説明

プラズモン強化型発光ダイオード

本発明の実施形態は発光ダイオードに向けられている。本発明の1実施形態では、発光ダイオードは、第1の真性半導体層と第2の半導体層の間に挟まれた少なくとも1つの量子井戸を備える。n型ヘテロ構造が第1の真性半導体層の表面に配置され、p型ヘテロ構造が、n型半導体ヘテロ構造に対向して第2の真性半導体層の表面に配置される。該ダイオードはまた、該発光ダイオードの表面に配置された金属構造を備える。金属構造と発光ダイオード表面との間の境界面に沿って形成された表面プラズモンポラリトンは、該少なくとも1つの量子井戸中へと延びて、該少なくとも1つの量子井戸から放出される電磁放射の横磁界成分の自然放出率を高める。いくつかの実施形態では、該電磁放射を約10Gb/s以上のレートで変調することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、光電子デバイス、特に、表面プラズモンポラリトンを介して強化された発光ダイオードに向けられている。
【背景技術】
【0002】
マイクロエレクトロニクス産業は、小型、高性能、低消費電力マイクロエレクトロニクスデバイスに対する絶え間なく高まる要求によって発展してきた。マイクロエレクトロニクスのメーカは、たとえば、50nmのオーダーの寸法のマイクロプロセッサトランジスタを製作することができる。しかしながら、これらのマイクロプロセッサ間のデジタル情報の伝送、一般的には、同じ回路基板に配置された計算デバイスと記憶デバイス間でのデジタル情報の伝送には比較的大きな遅延が存在する。デジタル情報を伝送するために銅及びアルミ線による相互接続が伝統的に使用されてきたが、数が指数関数的に増加するナノスケール電子デバイスによって必要とされる接続の数に対応するには、電子的相互接続の数を増加させることでは追いつかなくなってきた。性能がスケーリングとともに向上するトランジスタとは異なり、電子的相互接続の数の対応する増加によって引き起こされる遅延は大きくなるとともに、デジタル回路の速度の重大なボトルネックとなっている。
【0003】
光ファイバーやポリマー導波路を使用する光学的相互接続が、電子的相互接続の代替として提案されている。たとえば、単一光ファイバーケーブルは、チャンネルすなわち光の異なる波長に符号化された数テラビット/秒のデジタル情報を伝送することができるが、これは、電気ケーブルを用いて同じデジタル情報を伝送する場合の約1000倍の能力である。「光」という用語は、電磁スペクトルの可視部にある波長を有する電磁放射に限定されず、赤外部や紫外部などの可視部以外の波長を有する電磁放射を指すためにも用いられ、及び、古典電磁放射及び量子電磁放射の両方を指すために用いられることもできる。半導体レーザ及び発光ダイオード(「LED」)は、光通信用に一般的に使用される2つの光源である。しかしながら、これらの光源の構成及び動作は基本的に異なっており、性能及びコストの違いが、どの光源を使用するかを決定する際の重要な要因になりうる。一般に、半導体レーザ及びLEDは半導体材料を使用するが、動作の態様、及び、それらの動作を制御する内部構造に主な違いがある。以下に、LEDと半導体レーザの構造及び動作上の類似点及び相違点の概要を簡単に説明する。
【0004】
LEDは、順方向に電気的にバイアスされたときに非コヒーレンスの狭いスペクトル光を放射する半導体p-i-n接合ダイオードである。この効果は、エレクトロルミネセンスの形態をとる。図1は、LED100の概略を表す断面図である。LED100は、p型半導体領域104とn型半導体領域106の間に挟まれた真性領域すなわちドープされていない領域102を有する。電極108と100が領域104と106にそれぞれ接続されている。領域104と106は、より幅広の(直接遷移型または間接遷移型)電子バンドギャップ半導体であることができ、一方、領域102はそれより幅の狭い直接遷移型バンドギャップ半導体であることができ、それゆえ、二重ヘテロ構造p-i-n接合を形成することができる。p形領域104は、不純物すなわち、電子受容体原子をドープされており、これらの電子受容体原子は、これらが半導体化合物において置き換わる原子よりも少ない電子を有し、これによって、p型領域104の価電子帯(valance band)にホール(正孔)または空電子エネルギー状態を生成する。一方、n型領域106は、不純物、すなわち、半導体に電子を与える電子供与体(電子ドナー)原子をドープされており、これによって、n型領域106の伝導帯の電子エネルギー状態に余分の電子を残す。空乏領域が、p型半導体領域104とn型半導体領域106の間の化学ポテンシャルの差の結果として領域102に形成される。この組み込まれたポテンシャルの差は、p型領域104とn型領域106の間の電子及びホールの流れを妨げる平衡条件である。このポテンシャルの差は、電流がダイオードを通って流れることができるようになるまでに克服されなければならない。
【0005】
図2のA及び図2のBは、領域102、104、106の電子エネルギーバンド図である。図2のA及びBにおいて、領域202などの濃く網掛けされている領域は、ほとんどが充填された電子エネルギー状態を表しており、領域204などの薄く網掛けされた領域は、正電荷キャリアのように作用する「ホール」と呼ばれるほとんど空の電子エネルギー状態を表している。電子及びホールは「電荷キャリア(電荷担体)」と呼ばれる。電子供与体不純物は、伝導帯に近い電子状態を生成し、電子受容体は価電子帯に近い電子状態を生成する。したがって、図2のAに示すように、pドープ領域(p型がドープされた領域)104に関連する価電子帯及び伝導帯は、nドープ領域(n型がドープされた領域)106に関連する価電子帯及び伝導帯よりも電子エネルギーが高い。領域102、104、106に関連するバンドギャップエネルギーの大きさに依存して、領域206及び208によって示すように、いくつかの電子をほとんどが空の伝導帯へと熱的に励起することができる。0のバイアスでは、領域102は、伝導帯において比較的低い濃度の電子を有し、それと同じ数のホールを価電子帯に有する。図2のAは、また、領域102に関連する急勾配の伝導帯及び価電子帯を明らかにしており、該領域102は、ホール及び電子が、近傍にあるpドープ領域104及びnドープ領域106からそれぞれ移動するのを阻止する。しかしながら、順方向バイアスがLED100に印加されると、電子はnドープ領域106に注入され、ホールはpドープ領域104に注入される。したがって、電子エネルギーバンド図は、これに応じて、図2のBに示すように変化する。領域102に関連する急勾配のポテンシャルは平坦になる。電子はn型領域106から領域102の伝導帯へと注入され、ホールはp型領域104から領域102の価電子帯へと注入される。電子とホールの数は同じに維持されることに留意されたい。領域104及び106の比較的高い電子バンドギャップエネルギーは、流入されたキャリアを真性領域102に閉じこめる働きをする。「電子−ホール再結合」または「再結合」と呼ばれる放射プロセスにおいて、電子は、伝導帯210の一番下から、価電子帯212の一番上にあるホールと自発的に再結合して、
E=hν≧Eg
で表されるエネルギーEの光のフォトン(光子)を放出する。ここで、hはプランク定数であり、νは放出される光の周波数である。適切な電圧が同じバイアス方向である順方向に印加される限り、反転分布が維持され、電子及びホールはダイオードを通って流れ、接合部102で自発的に再結合し、LED100からほぼ全ての方向に周波数νの光が放出される。
