説明

バンプ形成方法及び半導体装置の製造方法

【課題】弾力性を有するバンプを安価に効率よく形成することにより、バンプを用いた実装に際して、あるいは製品としての使用に際して負荷される熱応力を軽減することができ、しかも狭ピッチ化に対応することができるバンプ形成方法、及び、そのバンプを使用することで信頼性に優れたフリップチップ実装が容易にできる半導体装置の製造方法を提供する。
【解決手段】基材の金属電極上にノズルから液滴を吐出してバンプを形成するバンプ形成方法であって、樹脂を含む第1の液滴をノズルから吐出して、前記金属電極の一部に樹脂突起部を設ける工程と、分散剤と金属ナノ粒子とを含む第2の液滴をノズルから吐出して、前記金属電極の残部と前記樹脂突起部とを前記金属ナノ粒子で覆う工程と、を含むことを特徴とするバンプ形成方法である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基材の電極上にバンプと呼ばれる突起を形成するバンプ形成方法、及び前記バンプ形成方法によりバンプが形成された半導体チップや半導体基板などを製造する半導体装置の製造方法に関するものである。
【背景技術】
【0002】
電子機器等の基材間を電気的に接続する方法として、電極上に形成されたバンプと呼ばれる突起を用いる方法がある。このような方法は一般にフリップチップ実装と呼ばれている。近年、特に半導体チップと配線基板などの半導体基板との間を電気的に接続する場合に、それらの電極上に形成した半田バンプを用いるフリップチップ実装が多く採用されている。
【0003】
一方、電子機器の小型化・高機能化に伴い、半導体実装においても高密度実装が要求されている。このため、高密度実装に有利なフリップチップ実装が急速に採用され、近年ではその電極ピッチが100μm以下というような狭ピッチが要求されるようになった。このような狭ピッチでは、バンプを微細化することが必須であり、これに伴う信頼性の低下が課題となっている。中でも最も大きな課題は、一般的なフリップチップ実装の形態であるシリコンなどの半導体チップと樹脂基板との熱膨張の違いによって接合部への熱応力の負荷が大きくなることである。電子機器に組み込まれる半導体装置では、電子機器を製造する時のリフローによる熱履歴や電子機器を使用する時のスイッチのオンオフにより生じる熱履歴において、半導体チップと樹脂基板との熱膨張の違いからバンプ接合部に応力が働く。半田バンプが大きい場合はこれらの膨張差を半田バンプの変形により吸収できるが、微細な半田バンプの場合は、同じ熱膨張の違いでもバンプ接合部に生じる歪が大きくなり、バンプ接合部の破断などが生じる可能性がある。
【0004】
従来、このような狭ピッチで微細なバンプを必要とする場合には、比較的柔らかく変形しやすい錫−鉛合金半田を用いることで対応してきたが、近年、環境問題から鉛を含まない鉛フリー半田が用いられるようになったため、問題が顕著になってきた。これに対し、鉛フリー半田として柔らかい金属を主体とした合金を使用することが検討されているが、適用可能な金属はインジウムなどの希少金属で高価なものに限られてしまう。
【0005】
そこで、金属のみではなく弾性を持つ樹脂により応力を緩和する試みがある。例えば、特許文献1及び特許文献2には、コアとなる樹脂に半田などの金属をコーティングした樹脂コアボールを使用してバンプを形成する方法が開示されている。しかしながら、樹脂コアボールの場合には樹脂コアボールの製造が困難であり、コストが多くかかるため実用的でない。さらに、樹脂コアボールを基材の電極上に搭載してバンプを形成する際にも製造上困難である。
【0006】
