説明

レーダ装置

送信信号を放射するアンテナと、物体から反射された送信信号を受信する複数のアンテナの各出力端子を入力端子に第1の周期で択一的に順次切替接続する第1の切替スイッチ部と、各アンテナからの受信信号を前記送信信号の一部を用いてダウンコンバートする第1のダウンコンバート部と、第1のダウンコンバート部の出力に接続された低域カットフィルタと、該フィルタの出力を複数
のA/D変換器に択一的に順次切替接続する第2の切替スイッチ部と、複数のA/D変換器からの出力を入力し所定の処理を施して前記物体までの距離又は前記物体との相対速度を検出するディジタル信号処理部とを有し、第1の切替スイッチはアンテナと接続中に第1の周期より短い第2の周期でON−OFF制御を行う、DBF型のレーダ装置。

【発明の詳細な説明】
【技術分野】
本発明は、連続波(CW)を周波数変調(FM)した送信信号を用いるFM−CWレーダ装置であって、ディジタル・ビーム・フォーミング処理を行うDBFレーダ装置に関する。
【背景技術】
従来のDBF型のレーダ装置は、送信信号を電磁波として放射する送信部と、電磁波が物体に到達してこの物体から反射された電磁波を受信信号として受信する複数の素子アンテナからなるアレーアンテナと、各素子アンテナにそれぞれ接続された複数の入力端子と、この複数の入力端子のいずれか1つと切り換え手段により択一的に接続される出力端子とを有し、出力端子から得られた受信信号を送信信号の一部を用いてダウンコンバートすることによって送信信号と受信信号との差信号を生成し、この差信号をディジタル信号に変換する受信部と、この受信部からのディジタル信号に対して所定の処理を施して物体までの距離又は相対速度を検出している(JP H11−160423 A)。
また、各アンテナを順次切替接続することにより、各アンテナに対してRF受信回路を設ける必要のないレーダ装置が開示されている(JP H11−64485 A)。
また、各アンテナを順次切替接続するレーダ装置において、基準アンテナを設定し、該基準アンテナで受信した信号のビート信号をDBF合成する際の位相補正として用いることが開示されている(JP H11−311668)。
受信部は複数の受信アンテナのいずれかを選択信号に従って択一的に選択する受信スイッチを備え、受信信号にローカル信号を混合してビート信号を生成する受信器を全ての受信アンテナが時分割で共用するするレーダ装置が開示されている(JP2000−284047)。
周波数変調信号を第1のスイッチング信号によりスイッチングしてから送信し、目標物体で反射された信号を受信して第2のスイッチング信号によりスイッチングしてから送信信号と混合し、さらに第3のスイッチング信号と混合することによって得られたビート信号から目標物の距離や相対速度を得るレーダ装置が開示されている(JP2003−172776)。
【発明の開示】
本発明はDBF型のレーダ装置において、S/N比を向上させ、効率よく信号を取り出すことのできるレーダ装置を提供するものである。さらに、ミキサの後にフィルタを設けた場合でも、チャンネル切替の際に各チャンネルの信号成分が混じり合わないようにしたレーダ装置を提供するものである。
本発明レーダ装置は、送信信号を放射するアンテナを備えた送信部、
物体から反射された該送信信号を受信する複数のアンテナと、該複数のアンテナの各出力端子を入力端子に択一的に順次切替接続する第1の切替スイッチ部と、該第1の切替スイッチ部を介して該入力端子に入力した各アンテナからの受信信号を前記送信信号の一部を用いてダウンコンバートする第1のダウンコンバート部と、該第1のダウンコンバート部の出力に接続され該出力の直流成分をカットする低域カットフィルタと、該低域カットフィルタの出力を複数のA/D変換器に択一的に順次切替接続する第2の切替スイッチ部とを備えた受信部、及び
前記複数のA/D変換器からの出力を入力し所定の処理を施して前記物体までの距離又は前記物体との相対速度を検出するディジタル信号処理部、を備え、
前記第1及び第2の切替スイッチ部による切り替えの周期は同じ周期(第1の周期)であり、前記複数のアンテナの各出力端子と前記入力端子を接続中に前記第1の周期より短い第2の周期でON−OFF制御を行うON−OFF制御部が設けられている。
前記ON−OFF制御部は、前記第1の切替スイッチ部と前記第1のダウンコンバート部の間に設けた増幅器で構成されており、該増幅器は前記第1の周期より短い第2の周期でON−OFF制御される。
また、前記ON−OFF制御部は、前記第1の切替スイッチ部に含まれており、該第1の切替スイッチ部は前記複数のアンテナの各出力端子と前記入力端子を接続中に、前記第1の周期より短い第2の周期でON−OFF制御する。
また、前記第1の切替スイッチ部は前記複数のアンテナの各出力端子に接続した増幅器で構成され、該増幅器をON−OFF制御することにより前記複数のアンテナの各出力端子を入力端子に択一的に順次切替接続するとともに、前記複数のアンテナの各出力端子と前記入力端子を接続中に該増幅器を前記第1の周期より短い第2の周期でON−OFF制御する。