【0006】
一方、半導体レーザは、利得媒質、ポンプ、及び、レーザキャビティに利得媒質を配置することによって生成可能なフィードバックを備える。図3は、半導体ダイオードレーザ300の概略を表す断面図である。レーザ300の利得媒質は、LED100を参照して上述したように、p型領域304とn型領域306の間に挟まれた1つ以上の量子井戸302を有する真性領域から構成される。レーザ300はまた、完全反射ミラー308及び部分反射ミラー310によって形成されたキャビティを備える。ミラー308及び310は、光のコヒーレントビームを生成するのに必要なフィードバックを提供する。利得媒質をポンピングすることによって、「反転分布」と呼ばれるプロセスにおいて、キャリアが伝導帯に注入され、ホールが価電子帯に注入される。しかしながら、LEDとは異なり、周波数νの光の自然放出は、ミラー308及び310によって反射されて利得媒質へと戻される。自然放出によって生成された光は、周波数がνのより多くの光の放出を促進(または刺激)し、促進された放出は、周波数がνのさらに多くの光の放出を促進(または刺激)する。これらの光は吸収されず、実質的に同じ方向、波長及び位相で、ミラー308と310の間を往復することによって増大し続け、強め合うように干渉して、接合部302にほぼ平行な部分反射ミラー310から漏れ出る周波数νの光の増幅されたコヒーレントビームを生成する。半導体レーザは、面発光レーザ(「VCSEL」)のような、接合部に垂直な光を放出するブラッグ反射器を形成するように異なる屈折率を有する層で構成することができる。
【0007】
一般に、LEDは、自発的な電子−ホール再結合を介して光を放出する。これとは対照的に、半導体レーザは、主に誘導された電子−ホール再結合を介して光を放出するが、これは、光を利得媒質中に伝搬させることによって達成される。その結果、レーザを、典型的なLEDよりもはるかに速い速度で変調することができる。なぜなら、電子−ホールの再結合率(または電子−ホールの再結合レートまたは電子−ホールの再結合の速さ。以下同じ)は誘導放出によって促進されるが、LEDにおける自発的(自然発生的な)電子−ホール再結合はそれよりはるかに遅いプロセスだからである。一方、レーザキャビティ(レーザ空胴)にフォトンを予め送り込むことは、レーザ閾値の観点から測定されるあるエネルギーコストがかかる。LEDは、閾値を持っておらず、より低い入力電力及びより単純な駆動回路で動作することができる。
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、光電子デバイスで使用される半導体レーザの比較的高いコストは、該半導体レーザが普及するのを制限する要因である。たとえば、多くの高速光通信システムにおいて、最もコストの高い要素はレーザである。VCSELは、約300mよりも短い光通信リンクで使用されることができるレーザの1例である。VCSELは信頼性が高くて効率がよく、さらに、10Gb/sを超える変調速度が可能であるが、計算及び通信装置にVCSELを実装するコストは法外に高くなりうる。
【0009】
典型的なLEDは、高速のVCSELよりも約1000倍安いので、LEDは、信頼性の高い安価なものとしてレーザの代替物となりうる。しかしながら、LEDの性能をレーザと比較すると、LEDには、800Mb/sより遅い変調速度、半値全幅の約30nmという広いスペクトル線幅、効率の悪さ、ランバート放射パターン(lambertianradiation pattern)を含むいくつかの重大な制限がある。
【図面の簡単な説明】
【0010】
【図1】発光ダイオードの概略を表す断面図である。
【図2】半導体ダイオードの接合部に関する電子エネルギーバンド図を示す。
【図3】半導体ダイオードレーザの概略を表す断面図である。
【図4】直接遷移型半導体に関する価電子帯及び伝導帯のプロットを示す。
【図5】ひずみが与えられていない直接遷移型半導体の価電子帯構造のプロットを示す。
【図6】2つのより厚い半導体層の間に挟まれた量子井戸の等角図である。
【図7】量子井戸に関連する2つの価電子帯サブバンド及び伝導帯サブバンドのプロットを示す。
【図8】歪みを受けていない状態と伸張歪みを受けた状態で直接遷移型半導体の電子エネルギー準位がどのように変わるかを示す。
【図9】伸張歪みを受けた量子井戸に関する価電子帯構造を示す。
【図10】本発明の実施形態にしたがって構成された第1の発光ダイオードの概略を表す断面図である。
【図11】本発明の実施形態にしたがって電圧源に接続された、図10に示す発光ダイオードの等角図である。
【図12】本発明の実施形態にしたがって動作する、図10に示す発光ダイオードの断面図である。
【図13】本発明の実施形態にしたがって構成された第2の発光ダイオードの等角図である。
【図14A】本発明の実施形態にしたがって構成された第3の発光ダイオードの概略を表す断面図である。
【図14B】本発明の実施形態にしたがう、図14Aに示す発光ダイオードに関連するフォトルミネセンススペクトルのプロットを示す。
【図15】本発明の実施形態にしたがって構成された第4の発光ダイオードの概略を表す断面図である。
【発明を実施するための形態】
【0011】
詳細な説明
本発明の種々の実施形態は、表面プラズモンポラリトン(「SPP」)強化型LEDに向けられている。これらのLEDは、光源として、少なくとも1つの伸張歪み(引っ張り歪みともいう)が与えられた量子井戸(「QW」)を含む。QWの自然放出(「SE」)レートは、QW固有の特性ではないが、QWの電磁環境に依存する。本発明のLEDの実施形態は、LED表面に配置された金属構造に近接してQWを配置することによってこの現象を利用する。この金属−LED境界面(インターフェース)は、QW中に入り込む(延びる)電子−プラズマ振動によってSPPの形成をサポートする。これらの電子−プラズマ振動は、パーセル効果(Purcell effect)によってQW内の電子−ホール対の再結合率(すなわち、SEレート)を高める。いくつかのSPP強化型LEDの実施形態は、金属−LED境界面から約20〜30nm離れたところに配置された伸張歪みを与えられたQWを用いて800nm近辺の波長範囲にわたって光を放出する。これらのSPP強化型LEDは、約10Gb/s以上の変調速度で光を放出できる一方で、約20%を超える放射効率を維持でき、これらは、VCSELや他の半導体レーザの変調速度及び効率と比較しても遜色ないものである。典型的なSPP強化形LEDとは異なり、本発明のLEDの実施形態によって作製されたSPPは、より寿命が長く、金属−LED境界面に沿っていくつかの波長の距離にわたって伝搬することができ、自由空間中へ再放出されることができる。
【0012】
読者がQW及び伸張歪みが与えられたQWを理解するのを支援するために、QW及び伸張歪みが与えられたQWの概要を第1のサブセクションで提供する。本発明の種々のシステムの実施形態は第2のサブセクションで説明される。
【0013】
量子井戸及び伸張歪みが与えられた量子井戸
半導体原子の外側の電子は、半導体結晶全体にわたって非局在化しており、該外側電子に対応する波動関数を以下のように書くことができる。
【数1】


