説明

不安定プラークを検出するための装置

脈管内プローブは、遠位部と近位部とを備えた外装を含む。この脈管内プローブは、外装に沿って延伸する第1光学導波路であって、遠位部と近位部との間で光放射を伝達するよう構成された第1光学導波路と、遠位部に設けられると共に、第1光学導波路と光学連通した第1ビーム方向転換器とを含む。更に、脈管内プローブは、第1光学導波路から光放射を受け取るよう構成された光学検出器と、遠位部に設けられた超音波トランスデューサとを含む。超音波トランスデューサは、超音波エネルギーを脈管内プローブと伝搬媒体との間に結合するよう構成されている。電線が外装に沿って延伸し、超音波トランスデューサと電気連通している。


【発明の詳細な説明】
【技術分野】
【0001】
本発明は管腔を診断するための装置に関し、特に、不安定プラークを検出するための装置に関する。
【背景技術】
【0002】
アテローム性動脈硬化症は、血管壁の変性を特徴とする血管疾患である。こうした変性は、患部血管の離散部位すなわちポケットで発生するとプラークと呼ばれる。ある種のプラークは、脳卒中又は心筋梗塞などの急性イベントに関係している。こうしたプラークは「不安定プラーク」と呼ばれる。不安定プラークは、典型的には、薄い線維性被膜により血液から分離した脂質を保持した貯留を含んでいる。線維性被膜は、管腔内の圧力上昇や血管痙攣に反応して破壊され、プラークの内部が血液流に曝されることがある。結果として生じる血栓は、虚血や塞栓の離脱に至ることがある。
【0003】
不安定プラークの位置を特定する一つの方法としては、赤外線で動脈壁を透視するものがある。これを行うためには、カテーテルを動脈の管腔に挿入する。こうしたカテーテルは、動脈壁上のある箇所を赤外線で照らすための送出ファイバを含んでいる。この光の一部は血液及び動脈壁を通過して、動脈壁内部の構造体に当たって散乱し、管腔に再び入る。こうして再び入った光はカテーテル内の収集ファイバにより収集可能であり、分光分析に供せられる。この種の拡散反射分光法を用いて、脂質内容などの不安定プラークに関連すると考えられる重要な成分を含んだ、動脈組織の化学組成を特定できる。
【0004】
不安定プラークの位置を特定する別の方法としては、管腔を囲む動脈組織の形状を検出するため血管内超音波診断法(IVUS)を用いるものがある。この方法を行うには、カテーテルを動脈の管腔に挿入する。カテーテルは、超音波エネルギーを動脈壁に向けて送出する超音波トランスデューサを含んでいる。反射した超音波エネルギーは超音波トランスデューサにより受信され、動脈組織の形状を測量するのに利用される。動脈組織の形態に関するこの測量図は、不安定プラークに関連した線維性被膜を検出するのに利用できる。
発明の概要
【0005】
本発明は、同一プローブ内で、赤外分光法と血管内超音波診断法という2つの検出様式を組み合わせると、不安定プラークなどの障害を検出するプローブの能力が向上するという認識に基づいている。
【0006】
一様態では、本発明は、遠位部と近位部とを備えた外装を具備する脈管内プローブを含む。前記脈管内プローブは、前記外装に沿って延伸する第1光学導波路であって、前記遠位部と前記近位部との間で光放射を伝達するよう構成された第1光学導波路と、前記遠位部に設けられると共に、前記第1光学導波路と光学連通した第1ビーム方向転換器とを含む。更に、前記脈管内プローブは、前記第1光学導波路から光放射を受け取るよう構成された光学検出器と、前記遠位部に設けられた超音波トランスデューサとを含む。前記超音波トランスデューサは、超音波エネルギーを前記脈管内プローブと伝搬媒体との間に結合するよう構成されている。電線が前記外装に沿って延伸し、前記超音波トランスデューサと電気連通している。
【0007】
実施形態によっては、前記脈管内プローブは、前記外装に沿って延伸する第2光学導波路を含む。前記第2光学導波路は、前記遠位部と前記近位部との間に光放射を伝達するよう構成されている。又、この種の実施形態は、前記遠位部に設けられると共に、前記第2光学導波路と光学連通した第2ビーム方向転換器を含む。