これに対し、例えば、特許文献3及び特許文献4には、まず、基材の電極近傍に樹脂などの突起を形成し、さらに電極と樹脂の突起とを覆うように導電膜を形成したバンプによって電気的に接続する方法が開示されている。さらに、特許文献5には、弾力性を有するバンプにより実装時の応力負荷を緩和する方法が開示されており、その一例として樹脂コアバンプが上げられている。しかしながら、これらの手法では、樹脂からなる突起を形成するのに全面に樹脂膜を塗布した後いずれもリソグラフィー技術を使用する。したがって、製造コストが高価になり、さらには突起に使用する樹脂に制約があった。
【0007】
なお、特許文献6には、バンプを形成する方法において、フラックスを電極上に塗布する方法として、インクジェット装置が使用されている。インクジェット装置を使用することにより、フラックスの塗布を低コストで行うことができるとしている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2003−133358号公報
【特許文献2】特開2004−273401号公報
【特許文献3】特開平2−272737号公報
【特許文献4】特開2008−103524号公報
【特許文献5】特開2006−66809号公報
【特許文献6】特開2001−53099号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は前述の問題点を鑑み、弾力性を有するバンプを安価に効率よく形成することにより、バンプを用いた実装に際して、あるいは製品としての使用に際して負荷される熱応力を軽減することができ、しかも狭ピッチ化に対応することができるバンプ形成方法、及び、そのバンプを使用することにより信頼性に優れたフリップチップ実装が容易にできる半導体装置の製造方法を提供することを目的としている。
【課題を解決するための手段】
【0010】
本発明の一態様であるバンプ形成方法は、基材の金属電極上にノズルから液滴を吐出してバンプを形成するバンプ形成方法であって、樹脂を含む第1の液滴をノズルから吐出して、前記金属電極の一部に樹脂突起部を設ける工程と、分散剤と金属ナノ粒子とを含む第2の液滴をノズルから吐出して、前記金属電極の残部又はその一部と前記樹脂突起部とを前記金属ナノ粒子で覆う工程と、を含むことを特徴とするバンプ形成方法である。
また、本発明の一態様であるバンプ形成方法は、更に、前記樹脂突起部を設ける位置に、予め下地金属膜を凹型に形成する工程をさらに含むことを特徴とするバンプ形成方法である。
また、本発明の一態様であるバンプ形成方法は、更に、前記樹脂突起部を設けた基材を加熱する工程をさらに含むことを特徴とするバンプ形成方法である。
また、本発明の一態様であるバンプ形成方法は、更に、前記金属電極の残部と前記樹脂突起部とが前記金属ナノ粒子で覆われた基材を加熱する工程をさらに含むことを特徴とする記載のバンプ形成方法である。
また、本発明の一態様であるバンプ形成方法は、前記樹脂突起部を形成する樹脂は、導電性を有する樹脂であることを特徴とするバンプ形成方法である。
また、本発明の一態様であるバンプ形成方法は、前記金属ナノ粒子の加熱は、前記金属ナノ粒子を溶融させるための加熱であることを特徴とするバンプ形成方法である。
本発明の半導体装置の製造方法は、本発明の上記バンプ形成方法により、半導体装置の基材にバンプを形成することを特徴とする半導体装置の製造方法である。
【発明の効果】
【0011】
本発明によれば、インクジェット法等のノズルから液滴を吐出する方法により、樹脂突起部と、該樹脂突起部を金属ナノ粒子による導電性膜とで覆ったバンプが形成できるため、リソグラフィー工程などを必要とせず、少ない工程で安価に弾力性を有するバンプが形成できる。このようにして樹脂コア部と金属ナノ粒子による導電皮膜とを有する微小バンプが高精度に形成できるため、これを用いた半導体装置は、組立時のリフローによる熱履歴において生じる熱応力や製品として使用時のスイッチのオンオフにより生じる熱履歴による熱応力に対して、弾性力を持つ樹脂コア部が変形することにより熱応力による歪を吸収し、接続部の信頼性を向上させる。