また、前記AD変換器は前記第2の周期より短い第3の周期でサンプリングされる。
本発明によれば、前記前記第1の切替スイッチ部と第1のダウウコンバート部の間に増幅器を設け、前記第2の切替スイッチ部と前記各A/D変換器の間にそれぞれ第2のダウンコンバート部を設け、前記増幅器と各第2のダウンコンバート部を前記第2の周期でON−OFF制御する。
本発明によれば、前記前記第1の切替スイッチ部と第1のダウウコンバート部の間に増幅器を設け、前記第2の切替スイッチ部と前記各A/D変換器の間にそれぞれ第2のダウンコンバート部及び第3のダウンコンバート部を設け、前記増幅器と各第2のダウンコンバート部を前記第2の周期でON−OFF制御し、前記第3のダウンコンバート部を第1の周期でON−OFF制御する。
本発明によれば、前記物体から反射された送信信号を受信する複数のアンテナは、送信信号を放射する送受信共用アンテナであり、該複数の送受信共用アンテナは順次送信部及び受信部と接続する第1の接続手段を備え、該アンテナの各々が第1の接続手段によって接続されている間に送信信号を放射するとともに反射信号を受信するよう順次前記送信部に接続する第2の接続手段及び前記受信部に接続する第3の接続手段を備え、該第3の接続手段はアンテナが該受信部と接続されている間に受信部との接続をオン、オフする。
本発明によれば、前記第1の切替スイッチ部は同時に隣接する2つのアンテナのチャンネルを選択して前記入力端子に交互に接続する構成を有し、該隣接するチャンネルを基準チャンネルとして得られた位相関係に基き、前記ディジタル信号処理部において処理する際に位相補正を行う。
本発明は複数の受信アンテナの各出力端子をダウンコンバート部の入力端子に順次切り替えて接続するレーダ装置において、切り替えを行う第1の周期よりも短い第2の周期でON−OFF制御を行うことにより、低域雑音除去やAC信号増幅のために挿入する低域カットフィルタやカップリングコンデンサが信号成分に与える影響を避けることができる。
また、アンテナ切替手段に上記ON−OFF制御する機能を併せ持たせることにより、別途ON−OFF制御する手段を設ける必要がなくなるため、コストを減じることができる。
また、上記アンテナ切替手段及び/又はON−OFF制御手段を増幅器を制御することによって行うことにより、高価なRF部品の使用を減らすことができ低価格化を図ることができる。
また、信号成分を抽出するためには同等以上の信号が必要であり、さらにディジタル的にフィルタリング処理を施すためには2倍以上のサンプリングデータが必要である。本発明では上記第2の周期より短い第3の周期の間隔で信号のサンプリングを行うことにより、上記要件を満たすことができる。
また、カップリングコンデンサや低域遮断フィルタの影響を受けないようにするためには、アンテナ切替周波数より高い周波数でON−OFFする必要があり、少なくとも2倍のON−OFF周波数があればよい。本発明ではアンテナ切り替えを行う第1の周期の1/2以下の第2の周期でON−OFF制御を行っているため、カップリングコンデンサや低域遮断フィルタの影響を受けないようにすることができる。
また、送信信号と同じ周波数成分を有するローカル信号と、受信アンテナによって受信された受信信号とを混合して得られた第1の受信信号と上記第2の周期に相当する周波数成分を持つローカル信号とを混合してビート信号を生成しているため、得られたビート信号は第2の周波数より低く、A/Dコンバータのサンプリング周波数を低くでき、データ量も少なくて済むのでコストを低くすることができる。
また、送信信号と同じ周波数成分を有するローカル信号と、受信アンテナによって受信された受信信号とを混合して得られた第1の受信信号と上記第2の周期に相当する周波数成分を持つローカル信号とを混合して得られた第2のビート信号と上記第1の周期に相当する周波数成分を持つローカル信号とを混合してビート信号を生成しているため、得られるビート信号の帯域をさらに低くすることができ、A/Dコンバータのサンプリング周波数をさらに低くでき、データ量も少なくて済むのでさらにコストを低くすることができる。
【図面の簡単な説明】
図1A−1Cは、ターゲットとの相対速度が0である場合のFM−CWレーダの原理を説明するための図である。
図2A−2Cは、ターゲットとの相対速度がvである場合のFM−CWレーダの原理を説明するための図である。
図3は、FM−CWレーダの構成の例を示した図である。
図4は、ディジタルビームフォーミング(DBF)レーダ装置の基本構成を示した図である。
図5は、本発明が適用されるレーダ装置の構成を示した図である。
図6は、切替信号発生器から出力される信号とアンテナ切替動作を説明する波形を示した図である。
図7は、ダウンコンバートされた信号の波形を示した図である。
図8は、A/D変換器を1つにした場合の構成を示した図である。
図9は、図5に示されたレーダ装置の変形例を示した図である。
図10は、本発明によるレーダ装置の実施例1を示した図である。
図11は、制御信号発生器から出力される信号とON−OFF制御動作を説明する波形を示した図である。