【0008】
幾つかの実施形態では、前記第2ビーム方向転換器は、前記第2光学導波路から該方向転換器に入射する軸方向ビームの光放射を、半径方向成分を備えた方向に沿って伝搬するビームに方向転換するよう構成されている。
【0009】
別の実施形態では、前記脈管内プローブは、光放射を前記第2光学導波路に結合するよう構成された光学源を含む。
【0010】
別の様態では、本発明は、遠位部と近位部とを備えた外装を具備した脈管内プローブを含む。前記脈管内プローブは、前記外装に沿って延伸する第1光学導波路であって、前記遠位部と前記近位部との間で光放射を伝達するよう構成された第1光学導波路と、前記遠位部に設けられると共に、前記第1光学導波路と光学連通した第1ビーム方向転換器とを含む。前記脈管内プローブは、前記外装に沿って延伸する第2光学導波路であって、前記遠位部と前記近位部との間で光放射を伝達するよう構成された第2光学導波路と、前記遠位部に設けられると共に、前記第2光学導波路と光学連通した第2ビーム方向転換器とを更に含む。前記脈管内プローブは、前記遠位端に設けられた超音波トランスデューサも含む。前記超音波トランスデューサは、超音波エネルギーを前記脈管内プローブと伝搬媒体との間に結合するよう構成されている。電線が前記外装に沿って延伸し、前記超音波トランスデューサと電気連通している。光学導波路の一例は光ファイバである。
【0011】
一実施形態では、前記脈管内プローブは、光放射を前記第1光学導波路から受け取るよう構成された光学検出器を更に含む。
【0012】
別の実施形態では、前記脈管内プローブは、光放射を前記第1光学導波路に結合するよう構成された光学源を含む。前記光学源は赤外線を放射するよう構成できる。
【0013】
一実施形態では、前記第1ビーム方向転換器は光学反射体を含む。しかし、前記第1ビーム方向転換器は、プリズム又は前記第1光学導波路の遠位先端に設けた屈曲部を更に含むこともできる。
【0014】
別の実施形態では、前記超音波トランスデューサは圧電トランスデューサを含む。
【0015】
別の実施形態では、前記外装は、赤外線に対して透明な材料を含む。
【0016】
幾つかの実施形態では、前記第1ビーム方向転換器は前記超音波トランスデューサに強固に接続されている。他の実施形態では、前記第1ビーム方向転換器は前記超音波トランスデューサに柔軟に接続されている。
【0017】
幾つかの実施形態では、前記第1ビーム方向転換器は、前記外装の長手方向軸に対する第1軸方向位置から光を放射するよう構成される一方、前記超音波トランスデューサは、前記第1軸方向位置から超音波エネルギーを放射するよう構成されている。他の実施形態では、前記第1ビーム方向転換器は、前記外装の長手方向軸に対する第1軸方向位置から光を放射するよう構成される一方、前記超音波トランスデューサは、前記第1軸方向位置とは異なる第2軸方向位置から超音波エネルギーを放射するよう構成されている。
【0018】
幾つかの実施形態では、前記脈管内プローブは、前記第1光学導波路と前記電線とを囲む回転可能ケーブルを含み、該回転可能ケーブルは、前記第1ビーム方向転換器と前記超音波トランスデューサとを同軸で回転させるよう構成されている。他の実施形態では、前記脈管内プローブは、前記外装の長手方向軸周りに環状に配置された複数のビーム方向転換器と、前記複数のビーム方向転換器と光学連通した複数の光学導波路と、前記長手方向軸周りに環状に配置された複数の超音波トランスデューサとを含む。
【0019】
本明細書では、「赤外」という語句は、赤外、近赤外、中間赤外、遠赤外、又は極端遠赤外を意味する。
【0020】
他に特に定義していない限り、本明細書で用いる科学技術用語は、本発明が属する分野の通常の技能を備えた当業者が一般に理解する意味と同一である。本明細書に記載したものと類似又は同等の方法及び材料を、本発明の実施又は試験に用いることができるが、適切な方法及び材料は後述する。本明細書で言及するすべての刊行物、特許出願、特許、及び他の引用文献は、その全体を引用して援用する。矛盾が生じた場合は、定義も含めて本明細書が優先する。更に、これら材料、方法、及び例は、例示的なものであって限定する意図はない。