また、本発明の半導体装置の製造方法によれば、高精度のバンプが形成されているので、信頼性に優れたフリップチップ実装が容易にできる半導体装置を提供できる。
【図面の簡単な説明】
【0012】
【図1】本発明のバンプ形成方法により形成されるバンプの製造段階の一例を示す断面図である。
【図2】本発明のバンプ形成方法によって形成されるバンプの他の一例を示す断面図である。
【図3】電極上に凹型又はリング型の下地金属膜を形成した場合のバンプの製造段階の一例を示す断面図である。
【図4】凹型又はリング型の下地金属膜を形成する場合のバンプの他の一例を示す断面図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について図面を参照しながら説明する。
図1は、本実施形態において、それぞれの製造段階における基材の一例を示す断面図である。
本実施形態のバンプ形成方法に使用される基材1上には、図1(a)に示すように、電極2が設けられている。電極2は、シリコン半導体デバイスの場合には一般的にアルミニウム、アルミニウム合金、銅、銅合金などであり、半導体用樹脂基板の場合には、銅、ニッケルに金メッキを施したものである。さらに、半田バンプを用いたフリップチップ実装を行う場合は、電極2上に下地金属膜4が付加的に形成される。
【0014】
下地金属膜4は、スパッタ法、電解メッキ法、無電解メッキ法等により形成されるものである。本実施形態において下地金属膜4の形成方法に特に制限はないが、対象となる狭ピッチの電極ではスパッタ法による形成が好適である。特にバンプの主成分がSnの場合、下地金属膜4との反応により信頼性が劣化する可能性があるため、半導体デバイスの電極側からTi層、NiまたはNi合金層、Cu層の薄膜三層構造であることがより好ましい。ここでTiは密着性とバリア性とを確保し、NiまたはNi合金はSnとゆっくり反応して安定した接合を確保する。また、CuはNiまたはNi合金の酸化を防止するとともに、リフロー時に金属ナノ粒子ペースト中の金属と速やかに反応して濡れを生じさせる。なお、長期信頼性は劣るが、NiまたはNi合金の代わりにCu層を厚く形成してもよい。これにより、電極2と下地金属膜4とで一つの金属電極が形成されることになる。
【0015】
ここで、図2に示すように、下地金属膜4の形状によっては、電極2から離れた位置に突起部を形成するようにしてもよい。なお、図2に示す例では、下地金属膜4を介し電極2から突起部まで電気的に接続されているが、相対的な位置関係では突起部は金属電極2の真上に位置しない。ところが、本実施形態では、電極2と電気的に接続されている下地金属膜4上に突起部が施されているので、該突起部が金属電極上に形成されているものとする。
【0016】
図1の説明に戻り、次に、図1(b)に示すように、まず、樹脂を含む液滴をノズルから吐出して、基材1上の金属電極(下地金属膜4)の一部に樹脂突起部5を形成する。前記ノズルから液滴を吐出する方法としては、インクジェット法を使用する。また、樹脂突起部5を形成する樹脂としては、ポリイミド樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、シリコン樹脂、変性ポリイミド樹脂などの弾性樹脂材料が好適である。インクジェット法を使用する場合には、これらの樹脂を溶媒に溶かしたものをインクとする。さらには、樹脂突起部5を形成するものとしては導電性ポリマー、導電性を有する物質と樹脂との混合物(導電性樹脂混合物)としてもよい。また、前記導電性を有する物質としては、導電性ポリマー、金属粒子、カーボン粒子等が挙げられる。また、インクジェット法において使用するインクジェット印刷装置はどのようなものでもよいが、例えば静電式ヘッドを備えたインクジェット印刷装置を使用すると、高粘度の樹脂を微量でも精度良く吐出できるため、より好ましい。