図12は、図10に示されたレーダ装置におけるフィルタ24の入力信号波形を示した図である。
図13は、図10に示されたレーダ装置における、フィルタ24の出力信号波形を示した図である。
図14は、各チャンネルからの信号がON−OFF制御された場合のフィルタ24の入力信号波形を示した図である。
図15A及び15Bは、各チャンネルからの信号がON−OFF制御された場合のフィルタ24の出力信号波形(チャンネル1)を示した図である。
図16A及び16Bは、各チャンネルからの信号がON−OFF制御された場合のフィルタ24の出力信号波形(チャンネル2)を示した図である。
図17は、第1の切替スイッチ部1に2つの機能を持たせた場合の構成を示した図である。
図18は、本発明によるレーダ装置における、第1の切替スイッチ部を増幅器で置き換えた場合の動作を説明するための図である。
図19は、サンプリング信号発生器からA/D変換器に出力される信号波形を示した図である。
図20は、本発明によるレーダ装置の実施例を示した図である。
図21は、本発明によるレーダ装置の実施例を示した図である。
図22は、本発明によるレーダ装置の実施例を示した図である。
図23は、図22に示したレーダ装置の動作を説明するための波形である。
図24は、本発明によるレーダ装置の実施例を示した図である。
【発明を実施するための最良の形態】
本発明によるレーダ装置について説明する前に、FM−CWレーダの原理、及びDBFレーダの原理について説明する。
FM−CWレーダは、例えば三角波形状の周波数変調された連続の送信波を出力してターゲットである前方の車両との距離を求めている。即ち、レーダからの送信波が前方の車両で反射され、反射波の受信信号と送信信号をミキシングして得られるビート信号(レーダ信号)を得る。このビート信号を高速フーリエ変換して周波数分析を行う。周波数分析されたビート信号はターゲットに対してパワーが大きくなるピークが生じるが、このピークに対する周波数をピーク周波数と呼ぶ。ピーク周波数は距離に関する情報を有し、前方車両との相対速度によるドップラ効果のために、前記三角波形状のFM−CW波の上昇時と下降時とではこのピーク周波数は異なる。そして、この上昇時と下降時のピーク周波数から前方の車両との距離及び相対速度が得られる。また、前方の車両が複数存在する場合は各車両に対して一対の上昇時と下降時のピーク周波数が生じる。この上昇時と下降時の一対のピーク周波数を形成することをペアリングという。
図1A−1Cは、ターゲットとの相対速度が0である場合のFM−CWレーダの原理を説明するための図である。送信波は三角波で図1Aの実線に示す様に周波数が変化する。送信波の送信中心周波数はfo、FM変調幅はΔf、繰り返し周期はTmである。この送信波はターゲットで反射されてアンテナで受信され、図1Aの破線で示す受信波となる。ターゲットとの間の往復時間Tは、ターゲットとの間の距離をrとし、電波の伝播速度をCとすると、T=2r/Cとなる。
この受信波はレーダとターゲット間の距離に応じて、送信信号との周波数のずれ(ビート)を起こす。
ビート信号の周波数成分fbは次の式で表すことができる。なお、frは距離周波数である。
fb=fr=(4・Δf/C・Tm)r
一方、図2A−2Cはターゲットとの相対速度がvである場合のFM−CWレーダの原理を説明するための図である。送信波は図F2Aの実線に示す様に周波数が変化する。この送信波はターゲットで反射されてアンテナで受信され、図2Aの破線で示す受信波となる。この受信波はレーダとターゲット間の距離に応じて、送信信号との周波数のずれ(ビート)を起こす。この場合、ターゲットとの間に相対速度vを有するのでドップラーシフトとなり、ビート周波数成分fbは次の式で表すことができる。なお、frは距離周波数、fdは速度周波数である。
fb=fr±fd=(4・Δf/C・Tm)r±(2・fo/C)v
上記式において、各記号は以下を意味する。
fb:送信ビート周波数
fr:距離周波数
fd:速度周波数
:送信波の中心周波数
Δf:FM変調幅
Tm:変調波の周期
C:光速(電波の速度)
T:物体までの電波の往復時間
r:物体までの距離
v:物体との相対速度
図3は、FM−CWレーダの構成の例を示したものである。図に示す様に、電圧制御発振器VCOに変調信号発生器MODから変調信号を加えてFM変調し、FM変調波を送信アンテナATを介して外部に送信すると共に、送信信号の一部を分岐してミキサMIXに加える。一方、物体から反射された反射信号を受信アンテナARを介して受信し、ミキサMIXで電圧制御発振器VCOの出力信号とミキシングしてビート信号を生成する。このビート信号はフィルタFを介してA/D変換器でA/D変換され、ディジタル信号処理部(DSP)で高速フーリエ変換等により信号処理がされて距離および相対速度が求められる。
ディジタル・ビーム・フォーミング(DBF)は、複数の受信アンテナで構成されるアレーアンテナの各々の信号をA/D変換してディジタル信号処理部に取り込み、ビーム走査やサイドローブ特性等の調整をディジタル信号処理部で行う技術である。