【0021】
本発明のその他の特徴及び利点は、次の詳細な説明及び特許請求の範囲から明らかとなるはずである。
【発明を実施するための最良の形態】
【0022】
プラークが破裂する脆弱性は、マクロファージの存在、局所的な温度上昇、及び薄い線維性被膜に覆われた脂質に富んだ貯留などの特徴の組合せを検出することで評価できる。検出様式によっては、これら特徴の何れか1つの検出にしか適さないものもある。
【0023】
図1A及び1Bは、患者の動脈壁104中の不安定プラーク102を識別するための2つの検出様式を組み合わせる脈管内プローブ100の一実施形態を示す。赤外線分光法を用いて脂質内容を検出する化学分析と、血管内超音波診断法を用いて被膜厚さを検出する形態計測分析とを組み合わせることによって、何れか一方の検出様式だけを用いた場合より潜在的に不安定なプラークの識別における選択性が向上する。これら2つの検出様式は、血液を含有する環境においても高い選択性を実現できる。
【0024】
図1Aを参照すると、脈管内プローブ100はカテーテル112を含み、このカテーテル112はその遠位端111に案内ワイヤ管腔110を備える。図1Bを参照すると、案内ワイヤ管腔110内に通される案内ワイヤ108を用いて、脈管内プローブ100を動脈の管腔106に挿入できる。カテーテル112の外層は、赤外線を透過させる材料(例えばポリマー)で構成された外装114である。ハウジング116はカテーテル112の遠位端に位置しており、赤外線を送受信する光学台118と、超音波エネルギーを送受信する超音波トランスデューサ120とを含む。送出ファイバ122及び収集ファイバ123が、カテーテル112の遠位端と近位端との間に延在しており、これらファイバは光学台118に取り付けた遠位端を備えている。光源(図示しない)が、光を送出ファイバ122の近位端内に結合し、送出ミラー124が、送出ファイバ122の遠位端から放射された光125を動脈壁104に方向転換する。収集ミラー126は、動脈壁104内の様々な深さから散乱する光127を収集ファイバ123の遠位端内に方向転換する。送出ミラー124及び収集ミラー126に代えて、他のビーム方向転換器を用いてもよい(例えば、プリズムや光ファイバ先端に設けた屈曲部)。収集ファイバ123の近位端は、光学検出器(図示しない)と光学連通している。光学検出器が、収集ファイバ123内の光の強度を示す電気信号を発生する。この電気信号は、動脈壁104の組成を示す分光シグネチャーを含み、特に、この組成が不安定プラーク102に見られる脂質の存在と一致した組成かどうかを示す分光シグネチャーを含む。この電気信号の分光シグネチャーは、ハードウェア、ソフトウェア、又はそれらの組合せで実現されるスペクトル分析器(図示しない)を用いて分析できる。
【0025】
別法としては、図1Cに示した実現例における脈管内プローブ180では、単一の光ファイバ140を送出ファイバ122及び収集ファイバ123の代わりに用いることができる。管腔内壁104から直接的に散乱光を収集することにより、管腔106内の血液中を通過する光の伝搬に起因する散乱を回避できる。結果として、別個の収集ファイバ及び送出ファイバを提供する必要もなくなる。その代わり、単一のファイバ140を、非外傷性光カプラ142を用いた光の収集及び送出のために使用できる。図1Cを参照すると、非外傷性光カプラ142は、動脈壁104の接触域144上に静止している。図1Cに示したように配置すると、非外傷性光カプラ142は、ファイバ140を軸方向に伝わる光を接触域144に差し向ける。非外傷性光カプラ142から出た光は、動脈壁104を通過し、動脈壁104の裏側にあるプラーク102などの構造体を照らす。これら構造体は光の一部を散乱させ、接触域144に返す。すると、この光の一部は接触域26から動脈壁104を介して再出現する。外傷性光カプラ142はこの再出現した光を収集し、ファイバ140内に差し向ける。光ファイバ144の近位端は、光源と光学検出器との両方に(例えば、光サーキュレータを用いて)結合できる。