【0017】
以上のように液滴が吐出されて樹脂突起部5が形成された状態でそのまま次の工程に送ってもよいが、ここで、樹脂突起部5を更に加熱あるいは紫外線照射等を行ってもよい。加熱を行うと、樹脂突起部5を平滑化したり硬化処理したりすることができ、紫外線照射を行うと、樹脂突起部5を硬化処理することができる。
【0018】
ここで、下地金属膜4等を形成する際に、図3または図4に示すように、樹脂突起部5を形成するための凹部を設けることにより、液滴を吐出して形成される樹脂突起部5を精度の良い形状にすることができる。即ち、電極2上に凹型又はリング型に下地金属膜4を形成する。或いは、樹脂突起部5を形成する位置に下地金属膜4を凹型又はリング型に形成する。
【0019】
次に、図1(c)に示すように、分散剤と金属ナノ粒子とを含む液滴をノズルから吐出して、金属電極(下地金属膜4)の露出部と樹脂突起部5とを覆うようにする。もしくは図4(a)に示すように、金属電極(下地金属膜4)の露出部の一部と樹脂突起部5とを覆うようにする。ノズルから液滴を吐出する方法としては、前述と同様、インクジェット法を使用する。即ち、金属ナノ粒子を含む液滴をノズルから吐出して、露出している金属電極と樹脂突起部5とを覆うように皮膜6を形成する。前記被覆は、複数回行って積層してもよい。
【0020】
ここで、上述の樹脂突起部5を形成する液滴を吐出させるノズルと、分散剤と金属ナノ粒子とを含む液滴を吐出するノズルとは、基本的にはそれぞれ異なるノズルを用いる。但し、1つのノズルを用いて、樹脂突起部5を形成する液滴と分散剤と金属ナノ粒子とを含む液滴とをそれぞれ吐出させてもよい。
【0021】
また、上述の静電式ヘッドを備えたインクジェット印刷装置を使用すると、フェムトリットルという微小量を精度良く吐出できるため、形成される樹脂突起部5の形状やそれを覆う金属ナノ粒子の皮膜6を精度良く制御できる。これにより、狭ピッチのバンプ形成に重要なバンプ高さを高精度に制御することが可能になる。さらに、金属ナノ粒子を含む液滴を用いると、金属ナノ粒子の特徴である融点降下あるいは焼結温度降下現象により、金属粉末ペースト印刷法やメッキ法などの従来法では接合できない高融点材料が使用できる。従来は、バンプを形成した半導体装置を基板等と接続する際には周辺材料の耐熱温度の関係からSnのような低融点の半田材料を用いて接合する必要があった。しかしながら、例えば半導体装置でよく用いられるCuやNiなどの金属ナノ粒子を使用すれば、半田材料の融点と変わらない温度で直接接合できるため、耐高温環境にすぐれた接続が可能になる。また、樹脂突起部5を覆う金属として、金属ナノ粒子であると、上述のように融点降下や低温焼結が可能となるので、熱に弱い樹脂を用いてもバンプを形成できるようになる。
【0022】
本実施形態において、皮膜6を形成する金属ナノ粒子を含む液滴(金属ナノ粒子ペースト)は、上述のように金属ナノ粒子と分散剤とを含むものである。金属ナノ粒子は、平均粒子径がナノメートルである導電性金属微粒子であればよい。例えば、Au、Agなどの金属ナノ粒子ペーストがよく使用されているが、特に、金属ナノ粒子がリフローにより溶融させることができるようSn、Cu、Ag、In、Niなど通常の半田に使用される金属からなる粒子(平均粒子径が5nm以上100nm未満、さらに好ましくは5〜80nm程度)が好適である。また、金属ナノ粒子は、半導体デバイスに悪影響を及ぼさない温度である400℃以下で焼結する。もしくは400℃以下の融点になるよう単独あるいは複数の金属成分を調整して使用する。金属ナノ粒子を溶融する場合、金属ナノ粒子は、すべての金属成分を溶融する必要はなく、溶融する成分により下地金属膜4と反応して正常な位置及び形状のバンプが形成されるようにすればよい。
【0023】
