嵌合する嵌合軸部を設けても良い。その場合、前記内径孔から前記嵌合軸部が外れないように、これら内径孔と嵌合軸部の軸方向相対位置関係を規制する抜け止め手段を設けるのが望ましい。
内径孔に嵌合軸部を嵌合させることで、非回転分割軸と回転分割軸の同軸度が保持される。また、抜け止め手段を設けることで、内径孔から嵌合軸部が外れることを防止して、非回転分割軸と回転分割軸の同軸度を確実に保持できる。
【0020】
この発明において、前記トー角調整用モータは、最大発生トルクが前記転舵用モータの最大発生トルクよりも小さいものとすることができる。
トー角調整用モータによる通常時のトー角調整および転舵用モータ失陥時の転舵用駆動源としての代替は、車両走行時に行う動作であるため、その最大発生トルクは、据え切り動作時に転舵用モータに必要なトルクよりもはるかに小さいものである。したがって、トー角調整用モータは、転舵用モータよりも小型のもので良い。
【発明の効果】
【0021】
この発明のステアバイワイヤ式操舵装置は、左右両端にタイロッドが設けられたステアリングロッドと、このステアリングロッドに機械的に連結されていないステアリングホイールと、このステアリングホイールの操舵角を検出する操舵角センサと、前記ステアリングロッドを左右に駆動する転舵用モータと、この転舵用モータの回転を前記ステアリングロッドに伝える転舵動力伝達機構と、前記ステアリングロッドのスパンを調整するトー角調整用モータと、このトー角調整用モータの回転によりトー角を調整させるトー角調整動力伝達機構と、前記操舵角センサの検出する操舵角を基に転舵角の指令信号およびトー角の指令信号を生成し、これら指令信号を前記転舵用モータおよびトー角調整用モータにそれぞれ与えるステアリング制御手段とを備え、前記転舵用モータが失陥したときに、前記転舵用モータを前記転舵動力伝達機構から切り離し、かつトー角の変化を止めておき、前記転舵用モータに代えて前記トー角調整用モータの回転を前記転舵動力伝達機構に伝えて転舵可能とし、前記トー角調整用モータが失陥したときに、前記トー角調整動力伝達機構を動力伝達不能状態として前記転舵用モータによる転舵のみ行わせる切換機構を設けたため、転舵用モータが失陥してもトー角調整用モータを転舵の駆動源に転用して転舵を行うことができるフェールセーフ機能を持たせ、かつトー角調整用モータが失陥してもトー角調整機構を固定して安全に走行できる。また、前記ステアリングロッドは、非回転分割軸と回転分割軸とに軸方向に2分割され、これら両分割軸を軸中心と同心のねじ結合部で互いに結合した軸であって、非回転分割軸および回転分割軸が一体に軸方向移動することで操舵輪を転舵させ、かつ非回転分割軸に対して回転分割軸を回転させて、前記ねじ結合部の螺合長さを調整することで、前記左右のタイロッド間距離を変更して操舵輪のトー角を変える作用をし、前記転舵動力伝達機構は、前記転舵用モータの回転により前記ステアリングロッドの非回転分割軸および回転分割軸を一体に軸方向移動させる機構であり、前記トー角調整動力伝達機構は、前記トー角調整用モータの回転により前記ステアリングロッドの非回転分割軸に対し回転分割軸を回転させる機構であり、これら転舵動力伝達機構およびトー角調整動力伝達機構は、前記ステアリング制御手段の制御により、左右の転舵輪の転舵角が目標値に一致するように互いに協調して動作させられる。また、回転分割軸はタイロッドに対して、互い揺動自在に連結するボールジョイント部を介して連結され、かつこのボールジョイント部には転がり軸受が適用されているので、トー角調整用モータの容量を小さくできる。これにより、構成がコンパクトとなり車両に搭載しやすい。
【図面の簡単な説明】
【0022】
【図1】この発明の一実施形態にかかるステアバイワイヤ式操舵装置の概略構成を示すブロック図である。
【図2】(A)は同ステアバイワイヤ式操舵装置におけるステアリングロッド駆動部の正常動作時の水平断面図、(B)はそのIIB部拡大図である。
【図3】(A)は同ステアリングロッド駆動部におけるトー角調整用モータ失陥時の水平断面図、(B)はそのIII B部拡大図である。
【図4】(A)は同ステアリングロッド駆動部における転舵用モータ失陥時の水平断面図、(B)はそのIVB部拡大図である。
【図5】(A),(B)は同ステアリングロッドの結合ねじ部のそれぞれ異なる状態を示す断面図である。
【図6】図2のVI−VI断面図である。
【図7】同ステアリングロッド駆動部の回転規制機構の側面図であり、(A),(B)はそれぞれ異なる状態を示す。
【図8】通常のスプライン軸のスプライン歯の歯先形状を示す説明図である。
【図9】(A)は前記ステアリングロッド駆動部の中間軸の一例の側面図、(B)は同正面図である。
【図10】(A)は同ステアリングロッド駆動部の中間軸の他の一例の側面図、(B)は同正面図である。
【図11】(A)は同ステアリングロッド駆動部の中間軸のさらに他の一例の側面図、(B)は同正面図である。
【図12】(A)は同ステアリングロッド駆動部の中間軸のさらに他の一例の側面図、(B)は同正面図である。
【図13】同ステアバイワイヤ式操舵装置における回転分割軸とタイロッドの連結部の一例の拡大断面図である。
【図14】同連結部の他の例の拡大断面図である。
【発明を実施するための形態】
【0023】
この発明の一実施形態を図面と共に説明する。このステアバイワイヤ式操舵装置は、図1に概略図で示すように、運転者が操舵するステアリングホイール1と、操舵角センサ2と、操舵トルクセンサ3と、操舵反力モータ4と、左右の操舵輪13にナックルアーム12およびタイロッド11を介して連結された転舵用の軸方向移動自在な転舵軸10と、このステアリングロッド10を駆動するステアリングロッド駆動部14と、転舵角センサ8と、ECU(電気制御ユニット)5とを備える。ECU5は、ステアリング制御手段5a、失陥対応制御手段5b、および補正動作制御手段5cを含む。ECU5およびその各制御手段5a,5b,5cは、マイクロコンピュータおよびその制御プログラムを含む電子回路などにより構成される。
【0024】
ステアリングホイール1は、転舵用のステアリングロッド10と機械的に連結されていない。ステアリングホイール1に対して、操舵角センサ2および操舵トルクセンサ3が設けられ、操舵反力モータ4が接続されている。操舵角センサ2は、ステアリングホイール1の操舵角を検出するセンサである。操舵トルクセンサ3は、ステアリングホイール1に作用する操舵トルクを検出するセンサである。操舵反力モータ4は、ステアリングホイール1に反力トルクを付与するモータである。