【0026】
超音波トランスデューサ120は光学台118に長手方向で隣接しており、超音波エネルギー130を動脈壁104に差し向け、動脈壁104から反射した超音波エネルギー132を受け取る。超音波トランスデューサ120は時分割多重化を用いており、送信する超音波エネルギー130と受信する超音波エネルギー132とを電線128に伝わる電気信号に結合できる。例えば、第1時間間隔において、電線128を伝わる電気信号が超音波トランスデューサ120を駆動して、それに対応した超音波信号を出力させることができる。そして第2時間間隔において、超音波信号が動脈壁から反射した後、超音波トランスデューサ120が電線128を伝わる電気信号を発生する。この電気信号は受信した超音波信号に対応する。受信した電気信号を用いて、動脈壁内部で検出されたプラーク102があれば、その被膜厚さを含んだ動脈壁の形状を復元できる。
【0027】
外装114内部には、超音波トランスデューサ120を囲む食塩水又は他の流体などの伝搬媒体134が音響伝搬を向上させるために入れられている。又、伝搬媒体134は、光学台118から放射される赤外線に対して透明である。
【0028】
ハウジング116に取り付けられたトルクケーブル136が、光ファイバ122及び電線128を囲んでいる。モータ(図示しない)がトルクケーブル136を回転させることにより、ハウジング116も回転させる。この特徴によって、脈管内プローブ100は、光124と超音波エネルギーとで動脈壁104を円周方向に走査することが可能になる。
【0029】
動作時には、脈管内プローブ100を、血管、典型的には動脈に案内ワイヤ108を用いて挿入する。一実施例では、脈管内プローブ100を非連続的な段階で挿入し、段階毎にプローブを完全に一回転させる。この場合、光学及び超音波データを非連続的な円形路に沿って収集できる。別法では、脈管内プローブ100を連続的に挿入し、この場合は軸方向移動と回転が同時進行する。この場合、光学及び超音波データは連続的な螺旋路に沿って収集される。いずれせよ、収集した光学データを用いて動脈壁104の3次元的スペクトル図表を生成でき、収集した超音波データを用いて、動脈壁104の3次元の形態学的図表を生成できる。次に、光学台118と超音波トランスデューサ120との相対位置に基づいて、光学データと超音波データとの対応付けを行う。収集したデータは実時間で使用可能であり、脈管内プローブ100が動脈を通過する時に、不安定プラークを診断したり、これら2つの検出様式により識別可能な特性を持つ他の障害を識別したりできる。脈管内プローブ100は、赤外分光法及び血管内超音波診断法という2つの診断様式に加え、随意選択で他の診断又は治療様式を実行するための構造体を含むこともできる。
【0030】
図2は、脈管内プローブ200の第2実施形態の断面図であり、このプローブ200では、可とう性カップリング240が光学台218と超音波トランスデューサ220とを連結している。カテーテルを血管内に挿入する時は、剛性要素をなるべく短くしておくとカテーテルが血管の形状に対応しやすくなるので有利となりうる。脈管内プローブ200は、光学台218と超音波トランスデューサ220との間で屈曲するという利点を備えているので、このプローブ200は、血管系内の蛇行状経路を通り抜け可能となる。しかし、脈管内プローブ200から収集した光学及び超音波データは、脈管内プローブ100から収集した光学及び超音波データほどは互いに正確に対応しないこともある。一つの理由は、光学台218と超音波トランスデューサ220とが、第1実施形態の脈管内プローブ100の光学台及びトランスデューサに比べてより離間しているからである。従って、これらは異なる螺旋経路に沿ってデータを収集する。カテーテルの挿入速度が既知であれば、光学データと超音波データとの対応を決定する際にこの経路差を考慮できる。しかし、光学台218と超音波トランスデューサ220との可とう性カップリング240が配置されていることから、図1Aの実施形態に比べてこれが困難となる場合もある。