DBFレーダは、フェーズドアレーアンテナレーダの移相器の機能をディジタル信号処理で行うものであり、図4にDBFレーダの基本構成を示す。
電圧制御発振器VCOに変調信号発生器MODから変調信号を加えてFM変調し、FM変調波を送信アンテナATを介して外部に送信すると共に、送信信号の一部を分岐してミキサMIX1−MIXnに加える。一方、物体から反射された反射信号は複数の受信アンテナAR1−ARnで受信され、各受信アンテナからの信号はそれぞれ増幅器AMP1−AMPnを経てミキサMIX1−MIXnに入力し、電圧制御発振器VCOからの出力信号とミキシングされてビート信号が生成される。
生成されたビート信号はそれぞれフィルタF1−Fnを経てA/D変換器A/D1−A/Dnよってディジタル信号に変換され、ディジタル信号処理部DSPに送られる。DSPでは各チャンネルからのディジタル信号を移相処理し(PH−SFT)、全チャンネルの合成を行う。
DBFの特徴は、全受信アンテナの信号をディジタル信号として取り込むと、それをもとに任意の方向にビーム合成ができるため、1回の取り込みで複数のビームを形成できることである。
図5は本発明が適用されるレーダ装置の構成を示したものである。このレーダ装置は、DBFの原理をFM−CWレーダ装置に適用したものである。
電圧制御発振器VCOに変調信号発生器MODから変調信号を加えてFM変調し、FM変調波を送信アンテナATを介して外部に送信すると共に、送信信号の一部を分岐してダウンコンバート部であるミキサ22に加える。一方、物体から反射された反射信号は受信信号として複数の受信アンテナAR1−ARnで受信される。受信アンテナAR1−ARnの信号路をそれぞれチャンネルch1−chnとする。11は第1の切替スイッチ部で、前記複数の受信アンテナの各出力端子を増幅器21を介してダウンコンバート部の入力端子に択一的に順次切替接続し、ダウンコンバート部に入力する各チャンネルch1−chnからの信号を切替える(以下、「アンテナ切替動作」と記す)。
この切替は切替信号発生器5から出力される信号により行われる。この切替信号は図6に示すよう周波数fsw1(第1の周波数)のクロック信号であり、ch1−chnのp1−pnに示すように、周波数がfsw1である切替信号の立ち上がりエッジ及び立下りエッジでチャンネルの切替が行われる。その結果p1の間(時間t1−t2)にch1が増幅器21と接続され、p2の間(時間t2−t3)にch2が増幅器21と接続され、同様にpnの間(時間tn−tn+1)にchnが増幅器21と接続される。上記p1−pnの時間間隔は全て同じであり、図6に示されているように時間T1の周期(以下、「第1の周期」と記す。)でチャンネルが切り替えられる。
増幅器21に入力した信号はダウンコンバート部であるミキサ22に入力し、電圧制御発振器VCOからの出力信号とミキシングされてダウンコンバートされ、ビート信号が生成される。このダウンコンバートされた信号の波形を図7に示す。図7において、横軸は時間であり、縦軸は電圧である。また、縦の線は切替スイッチによるチャンネル切替周期T1(第1の周期)を表している。この図は受信チャンネル数nがn=8の場合を示しており、ch1−ch8で受信されたビート信号の位相が少しずつずれている。8本の曲線は各チャンネルで受信された信号がそれぞれダウンコンバートされたビート信号を示している。この構成では、切替信号発生器5からの信号に基づき第1の周期でチャンネルの切替が行われるので、ミキサ22から出力されるビート信号は、図7において太線で示した波形の信号となる。このビート信号は増幅器23を経て第2の切替スイッチ部12に出力される。第2の切替スイッチ部12は、増幅器23からの出力がフィルタ(311−31n)、増幅器(321−32n)、及びA/D変換器(331−33n)をそれぞれ有する複数のチャンネルに択一的に順次入力するよう切り替わる。この切替動作は切替信号発生器5からの信号により行われ、前記第1の周期で、第1の切替スイッチ部11によるアンテナ切替動作と同期して行われる。
フィルタはそれぞれ増幅器(321−32n)を経てA/D変換器(331−33n)に接続されており、フィルタ(311−31n)に入力した信号はそれぞれA/D変換器(331−33n)によってディジタル信号に変換され、ディジタル信号処理部DSP4に送られる。DSPで高速フーリエ変換等により信号処理がされ、各チャンネルからのディジタル信号を移相処理し、全チャンネルの合成及び距離、相対速度が求められる。
図5に示された構成では、アンテナ数とフィルタ数を同じn個としたが、フィルタ数はアンテナ数より少なくてもよい。しかし、フィルタ数は同時にアンテナを切り替えなければならない数だけあることが必要である。例えば、同期に切り替えるアンテナの数が2であれば、フィルタの数も2でよい。
また、図5ではA/D変換器を複数設けたが、図8に示されているようにA/D変換器33を1つにし、切替スイッチ13によって切り替えるようにしてもよい。この場合、スイッチの切替は切替信号発生器5から出力される信号によって行われ、アンテナ切替動作と同期して行われる。