また、金属ナノ粒子ペーストは、上記の金属ナノ粒子を、水、アルコール類、有機溶剤などから選ばれた溶媒に、分散剤にて分散して作製される。ここで、分散剤は、金属ナノ粒子の表面を被覆する分子層を形成し、分散性を向上させるものである。なお、分散剤は、最終的に加熱工程において、金属ナノ粒子相互が表面を接触させる際に、その妨げとはならないことが好ましい。すなわち、例えば、200℃以上に加熱する際、金属ナノ粒子の表面から容易に離脱し、最終的には、蒸散・除去可能である沸点範囲のものであることが好ましい。分散剤としては、例えば、アルキルアミン、アルカンチオール、アルカンジオール、などを用いることができる。
【0024】
金属ナノ粒子ペーストに含まれる金属ナノ粒子の含有量は、ノズルから液滴を吐出する方法で使用可能な物性を備えるように、さらに積層回数を低減するために多くするのが好ましく、40mass%〜70mass%がより好ましい範囲である。
【0025】
なお、ノズルから液滴で吐出されて膜状に金属ナノ粒子(金属ナノ粒子膜)が形成された状態で、そのまま、フリップチップ実装の組立工程に送ってもよいが、ここで基材1を加熱することなどにより、金属ナノ粒子を焼結させたり溶融させたりする処理を行ってもよい。
【0026】
そして、積層した金属ナノ粒子を加熱することにより固化してバンプが形成される。加熱による固化は、金属ナノ粒子を焼結すること、又は金属ナノ粒子を一部若しくは全て溶融させることによって可能である。特に、金属ナノ粒子を融点以上で溶融して冷却することにより固化させるのが好ましく、このようにすれば、液滴がノズルから吐出されてできる形状に関わらず、表面張力によって形状の整ったバンプにすることができる。金属ナノ粒子を加熱する方法は、通常の半田のリフローに用いられる装置を用いればよく、温度プロファイルは使用するフラックスに好適なものとすればよい。
【0027】
本実施形態に係る基材1は、金属電極が形成され、バンプによって電気的接続されるものであり、例えば、配線が施されているもの、電子機器や光学電子デバイス等が搭載されているものである。基材1の例としては、シリコンウエハなど、半導体チップ、その配線基板等の半導体基板が挙げられる。
【実施例】
【0028】
以下、本発明の実施例を参照しながら発明の実施形態を説明する。
(実施例1)
まず、基材1として、複数の半導体デバイスが形成された8インチのシリコンウエハを用い、樹脂基板3としてポリイミド樹脂を用いた。なお、ピッチは40μmとし、ポリイミド樹脂の開口直径は15μmとした。開口部の内部の集積回路には電極2としてアルミニウム電極(以下、アルミ電極)が電気的に接続されており、その上に直径20μmの下地金属膜4が形成されている。下地金属膜4は、スパッタ法により形成された薄膜三層構造であり、アルミ電極側から順に厚み0.3μmのTi、厚み0.4μmのNi−7at%V合金、厚み0.3μmのCuとし、全体の構造としては、図1(a)に示したものとした。
【0029】
そして、シリコンウエハの金属電極(下地金属膜4)上に、静電式インクジェットヘッドを有するインクジェット印刷機により液滴を吐出して樹脂突起部5を形成した。このとき、液滴として熱硬化性樹脂を平均9μmの高さになるように吐出し、液滴の吐出量は約3pL(ピコリットル)であった。これにより、図1(b)に示した構造と同様なものが形成された。
【0030】
次に、同じく静電式インクジェットヘッドを有するインクジェット印刷機により、Snナノ粒子(平均粒径5nm)と分散剤とを含む金属ナノ粒子ペースト(Snナノ粒子含有量:60mass%の液滴)を、下地金属膜4及び樹脂突起部5上に吐出して、金属ナノ粒子を含む膜で被覆した。このときの金属ナノ粒子ペーストの吐出量は2pL(ピコリットル)であった。この吐出により、図1(c)に示した構造のように、金属電極及び樹脂突起部5上には約1.5μm厚みの金属ナノ粒子を含む膜が被覆された。
【0031】