【0031】
図3A及び3Bは、脈管内プローブ300が光学台318と超音波トランスデューサ320とを備えた第3実施形態の断面図を示す。光学台318及び超音波トランスデューサ320は横方向に互いに隣接しており、外装314の長手方向軸350に対して同じ軸方向位置からそれぞれ光と超音波エネルギーとを放射する。図3Aは、光学台318及び超音波トランスデューサ320の放射端の平面図を示す。図3Bは、光及び超音波エネルギーが同一の軸方向位置から放射されることを示した側面図であり、ハウジング316が同時に回転且つ移動されて、光及び超音波エネルギー350が概ね同一の螺旋経路を描く。これにより収集した光学データと超音波データとの対応付けが容易となる。光学データと超音波データとの時間オフセットは既知の回転速度から特定できる。
【0032】
図4は第4実施形態の断面図を示し、ここで脈管内プローブ400は、図3A及び3Bに関連して説明したように、互いに隣接し且つ対向する光学台418と超音波トランスデューサ420とを備える。しかし、本実施形態では、光452は一方の側から放出され、超音波エネルギー454は反対側から放射される。この構成によれば、脈管内プローブ400の直径は、光学台418及び超音波トランスデューサ420の形状寸法によっては脈管内プローブ300の直径よりも小さくなる。直径が小さくなれば、脈管内プローブはより細い血管を通過できることがある。
【0033】
図5は第5実施形態の断面図を示し、ここで脈管内プローブ500は、固定コア536と、放射状に配列した光カプラと、放射状に配列した超音波トランスデューサ520とを備える。固定コア536を備えた第5実施形態は、コアが回転する上述の実施形態よりも信頼性が高くなることがある。これは、第5実施形態にはトルクケーブルのような可動部分が無いからである。可動部分が無いことにより、外装514が万一破裂しても動脈壁が可動部分に接触しないので、脈管内プローブ500の安全性が向上する。
【0034】
脈管内プローブ500は半径方向全てからデータを同時に収集できるので、診断速度が向上する。或いは、脈管内プローブ500は異なる時刻に異なる位置からデータを収集できるので、光が隣接する光ファイバから収集されたり、超音波エネルギーが隣接するトランスデューサから収集されたりすることによる漏話の可能性が減少する。スペクトル図表及び/又は形態学的図表の半径方向の分解能は、回転コアを備えた実施形態で作成される図表よりは低くなるが、解像度がどの程度異なるかは光ファイバ及び超音波トランスデューサの数に依存する。光ファイバ及び/又は超音波トランスデューサを多数配置すれば半径方向の解像度は向上するが、脈管内プローブ500が大きくなりすぎて、血管によっては挿入できないこともあり得る。
【0035】
脈管内プローブ500は、同心状の案内ワイヤ管腔510を通過する案内ワイヤ508に沿って血管に挿入できる。同心状の案内ワイヤ管腔510を用いたカテーテル挿入には、軸心を逸れた遠位端案内ワイヤ管腔110の使用に比べて利点がある。一つの利点は、案内ワイヤ508が絡まる可能性が減少することである。別の利点としては、挿入時にユーザがワイヤに同軸の負荷をかけるため、同心状の案内ワイヤ管腔510ではトラッカビリティが向上する。又、同心状の案内ワイヤ管腔510を用いると、案内ワイヤ508が光ファイバ及び超音波トランスデューサの視野の外に位置することになる。
【0036】
これら脈管内プローブは直径が十分小さいカテーテルを備えているため、プローブを細い血管にも挿入できる。図6A及び6Bは、回転コア(図1乃至4)及び固定コア(図5)を備えた実施形態のカテーテルの横断面図を比較したものである。
【0037】