上記構成では、S/N比の向上、ダイナミックレンジの抑圧、あるいはFM/AM雑音比の抑圧のために各チャンネルにフィルタ(311−31n)を挿入している。そして、フィルタによって信号の干渉が生じないようにするため、切替スイッチ部12を設け、チャンネル毎に信号を分岐している。
図9は、図5に示されたレーダ装置の変形を示したものである。図5に示されたレーダ装置とは、フィルタ(311−31n)の前にそれぞれ第2のダウンコンバート部であるミキサ(341−34n)を設け、切替信号発生器5から出力される切替信号によってミキサ(341−34n)をON−OFF制御している点が異なる。即ち、第2の切替スイッチ12からの信号は各チャンネルのダウンコンバート部であるミキサ(341−34n)に択一的に順次入力し、図6に示した切替信号発生器5から出力される周波数fsw1のクロック信号によって第2のダウンコンバート部がON−OFF制御され、再度ダウンコンバートされる。
この変形例ではフィルタ(311−31n)の前にミキサ(341−34n)を挿入し、第2の切替スイッチ部を経て入力する信号をダウンコンバートしてからフィルタに入力しているので、S/N比が向上し、効率良く信号を取り出すことができる。
【実施例1】
図10は本発明レーダ装置の実施例1を示したものである。図5に示されたレーダ装置とは、ミキサ22の後にフィルタ24を設け、増幅器21を制御信号発生器6の信号によってON−OFF制御している点が異なる。フィルタ24はDC成分をカットするために挿入されており、このフィルタの影響を避けるために増幅器21は制御信号発生器6からの信号によってON−OFF制御される。
図10に示された構成では、各チャンネルからの信号をON−OFF制御するON−OFF制御部として増幅器を用いているが、同様の機能を有するものであれば他の装置を用いてもよいことはもちろんである。
図11に制御信号発生器6から出力される信号波形を示す。この信号はfsw1(第1の周波数)より大きい周波数fsw2(第2の周波数)を有するクロック信号である。従って、この信号によって増幅器21がON−OFFされる周期T2(以下、「第2の周期」と記す)は第1の周期(T1)より小さい。
各チャンネルch1、ch2、−−−−−chnから増幅器21に入力した信号は、図11に示す制御信号発生器から出力されるクロック信号によってON−OFF制御される。その結果、各チャンネルから切替スイッチ部11を経て増幅器21に入力した受信信号は、増幅器21において図11に示されている周期T2(第2の周期)のクロックでON−OFF制御される。
上記第2の周期T2は第1の周期T1の半分以下の周期とする。これは切替スイッチ部11による切替周期であるT1の半分以下の周期とすることによってT1の間に少なくとも1回ON−OFF制御することができるようにするためである。
次に、図10に示された実施例1の動作について説明する。実施例1ではDC成分をカットするためミキサ22の後に低域カットフィルタ24を設けている。図12は、図10におけるフィルタ24の入力波形を示したグラフである。このグラフの横軸は時間であり、縦軸は電圧である。この入力波形は図7に示したダウンコンバートされた信号の波形と同じであるが、図12は、説明しやすいように受信チャンネル数が2チャンネルの場合を示しており、2本の曲線は各チャンネルで受信された信号がそれぞれダウンコンバートされたビート信号を示している。この場合、切替信号発生器5からの信号に基づき第1の周期でチャンネルの切り替えが行われるので、ミキサ22から出力されるビート信号は、図12において太線で示した波形の信号となる。
図13は、図10におけるフィルタ24の出力波形を示したグラフである。この波形はフィルタ24の入力波形からDC成分をカットした波形であるが、チャンネルの切り替え時にチャンネル1の信号成分とチャンネル2の信号成分が混ざり合ってしまうため各チャンネルの位相がずれ、その結果各チャンネルの波形のピークがずれてしまい距離等を正確に測定できなくなる。例えば、図12におけるチャンネル1のピークの位置pch1は、図13のピークの位置pch1にずれている。
本発明では上記のようなずれが生じないように、各チャンネルch1、ch2、−−−−−chnから入力した信号を、図11に示す制御信号発生器から出力されるクロック信号によってON−OFF制御している。図10に示した実施例1では、増幅器21を制御信号発生器6の信号によってON−OFF制御し、各チャンネルch1、ch2、−−−−−chnから入力した信号をON−OFF制御している。
図14は、ON−OFF制御された各チャンネルからの信号がミキサ22でダウンコンバートされた波形を示している。図10に示された実施例1では、この信号波形がフィルタ24に入力される。この場合も、説明しやすいように受信チャンネル数が2チャンネルの場合を示している。
図15A及び図15Bは、図14に示された波形が入力された場合のフィルタ24の出力波形を示している。図15Aにおいて、太線で示された波形がチャンネル1の波形であり、図15Bに示すように、フィルタの入力波形と比較してピーク値のずれは生じない。