【0025】
図2〜図4は、ステアリングロッド駆動部14のそれぞれ異なる状態を示す水平断面図である。ステアリングロッド駆動部14には、ステアリングロッド10と、操舵輪13(図1)の転舵を行う転舵機構15と、転舵輪13のトー角調整を行うトー角調整機構16と、転舵機構15およびトー角調整機構16の各動力伝達機構18,30を切り換える切換機構17とが設けられている。
【0026】
ステアリングロッド10は、非回転分割軸10Aと回転分割軸10Bとに軸方向に2分割され、これら両分割軸10A,10Bを軸中心と同心のねじ結合部10Cで互いに結合した軸である。ステアリングロッド駆動部14のハウジング19から突出した非回転分割軸10Aおよび回転分割軸10Bの先端部に、左右のタイロッド11(図1)がそれぞれ連結されている。
【0027】
図5に示すように、ねじ結合部10Cは、非回転分割軸10Aに設けられた雄ねじ81と、回転分割軸10Bに設けられた雌ねじ82とを有する。ねじの種類は、角ねじまたは台形ねじが好ましい。ねじの種類が角ねじまたは台形ねじであるねじ結合部10Cは、非回転分割軸10Aと回転分割軸10Bとの結合が堅固である。
【0028】
雄ねじ81は、非回転分割軸10Aのボールねじ軸部10aから回転分割軸10B側に突出する嵌合軸部83の先端に設けられている。雌ねじ部82は、回転分割軸10Bの筒状部84の内周に形成されている。回転分割軸10Bには、前記筒状部84から非回転分割軸10Aに延びる延長筒状部85が設けられており、この延長筒状部85の内径孔86に前記嵌合軸部83が嵌合している。内径孔86は、ステアリングロッド10の軸中心と同心とされてる。
【0029】
このねじ結合部10Cには、前記内径孔86から前記嵌合軸部83が抜けるのを防止する抜け止め手段88が設けられている。この抜け止め手段88は、嵌合軸部83の外周に形成された環状の外周溝89に嵌合するサークリップ90と、内径孔86の内径面に形成された環状の内周溝91とでなる。図5(A)の部分拡大図に示すように、内周溝91の非回転分割軸10Aと反対側の段面91aは、外側に向かい次第に溝深さが浅くなるテーパ状になっている。
【0030】
通常は、図5(A)のように、サークリップ90と内周溝91との軸方向位置がずれており、サークリップ90は内径孔86の内径面に押されて縮径した状態になっている。この状態で、非回転分割軸10Aに対し回転分割軸10Bを回転させると、ねじ結合部10Cの螺合長さが調整される。図5(B)のように、サークリップ90と内周溝91とが軸方向同位置になると、サークリップ90が自身の弾性反発力で拡径して内周溝91に係合する。それにより、ねじ結合部10Cの螺合長さを短くする方向の動作が規制されて、内径孔86から嵌合軸部83が抜けなくなる。内周溝91の段面91aは前記形状のテーパ状になっているので、ねじ結合部10Cの螺合長さを短くする方向の動作は規制されない。
【0031】
非回転分割軸10Aは、回り止め手段93により、ステアリングロッド駆動部14のハウジング19に対して軸方向に進退自在かつ軸回りに回転不能とされている。回り止め手段93は、図6に示すように、非回転分割軸10Aにおける前記ボールねじ軸部10aの外側に続く部分である非同心円部10bと、ハウジング19に固定して設けられ、前記非同心円部10bが軸方向に摺動自在に嵌合する滑り軸受94とで構成される。非同心円部10bの軸方向と垂直な断面の形状は、外形が軸中心の同心円とは異なる形状である。この図例では、非同心円部10bは、円周の一部を直線で切り落とした断面形状とされているが、他の断面形状であっても良い。この構成の回り止め手段93は、構成が簡単で、ステアリングロッド10の非回転分割軸10Aを確実に回り止めできる。
【0032】
ステアリングロッド10全体は、以下のようにハウジング19に支持されている。すなわち、非回転分割軸10Aは、ボールねじ軸部10aに螺合する後記ボールナット26を介して複列アンギュラ玉軸受29aおよび深溝玉軸受29bにより支持されると共に、前記滑り軸受94によって支持される。また、回転分割軸10Bは、その外周にスプライン嵌合する後記スプラインナット40を介して転がり軸受44により支持されている。さらに、ボールねじ軸部10aの外径面が、滑り軸受95によって支持されている。滑り軸受95の軸方向位置は、ねじ結合部10Cとボールナット26との間とされている。
【0033】
転舵機構15は、ステアリングロッド10の非回転分割軸10Aおよび回転分割軸10Bを一体に軸方向に移動させて操舵輪13の転舵を行う。この転舵機構15は、転舵用モータ6と、この転舵用モータ6の回転によりステアリングロッド10を軸方向に移動させる転舵動力伝達機構18とを備える。
【0034】
転舵用モータ6は、ステアリングロッド駆動部14のハウジング19に、前記ステアリングロッド10と平行に取付けられている。転舵用モータ6は中空モータであって、筒状の中空モータ軸20を有する。この中空モータ軸20は、一対の軸受23によりハウジング19に回転自在に支持されている。中空モータ軸20の中空部内には、ステアリングロッド10と平行に設けた転舵用中間軸21が、針状ころ軸受22を介して回転自在かつ軸方向に移動自在に支持されている。転舵用中間軸21は、後記トー角調整用中間軸35と共に、切換機構17の直動アクチュエータ47により、図2に示す基準位置と、図3に示すトー角調整用モータ失陥時位置と、図4に示す転舵用モータ失陥時位置の各位置に軸方向に位置切換される。
【0035】
転舵動力伝達機構18は、転舵用モータ6の前記中空モータ軸20と、前記転舵用中間軸21と、この転舵用中間軸21の外周にキー(図示せず)を介して回転伝達可能に嵌合した出力ギヤ24と、この出力ギヤ24とカウンタギヤ24aを介して噛み合う入力ギヤ25と、この入力ギヤ25に固定され前記ステアリングロッド10の非回転分割軸10Aのボールねじ軸部10aに螺合するボールナット26とでなる。これらボールねじ軸部10aとボールナット26とでボールねじ機構Aを構成する。ボールナット26は、例えばボールの循環方式がこま式のものを用いる。こま式のボールナット26は、外径を小さくでき、しかも回転バランスが良好である。
【0036】