図6Aに示した回転コアカテーテル660は、赤外分光法用の光学信号を伝達する一対の光ファイバ622と、血管内超音波診断法用の電気信号を伝達する一対の電線628とを中空のトルクケーブル636内部に備えている。カテーテル660の外装614の直径は、トルクケーブル636の寸法により制限される。
【0038】
図6Bに示した固定コアカテーテル670は、動脈壁の4つの四分円から、光学信号と血管内超音波診断法用の電気信号とをそれぞれ伝える四対の光ファイバ672と、四対の電線674とを備えている。トルクケーブルは不要だが、カテーテル670の外装676には、四分円それぞれに一対の光ファイバ672と一対の電線674とを収容するだけの直径が必要である。
他の実施形態
【0039】
本発明をその詳細な説明に関連して記載してきたが、上述の説明は例示を意図したものであり、本発明の範囲を限定するものではない。又、本発明の範囲は、添付した特許請求の範囲によって定義される。他の局面、利点、及び変更も次の特許請求の範囲に入る。
【図面の簡単な説明】
【0040】
【図1】(A) カテーテルの遠位端に案内ワイヤ管腔を備えた脈管内プローブの断面図である。 (B) 回転コア及び光学台と超音波トランスデューサとの間の剛性カップリングを備えた図1Aに示した脈管内プローブの別の断面図である。 (C) 単一の光ファイバを備えた図1Bに示す脈管内プローブの実現例の断面図である。
【図2】回転コア及び光学台と超音波トランスデューサとの間の可とう性カップリングを備えた脈管内プローブの断面図である。
【図3】(A乃至B) 回転コアを備えた脈管内プローブ内に配置された、横方向に隣接した単方向性光学台と超音波トランスデューサとの平面図及び断面図を示す。
【図4】回転コアと、横方向に隣接し且つ対向した光学台と超音波トランスデューサとを備えた脈管内プローブの断面図である。
【図5】固定コアと、放射状に配列した光カプラと、放射状に配列した超音波トランスデューサとを備えた脈管内プローブの断面図である。
【図6】(A乃至B) 回転コア及び固定コアを備えたカテーテルの横断面図を比較したものである。
【図1A】

【図1B】

【図1C】


【特許請求の範囲】
【請求項1】
脈管内プローブであって、
遠位部と近位部とを備えた外装と、
前記外装に沿って延伸する第1光学導波路であって、前記遠位部と前記近位部との間で光放射を伝達するよう構成された第1光学導波路と、
前記遠位部に設けられると共に、前記第1光学導波路と光学連通した第1ビーム方向転換器と、
光放射を前記第1光学導波路から受け取るよう構成された光学検出器と、
前記遠位端に設けられた超音波トランスデューサであって、超音波エネルギーを前記脈管内プローブと伝搬媒体との間に結合するよう構成された超音波トランスデューサと、
前記外装に沿って延伸すると共に、前記超音波トランスデューサと電気連通した電線とを含む、脈管内プローブ。
【請求項2】
前記外装に沿って延伸する第2光学導波路であって、前記遠位部と前記近位部との間で光放射を伝達するよう構成された第2光学導波路と、
前記遠位部に設けられると共に、前記第2光学導波路と光学連通した第2ビーム方向転換器とを更に含む、請求項1に記載の脈管内プローブ。
【請求項3】
前記第2ビーム方向転換器が、前記第2光学導波路から該方向転換器に入射する軸方向ビームの光放射を、半径方向成分を備えた方向に沿って伝搬するビームに方向転換するよう構成されている、請求項2に記載の脈管内プローブ。
【請求項4】
光放射を前記第2光学導波路に結合するよう構成された光学源を更に含む、請求項2に記載の脈管内プローブ。
【請求項5】
脈管内プローブであって、
遠位部と近位部とを備えた外装と、
前記外装に沿って延伸する第1光学導波路であって、前記遠位部と前記近位部との間で光放射を伝達するよう構成された第1光学導波路と、
前記遠位部に設けられると共に、前記第1光学導波路と光学連通した第1ビーム方向転換器と
前記外装に沿って延伸する第2光学導波路であって、前記遠位部と前記近位部との間で光放射を伝達するよう構成された第2光学導波路と、