同様に、図16A及び図16Bは、図14に示された波形が入力された場合のフィルタ24の出力波形を示している。図16Aにおいて、太線で示された波形がチャンネル2の波形であり、図16Bに示すように、フィルタの入力波形と比較してピーク値のずれは生じない。
図10の実施例において、サンプリング信号発生器8からA/D変換器331−33nに対して信号を出力し、サンプリングを行うこともできる。サンプリング信号発生器8から出力される信号の周期は(以下、「第3の周期」と記す。)第2の周期より短く設定される。このようにA/D変換の段階でサンプリングを行うことにより、S/N比が向上し、部品点数が減少するため価格を低減することができる。
図19はサンプリング信号発生器8からA/D変換器331−33nに出力される信号波形を示したものである。この信号は周波数fsw2(第2の周波数)より大きい周波数fsw3(第3の周波数)を有するクロック信号である。従って、この信号によってA/D変換器がON−OFFされる周期T3(以下「第3の周期」と記す。)は第2の周期T2より小さい。
【実施例2】
図17は、図10に示された本発明レーダ装置の実施例において、切替スイッチ部11に2つの機能を持たせた場合の構成を示した図である。
図10において、切替スイッチ部11は、図6に示された切替信号発生器からの信号によって第1の周期T1で増幅器21に接続されるチャンネルが切り替わり(第1の機能)、図11に示された第2の周期T2のパルスによって増幅器21がON−OFF制御される(第2の機能)。図17に示すスイッチ部11は第1と第2の機能を備えた構成を有している。
図17に示すように、スイッチ部11には各アンテナAR1、AR2、−−−−−ARnからの受信信号を出力する端子(1、2、−−−−n)の他に、アンテナに接続されていないn+1番目の空の端子を有している。この端子を用いることにより、スイッチ部11のみで図11に示された各チャンネルch1、ch2、−−−−−chnから増幅器21に入力した信号をON−OFF制御することができる。
切替スイッチ部11のスイッチSWが、図17に示すようにch2の端子(2)に接続されている場合を例に説明する。第1の周期T1の間は、端子(2)は増幅器21に接続されている。その間にスイッチSWは端子(2)と(n+1)の間を第2の周期T2で切り替わる。即ち、スイッチSWはこの間、(2)−(n+1)−(2)−(n+1)−(2)−−−−(n+1)−(2)のように切り替わる。スイッチSWが端子(2)に接続されているとき、ch2の受信信号は増幅器21に入力し、スイッチSWが端子(n+1)に接続されているときは、端子(2)は増幅器21に接続されないため、ch2の受信信号は増幅器21に入力しない。その結果、各チャンネルから出力される信号は切替スイッチ部11で切り替えられるとともに、ON−OFF制御される。
【実施例3】
図18は、スイッチ部11で行っていたアンテナ切替動作とON−OFF制御動作を増幅器によって行うようにした構成を示した図である。この実施例によれば、第1の切替スイッチ部11を複数のアンテナの各出力端子に接続した増幅器Amp1−Ampnで構成し、切替信号発生器5からの信号によって増幅器Amp1−Ampnを制御してアンテナ切替動作を行い、制御信号発生器6からの信号によってアンテナに接続されている増幅器をON−OFF制御する。例えば、アンプAmp1をONしている間は他のアンプmp2−AmpnをOFFとし、同時にアンプAmp1を図11に示す周期でON−OFF制御する。
【実施例4】
図20は本発明レーダ装置の実施例4を示したものである。図10に示されたレーダ装置とは、各チャンネルのフィルタ(311−31n)の前に第2のダウンコンバート部であるミキサ(341−34n)をそれぞれ設け、増幅器21及びミキサ(341−34n)を制御信号発生器6からの信号によって第2の周期T2でON−OFF制御している点が異なる。
このように信号の存在する周波数帯域をダウンコンバート処理によって低くすることによって、A/D変換速度を遅くすることができ、かつメモリ容量を低くすることができるため、コストを下げることができる。
【実施例5】
図21は、本発明レーダ装置の実施例5を示したものである。図10に示されたレーダ装置とは、各チャンネルのフィルタの前に第2のダウンコンバート部であるミキサ(341−34n)、増幅器(351−35n)、及び第3のダウンコンバート部であるミキサ(361−36n)を設けた点が異なる。そして、増幅器21とミキサ(341−34n)を制御信号発生器6からの信号によって第2の周期T2でON−OFF制御し、第3のダウンコンバータ部であるミキサ(361−36n)を切替信号発生器5よりの信号によって第1の周期T1でON−OFF制御する。
この場合も実施例1と同様、信号の存在する周波数帯域をダウンコンバート処理によって低くすることによって、A/D変換速度を遅くすることができ、かつメモリ容量を低くすることができるため、コストを下げることができる。