ここで、
【数2】


は、結晶格子の周期性を表しており、
【数3】


は波数ベクトルであり、kは、波数
【数4】


であり、
【数5】


は、半導体の座標ベクトルである。対応する電子エネルギーEは、
【数6】


の関数であり、これらのエネルギー値は、許容されたエネルギー帯内にある。簡単にするために、最も高位の充満帯(filled band)、価電子帯、2番目に高い帯(バンド)、及び伝導帯のみが記述される。放物型バンド(パラボリックバンド。または放物形伝導帯)近似においては、価電子帯及び伝導帯を放物線によって近似することができる。
【0014】
図4は、直接遷移型半導体の価電子帯及び伝導帯のプロットを示す。図4において、水平軸402は波数kを表しており、垂直軸404はエネルギーEを表しており、放物線406は伝導帯を表しており、放物線408は価電子帯を表している。伝導帯406のエネルギーを次の放物型方程式によって表すことができる。
【数7】


ここで、
【数8】


は、伝導帯406の一番下にある電子の有効質量であり、
【数9】


は、プランク定数hを2πで除したものであり、Eはバンドギャップエネルギーである。価電子帯408におけるエネルギーは、価電子帯の一番上から下方に向かって測定され、次の放物型方程式によって表すことができる。
【数10】


ここで、
【数11】


は、価電子帯408の一番上における電子の有効質量である。
【0015】
直接遷移型半導体は、伝導帯の底の位置に対する価電子帯の最上部の位置によって間接遷移型半導体と区別される。直接遷移型半導体の場合、価電子帯の最上部と伝導帯の底は同じ波数において生じ、この波数kは、図4に示す価電子帯及び伝導帯では0である。これとは対照的に、間接遷移型半導体の場合は、価電子帯の最上部と伝導帯の底は異なる波数で生じる。直接遷移型半導体を、Al、Ga、Inなどの周期表のIIIA群の元素と、N、P、As、Sbなどの周期表のVA群の元素との組み合わせから形成することができ、それらの組み合わせは、III-V化合物半導体と呼ばれる。そのような直接遷移型半導体の例には、GaAs、三元半導体AlGaAs、InGaP、InGaAs、四元半導体InGaAsPなどがある。SiやGeは間接遷移型半導体の例である。
【0016】
価電子帯408及び伝導帯406の一次元モデルを、k、k、kを電子の波数ベクトル
【数12】


の成分とし、及び、有効質量(すなわちバンド曲率)がx、y、z座標方向に沿って同じであると仮定することによって3次元に一般化することができる。有限寸法L、L、Lを有する有限サイズの矩形の平行6面体の半導体結晶は、該結晶全体における全位相シフト
【数13】


に対する境界条件を与える。したがって、波数ベクトルの成分は、
【数14】


として量子化することができる。
ここで、i=x、y、zであり、lは整数である。換言すれば、電子エネルギー状態は、量子化されて、価電子帯408では、円410などの円によって、及び、伝導帯406では、円412などの円によって表される。充填された(黒い)円は、電子または充填された電子エネルギー状態を表し、空いている(白い)円は、ホールまたは空の電子エネルギー状態を表している。
【0017】
電子エネルギー状態が同じ波数kを有し、電子スピンが変化しない放射電子遷移だけが、伝導帯406と価電子帯408の間で許された遷移である。換言すれば、伝導帯406における電子エネルギー状態と価電子帯408における電子エネルギー状態の間の許容された電子遷移の場合、波数k及び電子スピン状態は変化しない。たとえば、図4に示すように、方向を示す矢印414は、伝導帯406における電子エネルギー状態412と、価電子帯408における電子エネルギー状態410との間の許容された電子エネルギー状態遷移を表しており、エネルギー差は、
【数15】


によって与えられる。ここで、mは、m−1=m−1+m−1νによって与えられる減少した質量である。電子エネルギー状態410にある電子が電子エネルギー状態412に遷移するために、該電子を周波数νを有するフォトンでポンピング(励起)することができる。電子エネルギー状態412から電子エネルギー状態410に、電子が自発的に遷移するとき、または、電子が誘導(刺激)されて遷移するときには、フォトンが周波数νで放出される。
【0018】
直接遷移型半導体の場合は、実際には、価電子帯408に関連する3つの異なるタイプの帯(バンド)が存在する。これらの3つのバンドは、重いホール(「HH」)バンド(heavy hole band)、軽いホール(「LH」)バンド(light hole band)、スプリットオフ(「SO」)バンド(split-off band)と呼ばれる。図5は、歪みが与えられていない直接遷移型半導体の価電子帯構造を示す。スプリットオフバンド502は、0に等しいkにおいてΔだけエネルギーが低いところにあって、常に電子で充填されており、伝導帯406から生じる放射遷移及び非放射遷移に関与しない。価電子帯408の有効質量mνは、HHバンド504の有効質量mHHに等しい。その結果、伝導帯406から価電子帯408におけるホールへの電子遷移に関しては、価電子帯408を、HHバンド504に対応するものと見なすことができる。たとえば、伝導帯406の電子エネルギー状態412にある電子は、、HHバンド504におけるホール410に遷移する(506)。LHバンド508は、0に等しいkにおいてHHバンド504と同じエネルギーを共有する。しかしながら、LHバンド508の有効質量mLH(すなわち、0に等しいkにおける曲率)は、HHバンド504の有効質量mHHよりもずっと小さいので、LHバンド508における軽いホールの状態密度は、HHバンド504における重いホールの状態密度の何分の一かにすぎない。その結果、LHバンド508は、伝導帯406から遷移する電子を受け入れず、HHバンド504に比較すると典型的には無視される。
【0019】
QW半導体では、約5nm〜約20nmの厚さの比較的小さな電子バンドギャップエネルギー半導体材料Eg1の比較的薄い層が、比較的大きな電子バンドギャップエネルギー半導体材料Eg2の2つの比較的厚い層の間に挟まれている。図6は、2つの比較的厚い半導体層604と606の間に挟まれたQW602の等角図である。Eg2はEg1より大きいので、電子については、QW602の価電子帯の一番上の電子についてポテンシャル井戸が確立され、ホールについては、QW602の伝導帯の底にあるホールについてポテンシャル井戸が確立される。これらのポテンシャル井戸に電子及びホールが閉じこめられることによって、電子及びホールのエネルギー準位は量子効果を示す。対応する価電子帯及び伝導帯の電子波動関数を次のように書くことができる。
【0020】
【数16】


ここで、
【数17】


は、x、y面においてQW結晶格子の周期性を有し、
【数18】


は、x、y面波数ベクトルであり、
【数19】


は、x、y面におけるQW座標ベクトルである。波動関数
【数20】


は、
【数21】


が、zが0に等しい場合及びzがLに等しい場合には0である、という境界条件を満たす。x、y面における有限サイズのQWは、結晶全体における全位相シフト
【数22】


が2πの整数倍であり、波数ベクトル
【数23】


の成分が、
【数24】


として量子化されるように境界条件を与える。ここで、i=x、yであり、lは整数である。
【0021】
放物型バンド近似において、エネルギー状態は今や、伝導帯については、
【数25】


と書くことができ、価電子帯については、
【数26】


と書くことができるサブバンドエネルギー状態を含んでいる。ここで、nは、サブバンドエネルギー状態に対応する正の整数または量子数であり、
【数27】


は、波数
【数28】


であり、
【数29】


は、第1のQW状態のエネルギーである。
【0022】
図7は、QWに関連する価電子帯及び伝導帯の2つのサブバンドのプロットを示す。図7において、水平軸702は波数
【数30】


を表し、垂直軸704は電子エネルギーEを表し、放物線706及び708は、n=1、n=2のそれぞれの場合の伝導帯サブバンドを表し、放物線710及び712は、n=1、n=2のそれぞれの場合の価電子帯サブバンドを表している。QWのサイズが有限であるために、サブバンドの電子エネルギー状態が量子化される。利用可能な電子状態は円によって表されており、価電子帯710及び712において充填されている(黒い)円は電子を表し、伝導帯706及び708において空いている(白い)円はホールを表している。
【0023】
同じn、同じ
【数31】


、及び、同じ電子スピン状態を有する伝導帯と価電子帯間の遷移のみが許容される。たとえば、図7に示すように、方向を示す矢印714は、伝導帯706における電子エネルギー状態716と価電子帯710における電子エネルギー状態718との間の第1の許容された電子エネルギー状態遷移を表し、方向を示す矢印720は、伝導帯708における電子エネルギー状態722と価電子帯712における電子エネルギー状態724との間の第2の許容された電子エネルギー状態遷移を表している。これとは対照的に、方向を示す破線の矢印726は許容されない電子エネルギー状態遷移を表しているが、これは、伝導帯706と価電子帯712に関連する量子数nが異なるからである。
【0024】
図6に示すようにQW602の厚みが比較的小さいために、QW602の格子定数は、層604及び606の格子定数と大きく異なる場合がある。量子井戸への歪みの導入は、障壁層(または空乏層)とは異なる格子定数を有する材料の外部に量子井戸を成長させることによって達成することができる。障壁層よりも大きな格子定数を有するQWは、圧縮歪みが与えられたQWとなり、障壁層よりも小さな格子定数を有するQWは伸張歪みが与えられたQWとなる。半導体の電子バンドギャップエネルギーはそれの格子間隔に関連するので、QW結晶格子に導入された歪みは、その歪みが与えられたQWの電子バンドギャップエネルギーを変える。一般的に、歪みは、QWの伝導帯及び価電子帯の両方の構造を変更する。たとえば、QW602の伸張ひずみ(たとえば、x、y面内で方向付けられたひずみ)は、QW602の量子特性を変え、伝導帯構造及び価電子帯構造に関連する有効質量を変える。伸張歪みが与えられたQWの場合は、量子サイズ効果及び有効質量における変化が、同じ歪みを受けたQW602の光学的特性とは著しく異なるQW602の光学的特性を生ぜしめる。
【0025】
図8は、
【数32】


が0に等しい場合に、歪みが与えられていない状態と伸張歪みが与えられている状態の下で、直接遷移型半導体の電子エネルギー準位がどのように変わるかを示している。図8に示すように、伸張歪みは、LHバンドをHHバンドから分離して、LHバンドのエネルギーをHHバンドのエネルギーよりも大きくすることによってQW602の価電子帯構造を変更する。図8はまた、伸張歪みを受けた状態にあるQWの伝導帯と価電子帯の間のエネルギー差が、歪みを受けていない状態の同じQWのそれらのエネルギー差とは異なることを明らかにしている。換言すれば、
【数33】


が0に等しい場合には、伸張歪みを受けているQWから放出された光(Egts=hνgts)の周波数νgtsは、同じ半導体材料から構成されている歪みを受けていないQWから放出された光(E=hνg)の周波数νとは異なる。
【0026】
図9は、伸張歪みが与えられたQWの価電子帯構造を示す。伸張歪みは、LHバンド902をHHバンド904よりも高くし、LHバンド902の有効質量mLH(すなわち、曲率)を、図5に示す歪みが与えられていない場合に比べて大きくする。これは、伝導帯906からLHバンド902への遷移を促進して、主としてTM(横磁界)成分偏光を生成する。TM偏光は、QW602のx、y面にほぼ垂直に放出され、TE(横電界)成分は、QW602のx、y面においてほぼ吸収される。
【0027】
本発明の実施形態
図10は、本発明の実施形態にしたがって構成されたLED1000の概略を表す断面図である。LED1000は、第1の半導体層1004と第2の半導体層1006との間に挟まれたQW1002を備えている。第1及び第2の半導体層1004及び1006を、真性の直接遷移型バンドギャップ半導体材料から構成することができる。層1004及び1006は、QW1002を囲む障壁層よりも広い電子バンドギャップを有する。これらの障壁層は、QW1002内に電子及びホールを閉じこめる作用をする。LED1000は、第1の半導体層1004の表面に配置されたn型ヘテロ構造1008と、第2の半導体層1006の表面に配置されたp型ヘテロ構造1010を備える。LED1000はまた、n型ヘテロ構造1008の表面に配置された金属構造1012を備える。QW1002は、QW1002内に伸張歪みを生成するために、第1及び第2の半導体層1004及び1006の格子に対して格子不整合状態にある直接遷移型バンドギャップ半導体層である。
【0028】
図10に示すように、n型及びp型ヘテロ構造1008及び1010は複数の層からなる。これらの層の各々を、各層が、同じヘテロ構造内の隣接する層とは異なる電子バンドギャップエネルギーを有するように、別様にドープされているかまたはドープされていない直接遷移型または間接遷移型バンドギャップ半導体材料から構成することができる。また、異なる材料が選択されるが、それらの材料は、量子井戸1002に生成されたフォトンに対して透明であるように選択される。たとえば、各層を、バンドキャップがより広い異なるIII-V化合物半導体から構成することができる。具体的には、n型ヘテロ構造1008は、第1の半導体層1004の表面に配置された第1のn型半導体層1014、及び、該第1のn型半導体層1014と金属構造1012との間に挟まれた第2のn型半導体層1016から構成される。n型半導体は、電子供与体不純物をドープされた半導体である。第1のn型半導体層1014を、第2のn型半導体層1016の電子バンドギャップエネルギーより大きいかまたはそれと同じ電子バンドギャップエネルギーを有する半導体及びドーパントから構成することができる。p型ヘテロ構造1010は以下の層から構成されている。すなわち、第2の半導体層1006の表面に配置された第1の組成的に傾斜した半導体層1018、該第1の傾斜した半導体層1018の表面に配置された第1のp型半導体層1020、第1のp型半導体層1020の表面に配置された第2の組成的に傾斜した半導体層1022、該第2の傾斜した半導体層1022の表面に配置された第2のp型半導体層1024、及び、該第2のp型半導体層1024の表面に配置された第3のp型半導体層から構成されている。p型半導体は、電子受容体不純物をドープされている半導体である。組織的に傾斜した半導体は、電子バンドギャップが位置と共に変わる半導体である。これは、半導体の組成を変化させることによって達成される。傾斜した領域はヘテロ接合不連続性を最小化するために導入されるが、これは、半導体層間の直列抵抗を小さくして電流の流れを改善する。第1及び第2の傾斜した半導体層1018及び1022を、隣接する第1及び第2のp型半導体層1020及び1024よりも電子バンドギャップエネルギーが大きなp型半導体材料から構成することができる。
【0029】
本発明のLEDの実施形態は、図10を参照して説明したヘテロ構造の金属構造/n-i-p配列に限定されない。換言すれば、LEDの実施形態は、n型ヘテロ構造1008を構成する2つのn型半導体層、及び、該ヘテロ構造1010を構成する5つのp型半導体層には限定されない。他の実施形態では、第1の半導体層1004と金属構造1012の間に配置された層1016及び1014に、p型ヘテロ構造1008を与えるp型不純物をドープすることができ、層1018〜1026に、n型ヘテロ構造1010を与えるn型不純物をドープすることができる。換言すれば、LED1000は、ヘテロ構造をなす金属構造/p-i-n配列を有することができる。
【0030】
異なる実施形態では、LED1000を構成する個々の層の厚みを大きく変えることができる。たとえば、LED層の厚みは、以下の表1に示す範囲をとることができる。
【0031】
【表1】

【0032】
順方向バイアス方向に適切な電圧を印加することによってLED1000を動作させることができる。図11は、LED1000の等角図であって、本発明の実施形態にしたがって電圧源に接続されたLED1000の略図である。図11に示すように、層1102が、LED1000の第3のp型半導体層1026の外面に配置されており、電圧源1104が、金属構造1012及び層1102に接続されている。層1102を、導電性で光学的に透明な材料から構成することができる。たとえば、層1102を、インジウムスズ酸化物(「ITO」)または別の適切な導電性の透明材料とすることができる。電圧源1104は、n型ヘテロ構造1008に負電圧を供給し、p型ヘテロ構造1010に正電圧を供給するように構成されている。負電圧は、電子をQW1002に向かって駆動するものと考えることができ、正電圧は、ホールをQW1002に向かって駆動するものと考えることができる。QW1002は、LED1000の残りの層よりも電子バンドギャップエネルギーEが小さい直接遷移型バンドギャップ半導体材料から構成されている。電圧源1104を、n型ヘテロ構造とp型ヘテロ構造からQW1002へとそれぞれ電子とホールを注入するのに十分大きな電圧レベルを供給するように構成することができる。QW1002によって生成された光は、QW1002から放出されて、層1102を通ってLED1000から出力される。
【0033】
本発明のLEDの実施形態は、図11に示す矩形の箱状の構成に限定されないことに留意されたい。LEDの実施形態を、多くの異なる3次元形状に形成することができるが、それらには、直平行六面体、円柱形、n角柱、不規則な形状の角柱、多面体、あるいは、任意の他の適切な3次元形状が含まれる。さらに、LEDの表面は、半導体と空気の境界面における全反射(「TIR」)を回避するために粗くすることができる。
【0034】
QW1002において電子−ホール対を再結合することは、双極子を崩壊することであると考えることができる。本発明の実施形態の動作を説明するために、「電子−ホール対」という用語と「双極子」という用語は同じ意味で用いられる。一般的に、崩壊する双極子のSEレートは、双極子強度だけでなく、その電磁(「EM」)環境にも依存する。双極子近辺のEM環境を変えることによって、双極子のSEレートを、完全に抑圧された放射から大きく増強された放射へと調整することができ、これは「パーセル効果」と呼ばれている。パーセル効果を理解する1つの方法は、双極子遷移周波数に対応する所与の周波数νにおいて振動する光学「モード」の集合としてのEM環境を考えることである。バルク材では、これらのモードは、周波数νの全ての平面EM波の単なる集合である。双極子が、該双極子の位置において電界
【数34】


を有する特定のモードに結合する放射パワーの量は、
【数35】


に比例する。ここで、
【数36】


は、双極子モーメントの配向(向き)または双極子ベクトルである。したがって、双極子の放射パワーは、双極子が電界
【数37】


に整列したときに最大になり、整列していないときに0になる。さらに、双極子によって放出される全パワーは、
【数38】


の周波数νのすべてのモードにわたる合計に単純に比例する。光学キャビティや他の共振要素を導入するなどによって、双極子近辺のEM環境を変えることにより、周波数νの第1の周波数領域のモードを周波数νの第2の周波数領域に変換して、該第1の周波数領域におけるモードの数(または密度)を激減させて、該第2の周波数領域におけるモードの数を多くすることができる。これが行われると、周波数νで振動する双極子は、該双極子が崩壊して移行するのに利用可能なモードの数が少なくされているためにより遅く崩壊する。これとは対照的に、周波数νで振動する双極子は、該双極子が崩壊して移行するのに利用可能なモードの数が多くされているためにより速く崩壊する。
【0035】
=(複合環境における双極子のSEレート)/(バルク材における双極子のSEレート)
によって与えられるパーセル係数(またはパーセル因子)を用いて、SEレートを測定することができる。尚、複合環境はQWを指し、バルク材は、n型及びp型ヘテロ構造などの周りを囲んでいる材料を指す。パーセル係数が大きくなるほどSEレートは速くなる。
【0036】
図12は、本発明の実施形態にしたがって動作するLED1000の断面図である。QW1002における電子−ホール対(すなわち、双極子)の再結合のSEレートは、QW1002の半導体材料だけの固有の特性ではない。上述したように、電子−ホール対の再結合のSEレートは、QW1002の電磁環境に依存する。具体的には、QW1002のSEレートは、QW1002の位置における電磁真空場の状態の局所密度に依存し、これは、QW1002が結合することができる伝搬する光学モードの数及び強度の測度である。再結合する電子−ホール対の電磁環境を変えて、QW1002のSEレートを高めるために、SPPが、金属構造1012と第2のn型半導体層1016との間の境界面1212に沿って形成される。図11を参照して説明したように、電圧がLED1000に印加され、電子−ホール再結合の結果として光が放出される。この光によって、境界面1212に沿ってSPPが形成される。SPPは、電子−ホール対の再結合率を高め、これによって、LED1000から光が放出され、SPPの形成が促進される。境界面1202はSPPモードを支援する。該SPPモードは、金属の表面に存在する電子励起の量子化された状態であり、縦方向と横方向の電磁界成分の両方を有する電子−プラズマ振動として現れる。磁界成分は、境界面1202にほぼ平行で、かつ、伝搬方向にほぼ垂直であり、一方、電界成分は、境界面1202に垂直で、かつ、対象とする波長におけるSPP伝搬方向に平行である。
【0037】
本発明では、QW1002の再結合する双極子(すなわち、電子−ホール対)近辺に金属−誘電体境界面1212が存在するために、そのSEレートを少なくとも10倍高めることができるように、QW周波数におけるモード密度を変更することができる。境界面1212は、次の有効(複素)屈折率によって記述される分散を有する光学SPPモードを支援する。
【数39】


ここで、ε及びεは、それぞれ、金属と誘電体材料の(複素)誘電率であり、該金属のプラズマ周波数のすぐ上の周波数範囲におけるものである。εの実部は実質的に負である。SPPは、境界面1212から数十ナノメートル内において非常に強い電界
【数40】


を有する。実際、この電界は非常に強いために、SPPモードだけが双極子SE崩壊の大部分を収集して、その大きなSEレートの増加をSPPモードによって占めることができる場合がある。LED1000は、QW1002が境界面1202の近くにあり、これによって、SPPの電子−プラズマ振動がQW1002に及ぶように(またはQW1002中に入り込むように)構成される。たとえば、QW1002は、境界面1212から約20〜30nmのところにあるものとすることができる。図12において、曲線1204は、電子−プラズマ振動の電界
【数41】


成分が金属構造1012中に入り込む範囲を表しており、曲線1206は、電子−プラズマ振動の電界成分が、n型ヘテロ構造1008を貫通してQW1002中へと入り込む範囲を表している。曲線604及び606は、電界成分が境界面1202から離れるにしたがって、どのように指数関数的に減衰するかを示している。SPPは、QW1002における電子−ホール対の再結合率の大幅な増加を導く高密度電界を有している。QW1002は伸張歪みを受けているので、図8及び図9を参照して上述したように、対応する価電子帯構造は、LHサブバンドの電子エネルギーがHHサブバンドよりも高くなるように変更される。その結果、QW1002の伝導帯からLHバンドへの電子遷移のレートは、主としてTM(横磁界)成分偏光放射を放出し、一方で、TE(横電界)成分を抑圧することによって高められる。量子井戸1002は、QW1002からの放射波長が金属のSPP共振よりも長くなるように選択される。これによって、SPPの吸収損失が低減され、SPPは、金属−半導体境界面に沿ってより長い距離を伝搬できるようになる。プラズモン強化型LED1000は、表面プラズモン共鳴から十分に離れた状況において動作し、依然として、再結合率を高めることを可能にする。
【0038】
SPPの主共振は、εの実部がεとは正反対である場合の周波数である。主共振では、neffの実部と虚部の両方が非常に大きくなり、金属または誘電体における残留吸収によってのみ制限される値を有する。一定の(微小な)周波数範囲内のSPPモードの数を記述するモードの密度もまた非常に大きくなる。銀や金などの低損失の貴金属を金属構造1012に使用することによって、QW双極子モーメントの全ての配向について、約1000の大きなパーセル係数が得られる。しかしながら、neffの虚部もまた大きいので、SPPは、ホスト金属において急速に吸収されて、該ホスト金属において熱として消散され、したがって、QWからSE光を効率的に収集することができない。本発明の実施形態は、この問題に2つの方法で対処するように構成されている。第1は、SPPは、その構成(または状況乃至システム)において約10の中程度のパーセル係数を生成するためにその主共振から離れて使用される。その結果、SPPは、消散する前に数個の光波長について金属表面を実際に伝搬する。これは、また、図13を参照して後述するように、格子及び表面粗さなどを用いて、適切なやり方で金属構造1012の表面をパターン形成することによって達成することができる、自由空間モードへのSPPの再放射を可能にする。さらに、SPPがその主共振から離れて使用されるときには、SPPは、ほとんどQW1002のTM双極子だけに結合し、該双極子は、金属表面及びQW1002に垂直に配向している。これは、本来専らTEであるところの伝導帯からHH価電子帯への遷移を用いた標準的なQWの使用を排除する。第2に、伸張歪みが与えられたQW1002を上述のように使用する。伸張歪みが与えられたQW1002は、優先的にTMである双極子モーメントを有し、SPPモードと良好に結合する。主共振から離れたSPPを使用する結合、及び、伸張歪みが与えられたQW1002によって、LED1000のSEレートを10倍だけ高めると共に、大きな外部効率を維持するための手段が提供される。
【0039】
図12の方向を示す矢印1208及び1210によって示すように、TM偏光放射を、QW1002の面にほぼ垂直に放出することができる。正確な放射パターンは、金属−誘電体境界面の粗さや他の要因に依存する。金属構造1012に向かって送られるTM偏光放射は、反射して戻されて、方向を示す矢印1214〜1216によって示すように、p型ヘテロ構造1010を通って出力される。
【0040】
図11に示すように、同じ順方向バイアスの方向に適切な電圧が印加されている限り、電子は、n型ヘテロ構造1008を通ってQW1002に向かって流れ、ホールは、p型ヘテロ構造1010を通ってQW1002に向かって流れ、この場合、電子はQW1002において自発的に(すなわち、自然発生的に)再結合して、TM偏光放射が放出される。電子がホールと再結合する率(レート)は、境界面1212に沿って生成されたSPPの存在によって大きく高められる。その結果、LED1000は、約10Gb/sまたはこれより速い変調速度で光を放出するとともに、約20%を超える放射効率を維持することができる。
【0041】
金属構造1012を、金、銀、アルミニウム、プラチナ(白金)、銅、または、他の適切な金属、または、対象とする周波数におけるプラズモンモードをサポートすることができるそれらの合金から構成することができる。金属構造1012を、図10〜図12に示すように上面が平坦な表面であるように構成することもでき、または、金属構造1012を、境界面1202において生成されたSPPを自由空間中へ放射するように設計された格子を有するように構成することができ、金属構造1012は、LED1000の放射効率を高めることができる。図13は、本発明の実施形態にしたがって構成された第2のLED1300の等角図である。図13に示すように、金属構造1302は、一定間隔で隔置された矩形の孔の配列からなる格子を備えている。本発明の別の実施形態では、これらの孔を円形や楕円形や矩形や、他の任意の適切な形状にすることができ、これらの孔を、規則的なパターンをなすように配列したり、図13に示すように、TM偏光放射が格子を通って放出されることを可能にする任意の適切なパターンをなすように配列することができる。
【0042】
本発明のいくつかの実施形態では、LEDを、約800nmの波長を有するTM偏光放射を放出するように構成することができる。図14Aは、本発明の実施形態にしたがって、約800nmの波長を有するTM偏光放射を放出するように構成されたLED1400の断面図である。LED1400は、Ag金属構造1402、2つの層からなるn型ヘテロ構造1404、及び、5つの層からなるp型ヘテロ構造1406を備える。LED1400は、また、約10nmの厚みを有する第1の真性Al35Ga65As層1410と約80nmの厚みを有する第2の真性Al35Ga65As層1412との間に挟まれた約10nmの厚みを有する真性GaAs885P115QW1408を備える。図14Aは、組成、おおよそのドーパント濃度、及び、n型及びp型ヘテロ構造1404と1406を構成する層のおおよその厚みを明らかにしている。たとえば、層1414は、約10nmの厚みであって、約2×1018のSi原子/cmをドープされたAl25Ga75Asから構成され、層1416は、約500nmの厚みであって、約5×1017のC原子/cmがドープされたAl65Ga35Asから構成されている。LEDを、該LEDが成長した基板、たとえば、GaAsを除去することによって形成することができる。なぜなら、該基板は、損失を付加して、LEDの効率を低下させるからである。このために、基板を別の基板に結合した後に、LED層を(該別の基板に結合した)該基板から除去できるように、AlAsなどのエッチストップ層をエピタキシャルに成長させることができる。したがって、シリコン(ケイ素)やシリコンカーバイド(炭化ケイ素)などのキャリア基板(carrier substrate)への金属−金属結合を実施し、その後、基板を除去して、LED中へと処理されることができる薄いエピタキシャル層を生成することによってLEDが作製される。
【0043】
図14Bは、本発明の実施形態にしたがう(Ag金属構造1402のない)LED1400に関連するフォトルミネセンススペクトルのプロットを示す。図14Bに示すように、水平軸1420はナノメートル単位の波長を表し、垂直軸1422は電圧単位のフォトルミネセンスを表し、曲線1406はLED1400のフォトルミネセンスを表している。曲線1406は、L. Li, JOSA A, 14, 2758 (1997)を出典とする厳密結合波解析(RigorousCoupled-Wave Analysis)シミュレーションを用いて決定された。曲線1406のピークは、LED1400にしたがって構成されたLEDが、約800nmの波長で約24nmの狭線幅のTM偏光放射を放出することを示している。SPP強化型LED1400は、約10Gb/s以上の変調速度で光を放出するとともに、約20%を超える放射効率を維持することができる。
【0044】
本発明の実施形態は単一のQWに限定されない。本発明の他の実施形態では、任意の数のQWを使用することができ、それらのQWが金属構造境界面に沿って形成されたSPPの電子-プラズマ振動に結合するように、それらのQWを該金属の近くに設けることができる。図15は、本発明の実施形態にしたがって構成されたLED1500の概略を表す断面図である。LED1500は、該LED1500が、境界面1202に沿って形成されたSPPの電子−プラズマ振動内に配置されている3つのQW1501〜1503を含んでいることを除いてLED1000とほぼ同じである。これらのQW1501〜1503は、層1505及び1506によって分離されており、これらの層の厚みは約5nmとすることができ、これらの層を、層1004及び1006を構成する材料と同じ真性半導体材料から、または、異なる半導体材料から構成することができる。
【0045】
説明のための以上の記述において、本発明を完全に理解できるようにするために特定の用語を使用した。しかしながら、本発明を実施するために特定の細部は必要ではないことは当業者には明らかであろう。本発明の特定の実施形態についての上記記述は、例示及び説明のために提示されたものである。それらは、本発明を網羅することも、開示した形態そのものに本発明を限定することも意図するものではない。上記の教示に照らして多くの修正及び変形が可能であることは明らかである。本発明の原理及びその実用的応用を最良に説明し、これによって、当業者が、意図している特定の用途に適するように種々の変更を行って本発明及び種々の実施形態を最良に利用できるように、それらの実施形態は図示し説明された。本発明の範囲は、添付の特許請求の範囲及びその等価物によって画定されることが意図されている。

【特許請求の範囲】
【請求項1】
発光ダイオードであって、
第1の半導体層と第2の半導体層の間に挟まれた少なくとも1つの量子井戸と、
前記第1の半導体層の表面に配置された第1のヘテロ構造と、
前記第2の半導体層の表面に配置された第2のヘテロ構造であって、前記第1のヘテロ構造に対向して配置された第2のヘテロ構造と、
前記発光ダイオードの表面に配置された金属構造
を備え、
前記金属構造と前記発光ダイオードの表面との間の境界面に沿って形成された表面プラズモンポラリトンの電子−プラズマ振動が、前記少なくとも1つの量子井戸中へと入り込んで、パーセル効果によって前記少なくとも1つの量子井戸から放出される電磁放射の横磁界成分の自然放出率を高めることからなる、発光ダイオード。
【請求項2】
前記少なくとも1つの量子井戸が、伸張歪みを与えられた真性半導体からさらに構成される、請求項1の発光ダイオード。
【請求項3】
前記少なくとも1つの量子井戸が約10nmの厚みを有する、請求項1の発光ダイオード。
【請求項4】
前記少なくとも1つの量子井戸がGaAs1−xPからさらに構成され、xが0乃至1の範囲である、請求項1の発光ダイオード。
【請求項5】
前記第1の半導体層及び前記第2の半導体層が真性AlGa1−xAsからさらに構成され、xが0乃至1の範囲である、請求項1の発光ダイオード。
【請求項6】
前記第1のヘテロ構造がさらに、
前記第1の真性半導体層の表面に配置された第1の半導体層と、
前記金属構造と前記第1の半導体層の間に挟まれた第2の半導体層
を備え、
前記第1の半導体層の電子エネルギーバンドギャップは、前記第2のn型半導体層よりも小さいことからなる、請求項1の発光ダイオード。
【請求項7】
前記第1の半導体層がさらに、約1018のn型ドーパント濃度を有するn型AlGa1−xAs層から構成され、この場合、xは、約0乃至約1の範囲であり、前記第2の半導体層がさらに、約2×1018のn型ドーパント濃度を有するn型InGaP層から構成される、請求項6の発光ダイオード。
【請求項8】
前記第1の半導体層がさらに、約1018のp型ドーパント濃度を有するp型AlGa1−xAs層から構成され、ここで、xは、約0乃至約1の範囲であり、前記第2の半導体層がさらに、約2×1018のp型ドーパント濃度を有するp型InGaP層から構成される、請求項6の発光ダイオード。
【請求項9】
前記第2のヘテロ構造がさらに、
前記第2の真性半導体層の表面に配置された第1の組成的に傾斜した半導体層と、
前記第1の組成的に傾斜した半導体層の表面に配置された第1の中間半導体層と、
前記第1の中間半導体層の表面に配置された第2の組成的に傾斜した半導体層と、
前記第2の組成的に傾斜した半導体層の表面に配置された第2の中間半導体層と、
前記第2の中間半導体層の表面に配置された第3の半導体層
を備える、請求項1の発光ダイオード。
【請求項10】
前記第1及び第2の組成的に傾斜した半導体層がさらにAlGa1−xAsから構成され、ここで、xは、約0乃至1の範囲である、請求項9の発光ダイオード。
【請求項11】
前記第1の中間半導体層がさらに、約5×1017のp型ドーパント濃度を有するAlGa1−xAsから構成され、この場合、xは、約0乃至約1の範囲であり、前記第2の中間半導体層がさらに、約2×1018のp型ドーパント濃度を有するAlGa1−xAsから構成され、この場合、xは、約0乃至約1の範囲であり、前記第3の半導体層がさらに、約2×1018のp型ドーパント濃度を有するInGaPから構成される、請求項9の発光ダイオード。
【請求項12】
前記第1の中間半導体層がさらに、約5×1017のn型ドーパント濃度を有するAlGa1−xAsから構成され、この場合、xは、約0乃至約1の範囲であり、前記第2の中間半導体層がさらに、約2×1018のn型ドーパント濃度を有するAlGa1−xAsから構成され、この場合、xは、約0乃至約1の範囲であり、前記第3の半導体層がさらに、約2×1018のn型ドーパント濃度を有するInGaPから構成される、請求項9の発光ダイオード。
【請求項13】
前記第1及び第2の組成的に傾斜した半導体層が、前記第1及び第2の中間半導体層よりも大きな電子エネルギーバンドギャップを有する、請求項9の発光ダイオード。
【請求項14】
前記金属構造に対向して、前記発光ダイオードの表面に配置されたインジウムスズ酸化物の層をさらに備える、請求項1の発光ダイオード。
【請求項15】
前記金属構造がさらに、
金、銀、アルミニウム、プラチナ、銅、及び、これらの合金からなるグループから選択された、表面プラズモンを支持する金属から構成される、請求項1の発光ダイオード。
【請求項16】
前記金属構造が格子をさらに備える、請求項1の発光ダイオード。
【請求項17】
前記金属構造が粗い外面をさらに有する、請求項1の発光ダイオード。
【請求項18】
約10Gb/s以上の変調速度、及び、約10のオーダーのパーセル係数を有する、請求項1の発光ダイオード。
【請求項19】
前記少なくとも1つの量子井戸が、前記境界面から約20〜30nm離れている、請求項1の発光ダイオード。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15】
image rotate


【公表番号】特表2011−511454(P2011−511454A)
【公表日】平成23年4月7日(2011.4.7)
【国際特許分類】
【出願番号】特願2010−544930(P2010−544930)
【出願日】平成20年1月30日(2008.1.30)
【国際出願番号】PCT/US2008/001319
【国際公開番号】WO2009/096919
【国際公開日】平成21年8月6日(2009.8.6)
【出願人】(503003854)ヒューレット−パッカード デベロップメント カンパニー エル.ピー. (1,145)
【Fターム(参考)】