入力ギヤ24は、転がり軸受28を介して前記ハウジング19に支持されている。また、ボールナット26は、軸方向両側に配した複列アンギュラ玉軸受29aおよび深溝玉軸受29bにより、ハウジング19に回転自在に支持されている。複列アンギュラ玉軸受29aおよび深溝玉軸受29bを組み合わせてボールナット26を支持すると、ボールナット26に作用する軸方向荷重およびモーメント荷重の両方を受けることができる。転舵用中間軸21は、前記のように、転舵用モータ6の中空モータ軸20に針状ころ軸受22を介して嵌合し、かつ出力ギヤ24にキーを介して嵌合しているため、軸方向への移動が許容されている。
【0037】
中空モータ軸20の内周に内歯からなるスプライン歯20a、転舵用中間軸21の外周に外歯からなるスプライン歯21aがそれぞれ形成されており、ステアリングロッド駆動部14の正常時状態(図2)では、これらスプライン歯20a,21aが互いに噛み合ってスプライン嵌合部27を構成することで、中空モータ軸20と転舵用中間軸21とが回転伝達可能に連結されている。中空モータ軸20のスプライン歯20aは軸方向に長く、どの軸方向箇所にも転舵用中間軸21のスプライン歯21aが噛み合うことができる。
【0038】
ステアリングロッド駆動部14の正常時状態(図2)において、転舵用モータ6の回転出力は、転舵用中間軸21、出力ギヤ24、カウンタギヤ124、入力ギヤ25を経てボールナット26に伝達され、ボールナット26の回転がステアリングロッド10の軸方向への移動に変換されて転舵が行なわれる。
【0039】
トー角調整機構16は、非回転分割軸10Aに対して回転分割軸10Bを回転させて、ねじ結合部10Cの螺合長さを調整することにより、前記左右のタイロッド間距離を変更して操舵輪13のトー角を変える。このトー角調整機構16は、トー角調整用モータ7と、このトー角調整用モータ7の回転によりトー角を調整させるトー角調整動力伝達機構30とを備える。
【0040】
トー角調整用モータ7は、ステアリングロッド駆動部14のハウジング19に、ステアリングロッド10と同心に取付けられている。トー角調整用モータ7も中空モータであって、その筒状の中空モータ軸31がステアリングロッド10におけるねじ結合部10Cの外周に設けられている。
【0041】
トー角調整動力伝達機構30は、前記中空モータ軸31に固定された出力ギヤ32と、この出力ギヤ32とカウンタギヤ32aを介して噛み合う第1中間ギヤ33と、この第1中間ギヤ33とスプライン嵌合部34で噛み合うトー角調整用中間軸35と、このトー角調整用中間軸35とスプライン嵌合部36で噛み合う第2中間ギヤ37と、この第2中間ギヤ37とカウンタギヤ39を介して噛み合う入力ギヤ38と、この入力ギヤ38に固定されたスプラインナット40とでなる。ステアリングロッド10の回転分割軸10Bは外周に歯溝が形成されたスプライン軸であって、この回転分割軸10Bに前記スプラインナット40がスプライン嵌合している。回転分割軸10Bとスプラインナット40とは、両者が滑り接触していても、あるいはボール(図示せず)を介して互いに転がり接触していても良い。いずれであっても、スプラインナット40から回転分割軸10Bへ、回転を良好に伝達することができる。
【0042】
第1中間ギヤ33および第2中間ギヤ37とトー角調整用中間軸35とは、両中間ギヤ33,37に形成された内歯からなるスプライン歯33a,37aとトー角調整用中間軸35に形成された外歯からなるスプライン歯35a,35bとが互いに噛み合うことで、スプライン嵌合部34,36を構成する。トー角調整用中間軸35のスプライン歯35bは軸方向に長く、どの軸方向箇所にも第2中間ギヤ37のスプライン歯37aが噛み合うことができる。
【0043】
中空モータ軸31は転がり軸受41を介して、第1中間ギヤ33は転がり軸受42を介して、第2中間ギヤ37は転がり軸受43を介して、スプラインナット40は転がり軸受44を介して、それぞれハウジング19に支持されている。また、第1中間ギヤ33と第2中間ギヤ37間には転がり軸受45が介在し、両ギヤ33,37は互いに回転自在である。トー角調整用中間軸35は、前記のように、第2中間ギヤ37にスプライン嵌合部36で噛み合っているため、軸方向への移動が許容されている。操舵用中間軸21とトー角調整用中間軸35は、同軸上に互いに隣接して配置されており、両中間軸21,35の互いに対向する軸端間にスラスト軸受46を介在させてある。これにより、両中間軸21,35が相対回転可能となるようにされている。
【0044】
ステアリングロッド駆動部14の正常時状態(図2)において、トー角調整用モータ7の回転出力は、中空モータ軸31、出力ギヤ32、カウンタギヤ32a、第1中間ギヤ33、トー角調整用中間軸35、第2中間ギヤ37、カウンタギヤ39、入力ギヤ38を経てスプラインナット40に伝達され、スプラインナット40の回転でステアリングロッド10の回転分割軸10Bが回転させられる。非回転分割軸10Aに対し回転分割軸10Bを回転させることで、ねじ結合部10Cの螺合長さを調整して、ステアリングロッド10を伸縮させる。それにより、左右のタイロッド11間距離を変更して、操舵輪13(図1)のトー角を変える。このトー角調整の際、後述するように、転舵動力伝達機構18およびトー角調整動力伝達機構30は、ステアリング制御手段5aの制御により、左右の転舵輪13の転舵角が目標値に一致するように互いに協調して動作させられる。
【0045】
図13の拡大断面図に一例を示すように、回転分割軸10Bは、ボールジョイント部96を介してタイロッド11に相対回転可能に連結されている。このボールジョイント部96には、転がり軸受を適用したインナーボールジョイント部とされる。ここでは、転がり軸受として転がり球面軸受97が用いられる。具体的には、回転分割軸10Bのねじ結合部10C側とは反対側の先端に、転がり軸受である転がり球面軸受97の外輪軌道面となる凹球面98が形成され、転がり球面軸受97の内輪軌道面となるインナーボールジョイント部96の球面部103がタイロッド11に固定される。前記凹球面98に対しインナーボールジョイント部96の球面部101は前記凹球面98で包まれるように凹球面98と同心に配置され、これら球面部101と凹球面98の間に転がり球面軸受97の転動体99が球形の保持器100に保持されて介在する。
【0046】