【実施例6】
図22は本発明レーダ装置の実施例6を示したものである。この実施例は、図10に示した実施例1の変形であり、実施例1と異なるのは、複数のアンテナを送受信共用とし、順次切り替えて送受信するようにしたことである。
図22は送受信共用アンテナの数が3の場合を示したものであり、チャンネル1(ch1)は送信側増幅器AT、送受信アンテナATR1、スイッチSW1、ハイブリッド10、受信側増幅器AR,ミキサ22、フィルタ24、増幅器23、第2の切替スイッチ部12の端子T1、フィルタ311、増幅器321、A/D変換器331、DSP4により構成される。
同様にチャンネル2(ch2)は送信側増幅器AT、送受信アンテナATR2、スイッチSW2、ハイブリッド10、受信側増幅器AR,ミキサ22、フィルタ24、増幅器23、第2の切替スイッチ部12の端子T2、フィルタ312、増幅器322、A/D変換器332、DSP4により構成される。チャンネル3(ch3)も同様に構成される。
スイッチSW1、SW2、SW3は、切替信号発生器5からの信号により順次ONとなり、チャンネル1、2、3の順に順次送受信が行われる。また、切替信号発生器5は第2の切替スイッチ部12に信号を発し、スイッチSW1、SW2、SW3のオンと同期して第2の切替スイッチ部12を順次端子T1、T2、T3に切り替える。
ATは送信側の増幅器、ARは受信側の増幅器で、制御信号発生器6からの信号により、送信時はATがオンしてARがオフし、受信時はARがオンしてATがオフするように交互に切り替えられる。
図23は切替信号発生器5からの信号、及び制御信号発生器6からの信号により、SW1、SW2、SW3がどのように動作し、また増幅器AT、ARがどのように動作するかを示した波形である。
図23において、SW1の波形はSW1がオンとなり、SW1のオンに同期して第2の切替スイッチ部12が接点T1に接続される期間を示しており、SW2の波形はSW2がオンとなり、SW2のオンに同期して第2の切替スイッチ部12が接点T2に接続される期間を示しており、SW3の波形はSW3がオンとなり、SW3のオンに同期して第2の切替スイッチ部12が接点T3に接続される期間を示している。
また、図23において、SWTは送信側の増幅器ATがオンする期間を示しており、SWRは受信側の増幅器がオンする期間を示している。
次に図22に示した本発明によるレーダ装置の動作を図23を参照して説明する。図23において、期間Tch1、Tch2、及びTch3はそれぞれSW1、SW2、SW3がオンしてぃる期間を示している。
期間Tch1の間はSW1がオンし、第2の切替スイッチ部12の接点は端子T1に接続される。そして、期間Tch1の間の前半に送信側増幅器ATがオンとなり、FM変調波がアンテナATR1から送信される。また、期間Tch1の間の後半に受信側増幅器ARがオンとなり、反射波がアンテナATR1から受信される。
期間Tch2の間はSW2がオンし、第2の切替スイッチ部12の接点は端子T2に接続される。そして、期間Tch1で述べた動作と同じ動作が行われる。
同様に、期間Tch3の間はSW3がオンし、第2の切替スイッチ部12の接点は端子T3に接続される。そして、期間Tch1で述べた動作と同じ動作が行われる。
本実施例の特徴は、複数のアンテナを送受信共用とし、順次切り替えて送受信するようにしたことであるが、その際、実施例1と同様に受信用の増幅器ARがオンしている期間に、さらにこの増幅器のオン、オフ制御を行っていることである。
これにより、実施例1の場合と同様、ミキサ22からの信号がフィルタ24を通ることによって生じるチャンネル間の信号成分の混ざり合いを防ぐことができる。
【実施例7】
図24は、本発明の実施例7によるアンテナチャンネルの接続タイミングを示す図であり、4チャンネル(ch1−ch4)の場合を示している。波形Wは三角波変調のタイミングを示しており、各チャンネルの接続時間はパルスのハイレベルで示されている。
この図からわかるように、第1区間ではch1とch2のアンテナを選択し、これらを交互に接続する。第2区間ではch2とch3のアンテナを選択し、これらを交互に接続する。第3区間ではch3とch4のアンテナを選択し、これらを交互に接続する。第4区間ではch3とch2のアンテナを選択し、これらを交互に接続する。このように隣接するアンテナのチャンネルを順次選択し、これらを交互に接続する。
なお、図24はチャンネル数が4の場合を例に説明したが、これより多いチャンネル数であってもよいことは勿論である。
上記のように、同時に隣接する2つのアンテナのチャンネルを選択して交互に接続し、隣接するチャンネルを基準チャンネルとしているので、互いの位相関係がわかり、発生する位相差を小さくすることができる。即ち、第1区間ではch1とch2の位相関係がわかり、第2区間ではch2とch3の位相関係が、第3区間ではch3とch4の位相関係がそれぞれわかる。そのため、ch1−ch3の相互の位相関係がわかるので、この関係を用いてDBF合成の際の位相補正に用い、物体の角度を示す位相角の変化を検出することができる。
図24において、第1区間−第3区間でch1−ch4の各チャンネル間の位相関係がわかるので、物体の角度を計算をすることができる(角度計算1)。また、次の第4区間−第6区間でchl−ch4の各チャンネル間の位相関係がわかるので、物体の角度を計算をすることができる(角度計算2)。


【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】



【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】


【特許請求の範囲】
【請求項1】
送信信号を放射するアンテナを備えた送信部、
物体から反射された該送信信号を受信する複数のアンテナと、該複数のアンテナの各出力端子を入力端子に択一的に順次切替接続する第1の切替スイッチ部と、該第1の切替スイッチ部を介して該入力端子に入力した各アンテナからの受信信号を前記送信信号の一部を用いてダウンコンバートする第1のダウンコンバート部と、該第1のダウンコンバート部の出力に接続された低域カットフィルタと、該低域カットフィルタの出力を複数のA/D変換器に択一的に順次切替接続する第2の切替スイッチ部とを備えた受信部、及び
前記複数のA/D変換器からの出力を入力し所定の処理を施して前記物体までの距離又は前記物体との相対速度を検出するディジタル信号処理部、
を備えたレーダ装置であって、
前記第1及び第2の切替スイッチ部による切り替えの周期は同じ周期(第1の周期)であり、
前記複数のアンテナの各出力端子と前記入力端子を接続中に前記第1の周期より短い第2の周期でON−OFF制御を行うON−OFF制御部を設けたことを特徴とする、
レーダ装置。
【請求項2】
ON−OFF制御部は、前記第1の切替スイッチ部と前記第1のダウンコンバート部の間に設けた増幅器であり、該増幅器を前記第1の周期より短い第2の周期でON−OFF制御することを特徴とする、請求項1に記載のレーダ装置。
【請求項3】
前記ON−OFF制御部は、前記第1の切替スイッチ部に含まれており、該第1の切替スイッチ部は前記複数のアンテナの各出力端子と前記入力端子を接続中に、前記第1の周期より短い第2の周期でON−OFF制御することを特徴とする、請求項1に記載のレーダ装置。
【請求項4】
前記第1の切替スイッチ部を前記複数のアンテナの各出力端子に接続した増幅器で構成し、該増幅器をON−OFF制御することにより前記複数のアンテナの各出力端子を入力端子に択一的に順次切替接続するとともに、前記複数のアンテナの各出力端子と前記入力端子を接続中に該増幅器を前記第1の周期より短い第2の周期でON−OFF制御することを特徴とする、請求項1に記載のレーダ装置。
【請求項5】
前記AD変換器を前記第2の周期より短い第3の周期でサンプリングを行うことを特徴とする、請求項1から4のいずれか1項に記載のレーダ装置。
【請求項6】
前記前記第1の切替スイッチ部と第1のダウウコンバート部の間に増幅器を設け、前記第2の切替スイッチ部と前記各A/D変換器の間にそれぞれ第2のダウンコンバート部を設け、前記増幅器と各第2のダウンコンバート部を前記第2の周期でON−OFF制御する、請求項1に記載のレーダ装置。
【請求項7】
前記前記第1の切替スイッチ部と第1のダウウコンバート部の間に増幅器を設け、前記第2の切替スイッチ部と前記各A/D変換器の間にそれぞれ第2のダウンコンバート部及び第3のダウンコンバート部を設け、前記増幅器と各第2のダウンコンバート部を前記第2の周期でON−OFF制御し、前記第3のダウンコンバート部を第1の周期でON−OFF制御することを特徴とする、請求項1に記載のレーダ装置。
【請求項8】
前記物体から反射された送信信号を受信する複数のアンテナは、送信信号を放射する送受信共用アンテナであり、該複数の送受信共用アンテナは順次送信部及び受信部と接続する第1の接続手段を備え、該アンテナの各々が第1の接続手段によって接続されている間に送信信号を放射するとともに反射信号を受信するよう順次前記送信部に接続する第2の接続手段及び前記受信部に接続する第3の接続手段を備え、該第3の接続手段はアンテナが該受信部と接続されている間に受信部との接続をオン、オフする、請求項1に記載のレーダ装置。
【請求項9】
前記第1の切替スイッチ部は同時に隣接する2つのアンテナのチャンネルを選択して前記入力端子に交互に接続する構成を有し、該隣接するチャンネルを基凖チャンネルとして得られた位相関係に基き、前記ディジタル信号処理部において処理する際に位相補正を行うことを特徴とする、請求項1に記載のレーダ装置。

【国際公開番号】WO2005/069037
【国際公開日】平成17年7月28日(2005.7.28)
【発行日】平成19年9月6日(2007.9.6)
【国際特許分類】
【出願番号】特願2005−517133(P2005−517133)
【国際出願番号】PCT/JP2005/000728
【国際出願日】平成17年1月14日(2005.1.14)
【出願人】(000237592)富士通テン株式会社 (3,383)
【Fターム(参考)】