前記遠位部に設けられると共に、前記第2光学導波路と光学連通した第2ビーム方向転換器と、
前記遠位端に設けられた超音波トランスデューサであって、超音波エネルギーを前記脈管内プローブと伝搬媒体との間に結合するよう構成された超音波トランスデューサと、
前記外装に沿って延伸すると共に、前記超音波トランスデューサと電気連通した電線とを含む、脈管内プローブ。
【請求項6】
前記第1ビーム方向転換器が、前記第1光学導波路から該方向転換器に入射する軸方向ビームの光放射を、半径方向成分を備えた方向に沿って伝搬するビームに方向転換するよう構成された、請求項5に記載の脈管内プローブ。
【請求項7】
光放射を前記第1光学導波路から受け取るよう構成された光学検出器を更に含む、請求項5に記載の脈管内プローブ。
【請求項8】
光放射を前記第1光学導波路に結合するよう構成された光学源を更に含む、請求項5に記載の脈管内プローブ。
【請求項9】
前記光学源が赤外線を放射するよう構成されている、請求項8に記載の脈管内プローブ。
【請求項10】
前記第1光学導波路が光ファイバを含む、請求項5に記載の脈管内プローブ。
【請求項11】
前記第1ビーム方向転換器が光学反射体を含む、請求項5に記載の脈管内プローブ。
【請求項12】
前記第1ビーム方向転換器がプリズムを含む、請求項5に記載の脈管内プローブ。
【請求項13】
前記第1ビーム方向転換器が、前記第1光学導波路の遠位先端における屈曲部を含む、請求項5に記載の脈管内プローブ。
【請求項14】
前記超音波トランスデューサが圧電トランスデューサを含む、請求項5に記載の脈管内プローブ。
【請求項15】
前記外装が赤外線に対して透明な材料を含む、請求項5に記載の脈管内プローブ。
【請求項16】
前記第1ビーム方向転換器が、前記超音波トランスデューサに強固に接続されている、請求項5に記載の脈管内プローブ。
【請求項17】
前記第1ビーム方向転換器が、前記超音波トランスデューサに柔軟に接続されている、請求項5に記載の脈管内プローブ。
【請求項18】
前記第1ビーム方向転換器が、前記外装の長手方向軸に対する第1軸方向位置から光を放射するよう構成される一方、前記超音波トランスデューサは、前記第1軸方向位置から超音波エネルギーを放射するよう構成されている、請求項5に記載の脈管内プローブ。
【請求項19】

前記第1ビーム方向転換器が、前記外装の長手方向軸に対する第1軸方向位置から光を放射するよう構成される一方、前記超音波トランスデューサは、前記第1軸方向位置とは異なる第2軸方向位置から超音波エネルギーを放射するよう構成されている、請求項5に記載の脈管内プローブ。
【請求項20】
前記第1光学導波路と前記電線とを囲む回転可能ケーブルを更に含み、該回転可能ケーブルが、前記第1ビーム方向転換器と前記超音波トランスデューサとを同軸で回転させるよう構成されている、請求項5に記載の脈管内プローブ。
【請求項21】
前記外装の長手方向軸周りに環状に配置された複数のビーム方向転換器と、
前記複数のビーム方向転換器と光学連通した複数の光学導波路と、
前記長手方向軸周りに環状に配置された複数の超音波トランスデューサとを更に含む、請求項5に記載の脈管内プローブ。

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2007−505723(P2007−505723A)
【公表日】平成19年3月15日(2007.3.15)
【国際特許分類】
【出願番号】特願2006−528125(P2006−528125)
【出願日】平成16年9月21日(2004.9.21)
【国際出願番号】PCT/US2004/031005
【国際公開番号】WO2005/030046
【国際公開日】平成17年4月7日(2005.4.7)
【出願人】(503440026)インフレアデックス, インク. (10)
【氏名又は名称原語表記】INFRAREDX, INC.
【Fターム(参考)】