図14には、前記インナーボールジョイント部96の他の例を示す。この例では、転がり軸受として、玉軸受102と球面滑り軸受103とが用いられる。球面滑り軸受103は、前記インナーボールジョイント部96の球面部101に滑り接触する凹球面103aを有する袋ナット状の有底の筒状部材からなる。回転分割軸10Bのねじ結合部10C側とは反対側の先端には、袋ナット状の有底の筒部104が設けられる。前記球面滑り軸受103の外周面と前記筒部104の内周面の間に、保持器105で保持された玉軸受102の転動体104が介在する。球面滑り軸受103の外周面は玉軸受102の内輪軌道面となり、前記筒部104の内周面は玉軸受102の外輪軌道面となる。
なお、回転駆動されることのない非回転分割軸10Aに対しては、タイロッド11は直接連結される。
【0047】
このように、トー角調整時に回転駆動される転舵軸10の回転分割軸10Bに対して、タイロッド11が転がり軸受を適用したインナーボールジョイント部96を介して連結されているので、軸方向荷重が負荷された状態でも回転分割軸10Bとタイロッド11の間での摩擦トルクを軽減して、トー角調整時におけるステアリングロッド10の回転トルクを下げることができる。このため、回転分割軸10Bの回転駆動源であるトー角調整用モータ7の容量を小さくすることができる。
【0048】
切換機構17は、転舵用モータ6が失陥したとき、ならびにトー角調整用モータ7が失陥したときに、転舵動力伝達機構18およびトー角調整動力伝達機構30の動力伝達系統を切り換えるためのものである。この切換機構17は、転舵用中間軸21およびトー角調整用中間軸35と、これら中間軸21,35を一緒に軸方向に移動させる直動アクチュエータ47と、両中間軸21,35が常に互いに接する状態に維持されるように押圧力を付与する押圧機構48と、両中間軸21,35の移動により転舵動力伝達機構18およびトー角調整動力伝達機構30の各伝動連結部の伝動を係脱する伝動係脱機構49とを備える。
【0049】
直動アクチュエータ47は、ばね部材51と、ばね係脱機構52とでなる。さらに、ばね係脱機構52は、ばね部材51の直線運動を回転運動に変換する直線・回転運動変換機構53と、この直線・回転運動変換機構53で得られる回転運動を規制する回転規制機構54とでなる。
【0050】
この例では、ばね部材51は圧縮コイルばねであり、サポート部材55を図2〜図4の左方向に付勢している。つまり、ばね部材51は、サポート部材55に接する側の端部が左右方向に直線運動をする。サポート部材55は操舵用中間軸21と同軸上に互いに隣接して設けられている。サポート部材55と転舵用中間軸21間にスラスト軸受56を、サポート部材55とばね部材51間にスラストころ軸受57をそれぞれ介在させてあり、サポート部材55は中心軸回りに回転自在である。
【0051】
また、この例では、直線・回転運動変換機構53はボールねじ機構であり、サポート部材55と一体のボールねじ軸58と、このボールねじ軸58に螺合するボールナット59とで構成される。直線・回転運動変換機構53はボールねじ機構以外の構成であっても良く、例えばラックとピニオンを組み合わせたものとしても良い。
【0052】
図7に示すように、回転規制機構54は、回転軸であるボールねじ軸58に設けた突起物60、この突起物60に引っ掛かることでボールねじ軸58の回転を止める役割を果たすレバー61、およびこのレバー61を作動させる回転規制駆動源62で構成される。突起物60は、外周の一部が他よりも外径側に張り出す突起部60aとなった板状の部材で、その突起部60aの周方向一方端に、レバー61が当たる段面60bが形成されている。厳密には、突起物60の突起部60aが、レバー61が引っ掛かる突起物である。レバー61は、ボールねじ軸58と平行な回動中心軸61aに回動自在に設けられ、前記突起物60の突起部60aに引っ掛かる一対の引っ掛かり部61b,61cを有する。回転規制駆動源62は、直動式のアクチュエータからなり、例えばリニアソレノイドとされる。回転規制駆動源62は、一方向(上下方向)に進退作動する進退ロッド62aを有し、この進退ロッド62aが前記レバー61に連結リンク63を介して連結されている。
【0053】
図7(A)は、転舵軸駆動部14が正常時状態にあるときの回転規制機構54の状態を示す。この状態では、レバー61の一方の引っ掛かり部61bが突起物60の突起部60aに引っ掛かっており、それによって突起物60およびそれと一体のボールねじ軸58の回転が拘束されている。そのため、ボールねじ機構からなる直線・回転運動変換機構53の作用により、ボールねじ軸58が軸方向に移動できず、ばね部材51(図2)がサポート部材55(図2)を押すことが規制されている。つまり、ばね部材51は圧縮状態に保持され、両中間軸21,35(図2)を軸方向に付勢することが不能な無付勢状態になっている。
【0054】
図7(A)の状態から回転規制駆動源62の進退ロッド62aを後退させると、レバー61の引っ掛かり部61bと突起物60の突起部60aとの引っ掛かりが解除され、ボールねじ軸58が回転可能になる。それにより、ばね部材51の弾性反発力によって、ボールねじ軸58がボールナット59に対して回転しながら図2の左方向へ移動する。つまり、ばね部材51は前記圧縮状態から開放され、両中間軸21,35を軸方向に付勢する状態となる。突起物60が所定の位相だけ回転すると、図7(B)のように、突起物60の突起部60aがレバー61のもう一方の引っ掛かり部61cに引っ掛かり、突起物60およびボールねじ軸58の回転が拘束される。この間、両中間軸21,35は左側へ軸方向移動して、図3のトー角調整用モータ失陥時位置になる。
【0055】
図7(B)の状態から回転規制駆動源62の進退ロッド62aを進出させると、レバー61の引っ掛かり部61cと突起物60の突起部60aとの引っ掛かりが解除され、ボールねじ軸58が回転可能になる。それにより、前記同様、ばね部材51が両中間軸21,35を軸方向に付勢する状態となり、両中間軸21,35が左側へ軸方向移動する。それに伴い、突起物60とレバー61の軸方向位置が外れる。そのため、突起物60が回転しても突起部60aがレバー61のいずれの引っ掛かり部61b,61cにも引っ掛からなくなり、ばね部材51は直線運動範囲端まで移動する。このばね部材51が直線運動範囲端まで移動したときの両中間軸21,35の位置が、図4の転舵用モータ失陥時位置である。
【0056】