以上のようにして、バンプ形成後のシリコンウエハから半導体チップを切り分けた後、基板にフリップチップ実装したところ、全チップともに正常な電気的接続が確認された。
【0032】
また、上記と同様に作製したシリコンウエハを更に最高温度260℃でリフローしたところ、樹脂が硬化するとともに、Snナノ粒子が溶融して、高さ約10μmのバンプが形成された。そして、同様に、バンプ形成後のシリコンウエハから半導体チップを切り分けた後、基板にフリップチップ実装したところ、全チップともに正常な電気的接続が確認された。さらに、前述した手順により図2に示したような構造のものを同様に作製し、同様に実験を行ったところ、同様の結果が得られた。
【0033】
(実施例2)
まず、基材1として、複数の半導体デバイスが形成された8インチのシリコンウエハを用い、樹脂基板3としてポリイミド樹脂を用いた。ポリイミド樹脂の開口直径は15μmとし、開口部の内部の集積回路には電極2としてアルミ電極が電気的に接続されており、その上に直径20μmの下地金属膜4が形成されている。下地金属膜4は、図4(b)に示す形状であり、スパッタ法により形成された薄膜三層構造で、アルミ電極側から順に厚み0.3μmのTi、厚み0.4μmのNi−7at%V合金、厚み0.3μmのCuとした。
【0034】
そして、シリコンウエハの金属電極(下地金属膜4)上に、静電式インクジェットヘッドを有するインクジェット印刷機により液滴を吐出して樹脂突起部5を形成した。このとき、液滴として熱硬化性樹脂を平均9μmの高さになるように吐出し、液滴の吐出量は約3pL(ピコリットル)であった。さらに液滴を吐出した後に、150℃で3時間の熱硬化処理を行った。
【0035】
次に、同じく静電式インクジェットヘッドを有するインクジェット印刷機により、Niナノ粒子(平均粒径10nm)と分散剤とを含む金属ナノ粒子ペースト(Niナノ粒子含有量:60mass%の液滴)を、下地金属膜4及び樹脂突起部5上に吐出して、金属ナノ粒子を含む膜で被覆した。さらに、重ねるようにSnナノ粒子(平均粒径5nm)と分散剤とを含む金属ナノ粒子ペースト(Snナノ粒子含有量:60mass%の液滴)を、下地金属膜4及び樹脂突起部5上に吐出して金属ナノ粒子を含む膜で被覆した。このとき、金属ナノ粒子ペーストの吐出量はそれぞれ2pL及び3pL(ピコリットル)であった。この吐出により、図4(a)に示した構造のように、金属電極及び樹脂突起部5上には約3μm厚みの金属ナノ粒子を含む膜が被覆された。
【0036】
以上のようにして、バンプ形成後のシリコンウエハから半導体チップを切り分けた後、基板にフリップチップ実装したところ、全チップともに正常な電気的接続が確認された。
【0037】
また、上記と同様に作製したシリコンウエハを更に最高温度260℃でリフローしたところ、Snナノ粒子が溶融して、高さ約12μmのバンプが形成された。そして、同様に、バンプ形成後のシリコンウエハから半導体チップを切り分けた後、基板にフリップチップ実装したところ、全チップともに正常な電気的接続が確認された。さらに、前述した手順により図2に示したような構造のものを同様に作製し、同様に実験を行ったところ、同様の結果が得られた。
【0038】
以上のように、図3及び図4に示すような構造では、凹型又はリング型の下地金属膜4が施されているので、樹脂突起部5を安定に精度よく形成でき、バンプの高さのばらつき等がない均一なバンプを容易に形成できたといえる。
【0039】
(実施例3)
本実施例では、実施例1と同様にバンプを形成したが、樹脂突起部5を形成する樹脂については、樹脂中に金属Ni粒子を分散させて導電性樹脂とした。具体的な手順は、以下のとおりである。
【0040】