前記ばね係脱機構52は、作用的な面から見た場合、次のように言うこともできる。すなわち、ばね係脱機構52は、ばね部材51の直線運動範囲内、またはばね部材51と共に直線運動する部材であるボールねじ軸58の運動範囲内に配されて直線運動を妨げる障害物と、この障害物を取り除くことでばね部材51を圧縮状態から開放する障害物取り除き機構Bとでなる。この場合、障害物は、ボールねじ軸58に取付けた突起物60に引っ掛かってボールねじ軸58の直線運動を妨げるレバー61であり、障害物取り除き機構Bは、ボールねじ軸58の運動範囲内に突出させた障害物としてのレバー61を取り去るように作用する回転規制駆動源62と連結リンク63とを組み合わせた機構である。
【0057】
押圧機構48は、図2〜図4に示すように、トー角調整用中間軸35に隣接して転舵用およびトー角調整用両中間軸21,35と同軸上に配置された押圧軸64と、この押圧軸64をトー角調整用中間軸35に押付ける側に弾性付勢するコイルばね65とでなる。押圧軸64およびコイルばね65は、ハウジング19の一部である押圧機構収容部19aに収容されている。押圧軸64とトー角調整用中間軸35の互いに対向する軸端間にはスラスト軸受66が配置され、これにより押圧軸64に対してトー角調整用中間軸35が回転自在となるようにされている。
【0058】
伝動係脱機構49は、第1〜第3伝動係脱機構71〜73を有する。
第1伝動係脱機構71は、転舵用モータ6の中空モータ軸20と、転舵用中間軸21と、トー角調整用駆動側部材である第1中間ギヤ33とでなる。両中間軸21,35が図2の基準位置にあるとき、ならびに図3のトー角調整用モータ失陥時位置にあるときは、中空モータ軸20のスプライン歯20aと転舵用中間軸21のスプライン歯21aが互いに噛み合ってスプライン嵌合部27を構成することにより、中空モータ軸20と転舵用中間軸21とが結合する。両中間軸21,35が図4の転舵用モータ失陥時位置では、転舵用中間軸21のスプライン歯21aが中空モータ軸20のスプライン歯20aから外れ、転舵用中間軸21のスプライン歯21aが第1中間ギヤ33のスプライン歯33aと噛み合ってスプライン嵌合部74を構成することにより、転舵用中間軸21が第1中間ギヤ33と結合する。
【0059】
第2伝動係脱機構72は、転舵用中間軸21と、トー角調整用駆動側部材である第1中間ギヤ33と、トー角調整用中間軸35とでなる。両中間軸21,35が図2の基準位置にあるときは、第1中間ギヤ33のスプライン歯33aとトー角調整用中間軸35のスプライン歯35aが互いに噛み合ってスプライン嵌合部34を構成することにより、第1中間ギヤ33とトー角調整用中間軸35とが結合する。両中間軸21,35が図3のトー角調整用モータ失陥時位置にあるとき、ならびに図4の転舵用モータ失陥時位置にあるときは、上記スプライン嵌合部34の噛み合いが外れて、第1中間ギヤ33とトー角調整用中間軸35とが非結合になる。
【0060】
第3伝動係脱機構73は、トー角調整用中間軸35と、トー角調整用従動側部材である第2中間ギヤ37と、ハウジング19とでなる。ハウジング19の前記押圧機構収容部19aの基端には、内歯からなるスプライン歯75aが形成されている。両中間軸21,35が図2の基準位置にあるときは、トー角調整用中間軸35のスプライン歯35bと第2中間ギヤ37のスプライン歯37aが互いに噛み合ってスプライン嵌合部36を構成することにより、トー角調整用中間軸35と第2中間ギヤ37とが結合する。両中間軸21,35が図3のトー角調整用モータ失陥時位置にあるとき、ならびに図4の転舵用モータ失陥時位置にあるときは、上記スプライン嵌合部36に加えて、トー角調整用中間軸35のスプライン歯35bとハウジング19のスプライン歯75aが互いに噛み合って、スプライン嵌合部75が構成される。このスプライン嵌合部75により、トー角調整用中間軸35は、ハウジング19に結合されて回転が拘束される。
【0061】
上記伝動係脱機構49の切換動作において、両中間軸21,35が基準位置から転舵用モータ失陥時位置へ軸方向移動する過程で、トー角調整用中間軸35が第1中間ギヤ33から外れるのよりも先に、トー角調整用中間軸35がハウジング19に結合されるように各部材の位置関係が設定されている。
【0062】
上記伝動切換機構49の切換動作を円滑に行うために、転舵用中間軸21のスプライン歯21a、およびトー角調整用中間軸35のスプライン歯35a,35bは、図8に示す通常のスプライン軸80におけるスプライン歯80aのように歯先の形状を平坦な形状とせず、例えば図9または図10に示すように、その歯先の形状を鋭角状とするのが望ましい。あるいは、他の例として、図11または図12に示すように、スプライン歯21a,35ab,35bの歯先の形状を歯先凸部の無いテーパ状とするのが望ましい。
【0063】
また、図10または図12に示すように、転舵用中間軸21のトー角調整用中間軸35に対向する側の先端に、スプライン歯21aよりも軸端側に突出させて突出部76を設けてもよい。この突出部76の外径は、スプライン歯21aの歯底半径以下とする。このような突出部76が転舵用中間軸21の先端に設けられていれば、転舵用中間軸21およびトー角調整用中間軸35が基準位置から転舵用モータ失陥時位置に位置切換するときに、突出部76の軸方向長さ分だけ、先にトー角調整中間軸35のスプライン歯35aが第1中間ギヤ33のスプライン歯33aから外れ、その後で転舵用中間軸21のスプライン歯21aが第1中間ギヤ33のスプライン歯33aに噛み合う。つまり、トー角調整用モータ7とトー角調整用中間軸35との動力的な結合が解除されてから、トー角調整用モータ7と転舵用中間軸21とが動力的に結合される。なお、図2〜図4に示す転舵軸駆動部14には、図10または図12に示す軸端形状の転舵用中間軸21が採用されている。
【0064】
ECU5のステアリング制御手段5aは、操舵反力モータ4、転舵用モータ6、およびトー角調整用モータ7を制御する。すなわち、ステアリング制御手段5aは、操舵角センサ2の検出する操舵角の信号、図示しない車速センサの検出する操舵輪回転速度の信号、および運転状態を検出する各種センサの信号に基づいて目標操舵反力を設定し、実際の操舵反力トルクが目標操舵反力に一致するように操舵トルクセンサ3の検出する操舵トルクの信号をフィードバックして、操舵反力モータ4を制御する。また、転舵用モータ6およびトー角調整用モータ7の回転方向と回転量を選択設定して、操舵輪13の転舵とトー角調整を選択的に行う。トー角調整の際には、左右の転舵輪13の転舵角が目標値に一致するように、転舵動力伝達機構18およびトー角調整動力伝達機構30を互いに協調して動作させる。この協調動作については、後で具体的に説明する。
【0065】
失陥対応制御手段5bは、切換機構17の回転規制駆動源62を制御する。すなわち、失陥対応制御手段5bは、転舵用モータ6の失陥、およびトー角調整用モータ7の失陥を検出した場合に、それに応答して回転規制駆動源62を動作させ、転舵用およびトー角調整用の両中間軸21,35を、基準位置から転舵用モータ失陥時位置またはトー角調整用モータ失陥時位置へ軸方向移動させる。
【0066】
補正動作制御手段5cは、上記失陥対応制御手段5bにより両中間軸21,35を軸方向移動させる制御の補正をする。詳しくは、トー角調整用中間軸35のスプライン歯35bとハウジング19のスプライン歯75aとをスプライン嵌合75させて、トー角調整用中間軸35の回転を拘束する際に、トー角調整用モータ7でトー角調整用中間軸35をスプライン歯35bの1ピッチ分以上回転させることで、両スプライン歯35b,75aの位相を揃える。このような補正動作を行わせることで、トー角調整用中間軸35のハウジング19への固定を誤動作無く円滑に行うことができる。
【0067】
次に、このステアバイワイヤ式操舵装置のステアリングロッド駆動部14での動作を説明する。転舵用モータ6およびトー角調整用モータ7が正常である場合には、図2のように、転舵用モータ6の中空モータ軸20の回転が転舵動力伝達機構18を介してボールナット26に伝達されると共に、トー角調整用モータ7の中空モータ軸31の回転がトー角調整動力伝達機構30を介してスプラインナット40に伝達される。ステアリングロッド10の非回転分割軸10Aのボールねじ軸部10aに螺合するボールナット26の回転は、非回転分割軸10Aおよび回転分割軸10Bを一体に軸方向に移動させ、これにより操舵輪13の操舵が行なわれる。ステアリングロッド10の回転分割軸10Bにスプライン嵌合するスプラインナット40の回転は回転分割軸10Bを回転させ、この回転により転舵軸10の両端に連結されたタイロッド11が進退して、トー角調整が行なわれる。
【0068】
このトー角調整は、具体的には次のように転舵用動力伝達機構18およびトー角調整動力伝達機構の30を互いに協調する動作により行われる。すなわち、トー角調整用モータ7によりスプラインナット40を回転させると、スプラインナット40と共に、回転分割軸10Bが回転する。回転分割軸10Bは非回転分割輪10Aに対して、互いに同心のねじ結合部10Cで螺合していて、スプラインナット40に対して軸方向に移動自在であるため、回転分割軸10Bが回転すると、ねじ結合部10Cにおける回転量に応じた軸方向距離だけ、非回転分割軸10Aに対して回転分割軸10Bが軸方向に移動する。これにより、非回転分割軸10Aおよび回転分割軸10Bからなるステアリングロッド10の長さが変わるため、トー角が変わる。しかし、回転分割軸10Bだけ移動したのでは、転舵角が変わることになる。そこで、転舵用モータ6によってボールナット26を回転させ、非回転分割軸10Aを回転分割軸10Bの移動方向に対して逆方向に軸移動させる。すなわち、トー角調整用モータ7による、回転分割軸10Bの非回転分割軸10Aに対する軸方向の相対移動長さの半分だけ、転舵用モータ6によって非回転分割軸10Aを移動させ、ステアリングロッド10の全体長さの中心位置を維持させる。これにより、左右の転舵輪13の転舵角度が共に目標値に一致するように、つまり転舵角を変えることなく、トー角調整が行われる。ECU5のステアリング制御手段5aは、トー角調整時、このようにトー角調整用モータ7と共に転舵用モータ6を駆動させ、回転分割軸10Bの偏った移動を相殺させて、転舵角を変えることなくトー角調整を行わせる。
【0069】
トー角調整用モータ7が失陥した場合、ECU5の失陥対応制御手段5bからの指令により、切換機構17の回転規制駆動源62を作動させて、回転規制機構54を図7(A)の状態から同図(B)の状態に切り換える。それにより、直動アクチュエータ47を構成するばね部材51の弾性反発力によって、両中間軸21,35が図3のトー角調整用モータ失陥時位置まで軸方向移動して停止する。
【0070】
トー角調整用モータ失陥時位置では、第1伝動係脱機構71により転舵用中間軸21は中空モータ軸20に結合したままに保持され、第2伝動係脱機構72によりトー角調整用中間軸35は第1中間ギヤ33に対し非結合になり、第3伝動係脱機構73によりトー角調整用中間軸35がハウジング19に結合された状態となる。すなわち、トー角調整動力伝達機構30が動力伝達不能状態となると共に、トー角調整用中間軸35の回転が拘束される。その結果、転舵用モータ6による転舵のみが行われる。前述したように、このステアリングロッド駆動部14には、図12または図14に示す軸端形状の転舵用中間軸21が採用されており、トー角調整用モータ7とトー角調整用中間軸35との動力的な結合が解除されてから、トー角調整用モータ7と転舵用中間軸21とが動力的に結合されるため、伝動系統の切換動作が円滑に行える。
【0071】
転舵用モータ6が失陥した場合、ECU5の失陥対応制御手段5bからの指令により、切換機構17の回転規制駆動源62を作動させて、回転規制機構54を図7(A)の状態から同図(B)の状態を経てから同図(A)の状態に戻す。それにより、ばね部材51の弾性反発力によって、両中間軸21,35が、前記トー角調整用モータ失陥時位置を経由して、図4の転舵用モータ失陥時位置まで軸方向移動する。
【0072】
転舵用モータ失陥時位置では、第1伝動係脱機構71および第2伝動係脱機構72により、転舵用中間軸21と中空モータ軸20の結合、ならびにトー角調整用中間軸35と第1中間ギヤ33の結合が外れて、新たに転舵用中間軸21が第1中間ギヤ33と結合し、第3伝動係脱機構73によりトー角調整用中間軸35がハウジング19に結合された状態となる。すなわち、転舵用モータ6が転舵動力伝達機構18から切り離され、かつトー角調整用中間軸35の回転を拘束したうえで、転舵用中間軸21がトー角調整動力伝達機構30に連結される。それにより、転舵用モータ6に代えて、トー角調整用モータ7の回転を転舵用動力伝達機構18に伝えて転舵することが可能になる。
【0073】
このように、このステアバイワイヤ式操舵装置では、切換機構17により、転舵用モータ6が失陥したときに、転舵用モータ6を転舵動力伝達機構18から切り離し、かつトー角の変化を止めておき、転舵用モータ6に代えてトー角調整用モータ7の回転を転舵動力伝達機構18に伝えて転舵可能とすることにより、転舵用モータ失陥時でも転舵可能なフェールセーフ機能を持たせられる。また、切換機構17により、トー角調整用モータ7が失陥したときに、トー角調整動力伝達機構30を動力伝達不能状態として転舵用モータ6による転舵のみ行わせることにより、トー角調整用モータ失陥時にトー角調整機構16を固定して安全に走行できる。これら転舵用モータ失陥時およびトー角調整用モータ失陥時における転舵動力伝達機構18およびトー角調整動力伝達機構30の動力伝達系統を切り換える一連の動作は、直動アクチュエータ47で転舵用およびトー角調整用の各中間軸21,35を軸方向に移動させることで、伝動係脱機構49により確実に行われる。
【0074】
また、ステアリングロッド10を、非回転分割軸10Aと回転分割軸10Bとに軸方向に2分割し、これら両分割軸10A,10Bを軸中心と同心のねじ結合部10Cで互いに結合した軸としたことにより、非回転分割軸10Aに対し回転分割軸10Bを回転させることで、左右のタイロッド11間距離を変更させられる。左右のタイロッド11は、非回転分割軸10Aおよび回転分割軸10Bにそれぞれ直接連結することができる。このため、このステアバイワイヤ式操舵装置は、構成がコンパクトで、かつ転舵軸10が設けられている箇所の全体の軸方向長さを短くでき、車両に搭載しやすい。
なお、ステアリングロッドが軸方向に分割されていない場合は、ステアリングロッドの両端に、ステアリングロッドの回転に応じて軸方向に進退する進退部材を設け、これら進退部材に左右のタイロッドを取付ける構成とする必要がある。そのため、ステアリングロッドが設けられている箇所の全体の軸方向長さが長くなる。
【0075】
特に、トー角調整時に回転駆動されるステアリングロッド10の回転分割軸10Bに対して、タイロッド11が転がり軸受を適用したインナーボールジョイント部96を介して連結されているので、軸方向荷重が負荷された状態でも回転分割軸10Bとタイロッド11の間での摩擦トルクを軽減することができ、回転分割軸10Bの回転駆動源であるトー角調整用モータ7の容量を小さくすることができる。このため、ステアバイワイヤ式操舵装置の構成をさらにコンパクトにすることができる。
【0076】
軸方向に2分割された構造であるステアリングロッド10は、両分割軸10A,10Bのねじ結合部10C付近の剛性が低いため、このねじ結合部10C付近の支持剛性を高める必要がある。また、ボールねじ軸部10aにモーメント荷重が加わることは極力避けなければならない。この実施形態のように、ねじ結合部10Cに近いボールねじ軸部10aの外径面を滑り軸受95で支持すれば、ねじ結合部10C付近の支持剛性を向上させると共に、ボールねじ軸部10aにモーメント荷重が加わることを避けられる。滑り軸受95の軸方向位置を、ねじ結合部10Cとボールナット26との間とすれば効果的である。
【0077】
転舵用モータ6およびトー角調整用モータ7として中空モータを用いることにより、これら中空モータ6,7の中空部内に転舵用中間軸21およびステアリングロッド10をそれぞれ挿通させて設けることができる。そのため、ステアバイワイヤ式操舵装置の各構成部品を狭いスペースに無理なく配置することができ、全体の構成をコンパクトにできる。転舵用モータ6の中空部内に、転舵用中間軸21以外の切換機構17の構成部品を配置しても良い。転舵用モータ6およびトー角調整用モータ7のいずれか一方だけが中空モータであっても良い。また、転舵用中間軸21とトー角調整用中間軸35を同軸中心上にかつ軸方向移動自在に配置し、これら両中間軸21,35を直動アクチュエータ47で一緒に軸方向に移動させる構成としたことにより、切換機構17をコンパクトにできる。
【0078】
ステアリングロッド10の非回転分割軸10Aにボールねじ軸部10aを設け、このボールねじ軸部10aにボールナット26を螺合させたことにより、転舵動力伝達機構18の動作箇所を最低でボールナット26だけにすることができ、転舵動力伝達機構18の構成が簡略になっている。また、ステアリングロッド10の回転分割軸10Bをスプライン軸部とし、この回転分割軸10Bにスプラインナット40を噛み合わせたことにより、トー角調整動力伝達機構30の動作箇所を最低でスプラインナット40だけにすることができ、トー角調整動力伝達機構30の構成が簡略になっている。
【0079】
なお、トー角調整用モータ7によるトー角調整および転舵用モータ6の失陥のときの転舵用駆動源としての代替は、車両走行時に行う動作であるため、その最大発生トルクは、据え切り動作時に転舵用モータ6に必要なトルクよりもはるかに小さなものである。したがって、トー角調整用モータ7は、転舵用モータ6よりも小型のもので良い。
【符号の説明】
【0080】
1…ステアリングホイール
2…操舵角センサ
5a…ステアリング制御手段
6…転舵用モータ
7…トー角調整用モータ
10…ステアリングロッド
10A…非回転分割軸
10B…回転分割軸
10C…ねじ結合部
10a…ボールねじ軸部
10b…非同心円部
11…タイロッド
17…切換機構
18…転舵動力伝達機構
20…中空モータ軸
21…転舵用中間軸
26…ボールナット
30…トー角調整動力伝達機構
31…中空モータ軸
35…トー角調整用中間軸
40…スプラインナット
81…雄ねじ
82…雌ねじ
83…嵌合軸部
86…内径孔
88…抜け止め手段
93…回り止め手段
94,95…滑り軸受
96…インナーボールジョイント部
97…転がり球面軸受
102…玉軸受
103…球面滑り軸受

【特許請求の範囲】
【請求項1】
左右両端にタイロッドが設けられたステアリングロッドと、このステアリングロッドに機械的に連結されていないステアリングホイールと、このステアリングホイールの操舵角を検出する操舵角センサと、前記ステアリングロッドを左右に駆動する転舵用モータと、この転舵用モータの回転を前記ステアリングロッドに伝える転舵動力伝達機構と、前記ステアリングロッドのスパンを調整するトー角調整用モータと、このトー角調整用モータの回転によりトー角を調整させるトー角調整動力伝達機構と、前記操舵角センサの検出する操舵角を基に転舵角の指令信号およびトー角の指令信号を生成し、これら指令信号を前記転舵用モータおよびトー角調整用モータにそれぞれ与えるステアリング制御手段とを備えるステアバイワイヤ式操舵装置において、
前記転舵用モータが失陥したときに、前記転舵用モータを前記転舵動力伝達機構から切り離し、かつトー角の変化を止めておき、前記転舵用モータに代えて前記トー角調整用モータの回転を前記転舵動力伝達機構に伝えて転舵可能とし、前記トー角調整用モータが失陥したときに、前記トー角調整動力伝達機構を動力伝達不能状態として前記転舵用モータによる転舵のみ行わせる切換機構を設け、
前記ステアリングロッドは、非回転分割軸と回転分割軸とに軸方向に2分割され、これら両分割軸を軸中心と同心のねじ結合部で互いに結合した軸であって、非回転分割軸および回転分割軸が一体に軸方向移動することで操舵輪を転舵させ、かつ非回転分割軸に対して回転分割軸を回転させて、前記ねじ結合部の螺合長さを調整することで、前記左右のタイロッド間距離を変更して操舵輪のトー角を変える作用をし、前記回転分割軸は前記タイロッドに対して、互い揺動自在に連結するボールジョイント部を介して連結され、かつこのボールジョイント部には転がり軸受が適用されており、
前記転舵動力伝達機構は、前記転舵用モータの回転により前記ステアリングロッドの非回転分割軸および回転分割軸を一体に軸方向移動させる機構であり、
前記トー角調整動力伝達機構は、前記トー角調整用モータの回転により前記ステアリングロッドの非回転分割軸に対し回転分割軸を回転させる機構であり、
これら転舵動力伝達機構およびトー角調整動力伝達機構は、前記ステアリング制御手段の制御により、左右の転舵輪の転舵角が目標値に一致するように互いに協調して動作させられることを特徴とするステアバイワイヤ式操舵装置。
【請求項2】
請求項1において、前記トー角調整機構によって回転されるステアリングロッドの回転分割軸側のボールジョイント部に適用される転がり軸受が転がり球面軸受であるステアバイワイヤ式操舵装置。
【請求項3】
請求項1において、前記トー角調整機構によって回転されるステアリングロッドの回転分割軸側のボールジョイント部に適用される転がり軸受が、玉軸受と球面滑り軸受とでなるステアバイワイヤ式操舵装置。
【請求項4】
請求項1ないし請求項3のいずれか1項において、前記トー角調整用モータを中空モータとし、この中空モータからなるトー角調整用モータの中空モータ軸内に前記ステアリングロッドを挿通させたステアバイワイヤ式操舵装置。
【請求項5】
請求項1ないし請求項3のいずれか1項において、前記転舵用モータを中空モータとし、この中空モータからなる転舵用モータの中空モータ軸内に、前記切換機構の構成部品を挿通させたステアバイワイヤ式操舵装置。
【請求項6】
請求項1ないし請求項5のいずれか1項において、前記ステアリングロッドの非回転分割軸にボールねじ軸部を設け、このボールねじ軸部に螺合するボールナットを回転のみ自在に設け、前記転舵動力伝達機構は、前記転舵用モータの回転により前記ボールナットを回転させて前記転舵軸を軸方向に移動させ転舵を行うものとしたステアバイワイヤ式操舵装置。
【請求項7】
請求項6において、前記ボールナットは、ボールの循環方式をこま式とし、このボールナットを複列アンギュラ玉軸受および深溝玉軸受で支持したステアバイワイヤ式操舵装置。
【請求項8】
請求項6において、前記ステアリングロッドの非回転分割軸におけるボールねじ軸部の外径面を滑り軸受で支持したステアバイワイヤ式操舵装置。
【請求項9】
請求項6ないし請求項8のいずれか1項において、前記ステアリングロッドの非回転分割軸が軸回りに回転するのを防止する回り止め手段を設けたステアバイワイヤ式操舵装置。
【請求項10】
請求項9において、前記回り止め手段は、前記ステアリングロッドの非回転分割軸に形成されて、軸方向と垂直な断面の外形が軸中心の同心円とは異なる非同心円部と、装置のハウジングに固定して設けられ、前記非同心円部が軸方向に摺動自在に嵌合する滑り軸受とでなるステアバイワイヤ式操舵装置。
【請求項11】
請求項1ないし請求項10のいずれか1項において、前記ステアリングロッドの回転分割軸にスプライン軸部を設け、このスプライン軸部に軸方向に相対移動自在に噛み合うスプラインナットを回転自在に設け、前記トー角調整動力伝達機構は、前記トー角調整用モータで前記スプラインナットを回転させることにより、前記ステアリングロッドの回転分割軸を回転させて、前記非回転分割軸および回転分割軸のねじ結合部の螺合長さを調整することにより、ステアリングロッドの長さを変更して操舵輪のトー角を変えるものとしたステアバイワイヤ式操舵装置。
【請求項12】
請求項11において、前記ステアリングロッドの前記スプライン軸部のスプライン歯と前記スプラインナットのスプライン歯が滑り接触しているステアバイワイヤ式操舵装置。
【請求項13】
請求項11において、前記ステアリングロッドの前記スプライン軸部のスプライン歯と前記スプラインナットのスプライン歯が転がり接触しているステアバイワイヤ式操舵装置。
【請求項14】
請求項1ないし請求項13のいずれか1項において、前記ねじ結合部は、ねじの種類が角ねじまたは台形ねじであるステアバイワイヤ式操舵装置。
【請求項15】
請求項1ないし請求項14のいずれか1項において、前記非回転分割軸および回転分割軸のうち前記ねじ結合部の雌ねじが設けられている方の分割軸に、軸中心と同心の内径孔を設け、かつ前記ねじ結合部の雄ねじが設けられている方の分割軸に、前記内径孔に嵌合する嵌合軸部を設けたステアバイワイヤ式操舵装置。
【請求項16】
請求項15において、前記内径孔から前記嵌合軸部が外れないように、これら内径孔と嵌合軸部の軸方向相対位置関係を規制する抜け止め手段を設けたステアバイワイヤ式操舵装置。
【請求項17】
請求項1ないし請求項16のいずれか1項において、前記トー角調整用モータは、最大発生トルクが前記転舵用モータの最大発生トルクよりも小さいものとしたステアバイワイヤ式操舵装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−86655(P2012−86655A)
【公開日】平成24年5月10日(2012.5.10)
【国際特許分類】
【出願番号】特願2010−234439(P2010−234439)
【出願日】平成22年10月19日(2010.10.19)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】