まず、基材1として、複数の半導体デバイスが形成された8インチのシリコンウエハを用い、樹脂基板3としてポリイミド樹脂を用いた。なお、ピッチは40μmとし、ポリイミド樹脂の開口直径は15μmとした。開口部の内部の集積回路には電極2としてアルミ電極が電気的に接続されており、その上に直径20μmの下地金属膜4が形成されている。下地金属膜4は、スパッタ法により形成された薄膜三層構造であり、アルミ電極側から順に厚み0.3μmのTi、厚み0.4μmのNi−7at%V合金、厚み0.3μmのCuとし、全体の構造としては、図1(a)に示したものとした。
【0041】
そして、シリコンウエハの金属電極(下地金属膜4)上に、静電式インクジェットヘッドを有するインクジェット印刷機により液滴を吐出して、金属Ni粒子が分散して導電性が付与された樹脂突起部5を形成した。このとき、液滴として金属Ni粒子を含有する熱硬化性樹脂を平均9μmの高さになるように吐出し、液滴の吐出量は約3pL(ピコリットル)であった。これにより、図1(b)に示した構造と同様なものが形成された。
【0042】
次に、同じく静電式インクジェットヘッドを有するインクジェット印刷機により、Snナノ粒子(平均粒径5nm)と分散剤とを含む金属ナノ粒子ペースト(Snナノ粒子含有量:60mass%の液滴)を、下地金属膜4及び樹脂突起部5上に吐出して金属ナノ粒子を含む膜で被覆した。このときの金属ナノ粒子ペーストの吐出量は2pL(ピコリットル)であった。この吐出により、図1(c)に示したような構造のように、金属電極及び樹脂突起部5上には約1.5μm厚みの金属ナノ粒子を含む膜が被覆された。
【0043】
以上のようにして、バンプ形成後のシリコンウエハから半導体チップを切り分けた後、基板にフリップチップ実装したところ、全チップともに正常な電気的接続が確認された。
【0044】
また、上記と同様に作製したシリコンウエハを更に最高温度260℃でリフローしたところ、樹脂が硬化するとともに、Snナノ粒子が溶融して、高さ約10μmのバンプが形成された。そして、同様に、バンプ形成後のシリコンウエハから半導体チップを切り分けた後、基板にフリップチップ実装したところ、全チップともに正常な電気的接続が確認された。さらに、前述した手順により図2に示したような構造のものを同様に作製し、同様に実験を行ったところ、同様の結果が得られた。
【0045】
(実施例4)
本実施例では、実施例2と同様にバンプを形成したが、樹脂突起部5を形成する樹脂については、樹脂中に金属Ni粒子を分散させて導電性樹脂とした。具体的な手順は、以下のとおりである。
【0046】
まず、基材1として、複数の半導体デバイスが形成された8インチのシリコンウエハを用い、樹脂基板3としてポリイミド樹脂を用いた。ポリイミド樹脂の開口直径は15μmであり、開口部の内部の集積回路には電極2としてアルミ電極が電気的に接続されており、その上に直径20μmの下地金属膜4が形成されている。下地金属膜4は、図4(b)に示す形状であり、スパッタ法により形成された薄膜三層構造で、アルミ電極側から順に厚み0.3μmのTi、厚み0.4μmのNi−7at%V合金、厚み0.3μmのCuとした。
【0047】
そして、シリコンウエハの金属電極(下地金属膜4)上に、静電式インクジェットヘッドを有するインクジェット印刷機により液滴を吐出して、金属Ni粒子が分散して導電性が付与された樹脂突起部5を形成した。このとき、液滴として金属Ni粒子を含有する熱硬化性樹脂を平均9μmの高さになるように吐出し、このときの液滴の吐出量は約36pL(ピコリットル)であった。さらに液滴を吐出した後に、150℃で3時間の熱硬化処理を行った。
【0048】
次に、同じく静電式インクジェットヘッドを有するインクジェット印刷機により、Niナノ粒子(平均粒径10nm)と分散剤とを含む金属ナノ粒子ペースト(Niナノ粒子含有量:60mass%の液滴)を、下地金属膜4及び樹脂突起部5上に吐出して金属ナノ粒子を含む膜で被覆した、さらに、重ねるようにSnナノ粒子(平均粒径5nm)と分散剤とを含む金属ナノ粒子ペースト(Snナノ粒子含有量:60mass%の液滴)を、下地金属膜4及び樹脂突起部5上に吐出して金属ナノ粒子を含む膜で被覆した。このとき、金属ナノ粒子ペーストの吐出量はそれぞれ2pL及び3pL(ピコリットル)であった。この吐出により、図4(a)に示した構造のように、金属電極及び樹脂突起部5上には約3μm厚みの金属ナノ粒子を含む膜が被覆された。
【0049】
以上のようにして、バンプ形成後のシリコンウエハから半導体チップを切り分けた後、基板にフリップチップ実装したところ、全チップともに正常な電気的接続が確認された。
【0050】
また、上記と同様に作製したシリコンウエハを更に最高温度260℃でリフローしたところ、Snナノ粒子が溶融して、高さ約12μmのバンプが形成された。そして、同様に、バンプ形成後のシリコンウエハから半導体チップを切り分けた後、基板にフリップチップ実装したところ、全チップともに正常な電気的接続が確認された。さらに、前述した手順により図3に示したような構造のものを同様に作製し、同様に実験を行ったところ、同様の結果が得られた。
【0051】
以上のように、図3及び図4に示すような構造では、凹型又はリング型の下地金属膜4が施されているので、樹脂突起部5を安定に精度よく形成でき、バンプの高さのばらつき等がない均一なバンプを容易に形成できたといえる。
【産業上の利用可能性】
【0052】
本発明は、半導体チップに形成した突起電極(バンプ)を配線基板の配線パターンに電気的に接続するタイプの半導体装置に適用され、メモリやロジックやディスクリート半導体又はその組み合わせ回路など種々の用途に対応させることができる。また、本発明に係る樹脂突起部に使用する樹脂は、ノズルから液滴を吐出する方法による吐出が可能な樹脂であれば、導電性ポリマー、導電性樹脂混合物など広い範囲から選択できるため、信頼性に優れたバンプ形成及び半導体のフリップチップ実装が可能となる。さらに、樹脂突起部を形成した後に覆う導電膜も、金属ナノ粒子を含む液滴をノズルから吐出する方法により形成されるため、メッキ工程などの複雑な工程が必要でなく安価に製造できるとともに、種々の金属を組み合わせた複数の層からなる皮膜あるいは合金皮膜とすることができるため、信頼性に優れた組み合わせが選択できる。
【符号の説明】
【0053】
1 基材
2 電極
3 樹脂基板
4 下地金属膜
5 樹脂突起部
6 皮膜

【特許請求の範囲】
【請求項1】
基材の金属電極上にノズルから液滴を吐出してバンプを形成するバンプ形成方法であって、
樹脂を含む第1の液滴をノズルから吐出して、前記金属電極の一部に樹脂突起部を設ける工程と、
分散剤と金属ナノ粒子とを含む第2の液滴をノズルから吐出して、前記金属電極の残部又はその一部と前記樹脂突起部とを前記金属ナノ粒子で覆う工程と、を含むことを特徴とするバンプ形成方法。
【請求項2】
前記樹脂突起部を設ける位置に、予め下地金属膜を凹型に形成する工程をさらに含むことを特徴とする請求項1記載のバンプ形成方法。
【請求項3】
前記樹脂突起部を設けた基材を加熱する工程をさらに含むことを特徴とする請求項1又は2記載のバンプ形成方法。
【請求項4】
前記金属電極の残部と前記樹脂突起部とが前記金属ナノ粒子で覆われた基材を加熱する工程をさらに含むことを特徴とする請求項1〜3のいずれか1項に記載のバンプ形成方法。
【請求項5】
前記樹脂突起部を形成する樹脂は、導電性を有する樹脂であることを特徴とする請求項1〜4のいずれか1項に記載のバンプ形成方法。
【請求項6】
前記金属ナノ粒子の加熱は、前記金属ナノ粒子を溶融させるための加熱であることを特徴とする請求項4に記載のバンプ形成方法。
【請求項7】
請求項1〜6のいずれか1項に記載のバンプ形成方法により、半導体装置の基材にバンプを形成することを特徴とする半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate