説明

信号伝送装置、信号伝送装置制御方法

【課題】信号伝送の設定の最適化を行う信号伝送装置、信号伝送装置制御方法を提供する。
【解決手段】伝送路の特性の測定を行うための第1信号を伝送路へ送信する第1信号送信部と、送信された第1信号が伝送路により反射された信号に基づいて、伝送路の反射特性を測定する反射特性測定部と、送信された第1信号が伝送路を通過した信号に基づいて、伝送路の通過特性を測定する通過特性測定部と、測定された反射特性と測定された通過特性とに基づいて、伝送クロック周波数及び多値数を決定する決定部と、決定部により決定された伝送クロック周波数及び多値数を用いて情報の変調を行い、該変調により得られた第2信号を伝送路へ送信する第2信号送信部と、第2信号送信部により送信されて伝送路を通過した第2信号を、受信して復調する第2信号受信部とを備えた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、伝送路を介して信号の伝送を行う信号伝送装置、信号伝送装置制御方法に関するものである。
【背景技術】
【0002】
近年、パソコンやサーバで使用されてきたPCI(Peripheral Component Interconnect)やPCI−XはPCI Expressに、HDDやCD−ROMなどのストレージデバイスへの接続に使用されてきたATA(Advanced Technology Attachment)はSerial ATAに、同様にSCSI(Small Computer System Interface)はSerial Attached SCSIに移行している。このように、信号伝送のインタフェース(電気インタフェース)はパラレルインタフェースからシリアルインタフェースに急速に移行しつつある。
【0003】
シリアルインタフェースはパラレルインタフェースより広帯域を使用するため、伝送路のロス・ジッタ・ノイズ・ばらつきなどを適切に見極め、より安定な伝送波形を得る手法が求められている。
【0004】
シリアルインタフェースは、信号波形を送出する送信LSI(Large Scale Integration)と、プリント基板やコネクタやケーブルで構成される伝送路と、信号波形を受信する受信LSI等を有する。
【0005】
伝送速度がGHzオーダーである高速伝送システムの設計では、送・受信器の能力、素子・基板材料の特性ばらつき、伝送路を構成する各要素の特性、ノイズなどを考慮し、最適な伝送品質を得る必要がある。
【0006】
従来の伝送システムは、送信LSIや受信LSIの他に、プリント基板やケーブルやコネクタを有する。この場合に考慮すべき項目の一例としては、送信・受信性能、LSI・材料・特性のばらつき、電源・クロストークノイズ、反射、PCB(Printed Circuit Board)配線・VIA・ケーブル・コネクタ・送受信LSIのパッケージのロス、等が挙げられる。
【0007】
なお、従来技術として、等化パラメータの設定を自動化する等化装置や、プリエンファシス調整に要する時間を短縮するプリエンファシス調整方法がある(例えば、特許文献1、特許文献2参照)。
【特許文献1】特開2004−15622号公報
【特許文献2】特開2006−246191号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
一般的な高速伝送は、エンファシス調整による受信アイ(Eye)開口調整やEQ(Equalizer)調整を行う。
【0009】
しかし、伝送クロック周波数及び多値数は予め決められており、必ずしも最適な伝送方式になっているとは言えない。
【0010】
また、高速伝送の多ポート化により、LSIの中に多ポートの送受信回路が内蔵される。これにより、オープンレーンにおけるオープン反射や複数レーンの同時動作ノイズによる伝送品質の悪化が懸念されている。さらには、受信アイ開口を大きくすることが受信マージンを大きくすることと思われがちだが、大きなアイ開口波形を受信することで、多ポートLSI内部のノイズが大きくなり、同様に伝送品質を悪化させる原因にもなっている。
【0011】
本発明は上述した問題点を解決するためになされたものであり、信号伝送の設定の最適化を行う信号伝送装置、信号伝送装置制御方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上述した課題を解決するため、本発明の一態様は、伝送路を介して信号の伝送を行う信号伝送装置であって、前記伝送路の特性の測定を行うための第1信号を前記伝送路へ送信する第1信号送信部と、前記第1信号送信部により送信された第1信号が前記伝送路により反射された信号に基づいて、前記伝送路の反射特性を測定する反射特性測定部と、前記第1信号送信部により送信された第1信号が前記伝送路を通過した信号に基づいて、前記伝送路の通過特性を測定する通過特性測定部と、前記反射特性測定部により測定された前記反射特性と前記通過特性測定部により測定された前記通過特性とに基づいて、伝送クロック周波数及び多値数を決定する決定部と、前記決定部により決定された伝送クロック周波数及び多値数を用いて情報の変調を行い、該変調により得られた第2信号を前記伝送路へ送信する第2信号送信部と、前記第2信号送信部により送信されて前記伝送路を通過した第2信号を、受信して復調する第2信号受信部とを備える。
【0013】
また、本発明の一態様は、伝送路を介して信号の伝送を行う信号伝送方法であって、前記伝送路の特性の測定を行うための第1信号を前記伝送路へ送信し、送信された第1信号が前記伝送路により反射された信号に基づいて、前記伝送路の反射特性を測定すると共に、送信された第1信号が前記伝送路を通過した信号に基づいて、前記伝送路の通過特性を測定し、測定された前記反射特性と測定された前記通過特性とに基づいて、伝送クロック周波数及び多値数を決定し、決定された前記伝送クロック周波数及び多値数を用いて情報の変調を行い、該変調により得られた第2信号を前記伝送路へ送信し、送信されて前記伝送路を通過した第2信号を、受信して復調することを行う。
【発明の効果】
【0014】
開示の信号伝送装置、信号伝送装置制御方法によれば、信号伝送の設定の最適化を行うことができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施の形態について図面を参照しつつ説明する。
【0016】
本実施の形態に係る信号伝送システムは、多値伝送を行う。また、この信号伝送システムは、データ判定タイミングにおいて伝送信号が取り得るレベルの数である多値数を選択することができる。多値数が多いほど、伝送容量は多くなる。また、この信号伝送システムは、伝送品質と伝送容量が所定の条件を満たすように、伝送クロック周波数及び多値数を決定する。以後、このように決定される伝送クロック周波数及び多値数をそれぞれ、最適周波数及び最適多値数と呼ぶ。
【0017】
本実施の形態に係る信号伝送システムの構成について以下に説明する。
【0018】
図1は、本実施の形態に係る信号伝送システムの構成の一例を示すブロック図である。この信号伝送システムは、送信LSI11、受信LSI12、プリント基板13,14、コネクタ15、コントローラ16、メモリ17を有する。送信LSI11は、送信制御部21、変調部22、増幅部23(Amp)、エンファシス部24(Emphasis)、第1ネットワークアナライザ28を有する。受信LSI12は、EQ31、復調部32、波形記憶部33、BER(Bit Error Ratio)測定部34、アイ開口測定部35、判定テーブル記憶部36、判定部37、第2ネットワークアナライザ38を有する。
【0019】
送信LSI11は、プリント基板13上に実装されている。受信LSI12は、プリント基板14上に実装されている。
【0020】
送信部22は、ポート1(Port1)、ポート2を有する。受信部32は、ポート3、ポート4を有する。ポート1とポート3は、プリント基板13上の伝送信号線、コネクタ15、プリント基板14上の伝送信号線を介して接続される。ポート1により送信された信号は、ポート3により受信される。同様に、ポート2とポート4は、プリント基板13上の伝送信号線、コネクタ15、プリント基板14上の伝送信号線を介して接続される。ポート2により送信された信号は、ポート4により受信される。
【0021】
以後、プリント基板13上の伝送信号線、コネクタ15、プリント基板14上の伝送信号線から成る信号の経路を、伝送路またはレーンと呼ぶ。
【0022】
また、送信LSI11及び受信LSI12内の各部は、レーン毎に設けられる。
【0023】
コントローラ16、メモリ17、送信制御部21、送信部22、EQ31、受信部32は、制御信号線を介して接続される。
【0024】
図2は、本実施の形態に係るコントローラにおけるソフトウェアの構成の一例を示すブロック図である。コントローラ16は、ソフトウェアであるSパラメータ測定部41、選定部42、設定部43を実行する。ここで、コントローラ16は、例えばCPUであり、Sパラメータ測定部41、選定部42、設定部43は、コントローラ16がメモリ17を用いて実行するプログラムである。
【0025】
送信制御部21は、送信LSI11におけるオープンレーンの判定や増幅部23の制御を行う。変調部22は、送信LSI11が送信すべき情報の変調を行う。エンファシス部24は、伝送路による波形の劣化を防ぐために所定の周波数を増幅する。増幅部23は、送信する信号を増幅する。
【0026】
EQ31は、伝送路により劣化した波形の等化を行う。復調部32は受信した信号を復調する。波形記憶部33は、受信した波形を記憶する。BER測定部34は、受信した信号のBERを測定する。アイ開口測定部35は、受信した信号のアイ開口を測定する。判定テーブル記憶部36は、判定テーブルを記憶する。
【0027】
判定テーブル記憶部36は、送信LSI11又は受信LSI12において最適周波数及び最適多値数を決定するための判定テーブルを格納する。
【0028】
判定部37は、判定テーブルに基づいて最適周波数及び最適多値数を決定する。
【0029】
第1ネットワークアナライザ28は、Sパラメータを測定するための測定用信号(第1信号)を伝送路へ送信し、伝送路で反射された測定用信号を受信することにより伝送路の反射ロス(反射特性)の測定を行う。第2ネットワークアナライザ38は、伝送路を通過した測定用信号を受信することにより伝送路の挿入ロス(通過特性)の測定を行う。
【0030】
第1信号送信部及び第2信号送信部は、送信制御部21、変調部22、増幅部23、エンファシス部24に対応する。第2信号受信部は、EQ31、復調部32、波形記憶部33、BER測定部34、アイ開口測定部35に対応する。
【0031】
決定部は、判定テーブル記憶部36、判定部37、コントローラ16、メモリ17に対応する。
【0032】
Sパラメータ測定部41は、第1ネットワークアナライザ28及び第2ネットワークアナライザ38に測定の指示を行い、測定に基づいて伝送路のSパラメータ特性を算出する。Sパラメータは、伝送路の周波数特性を表すパラメータである。選定部42は、Sパラメータ測定部41により算出されたSパラメータ特性に基づいて、増幅部23の設定値である増幅部設定値、エンファシス部24の設定値であるエンファシス部設定値、EQ31の設定値であるEQ設定値を複数選定する。
【0033】
ここで、増幅部設定値は、増幅特性であり、ここでは増幅部23の出力振幅値または増幅率とする。エンファシス部設定値は、強調特性であり、ここでは強調する周波数におけるゲインとする。EQ31の設定値は、等化特性であり、ここでは中心周波数とする。ここで、EQ31は、中心周波数においてゲインが最大となる周波数特性を有する。
【0034】
なお、本実施の形態の信号伝送システムは、伝送路を共通にする双方向インタフェースであっても良い。この場合、受信LSI12側が更に、変調部22、増幅部23、エンファシス部24、第1ネットワークアナライザ28を有し、送信LSI11側が更に、EQ31、復調部32、波形記憶部33、BER測定部34、アイ開口測定部35、判定テーブル記憶部36、判定部37、第2ネットワークアナライザ38を有する。そして、この信号伝送システムは、送信LSI11側から受信LSI12側への伝送と同様に、受信LSI12側から送信LSI11側への伝送を行う。
【0035】
本実施の形態に係る信号伝送システムの動作について以下に説明する。
【0036】
図3は、本実施の形態に係る信号伝送システムの動作の一例を示すフローチャートである。
【0037】
まず、設定部43は、判定テーブルがメモリ等に存在するか否かの判定を行う(S11)。判定テーブルが存在する場合(S11,Yes)、このフローは処理S25へ移行する。判定テーブルが存在しない場合(S11,No)、設定部43は、判定テーブルを作成する判定テーブル作成処理を行い(S12)、処理S25へ移行する。判定テーブル作成処理において、設定部43は、例えばユーザから入力される送信LSI11及び受信LSI12のデータシート(LSIの規格)の情報を取得し、その情報から判定テーブルを作成する。
【0038】
次に、設定部43は、作成済みの判定テーブルを取得して判定テーブル記憶部36に設定する(S25)。
【0039】
次に、設定部43は、予め指定された判定基準を取得する(S27)。判定基準は、最適周波数及び最適多値数を決定するための基準であり、伝送品質重視または伝送容量重視を示す。ここで、予め判定基準に伝送容量重視が指定されていない場合、判定基準として伝送品質重視が用いられる。
【0040】
次に、送信制御部21は、オープンレーンがあるか否かの判定を行う(S31)。オープンレーンがない場合(S31,No)、このフローは処理S21へ移行する。オープンレーンがある場合(S31,Yes)、送信制御部21は、増幅部23に対してオープンレーンをOFFもしくは出力レベルを0にし(S32)、このフローは処理S21へ移行する。伝送に不要なオープンレーンを判定して送信出力を止めることで、オープン反射によるクロストーク、LSI内部ノイズを抑制することが可能となり、BERを低減する効果がある。
【0041】
次に、Sパラメータ測定部41は、EQ31をオフにし(S33)、第1ネットワークアナライザ28及び第2ネットワークアナライザ38によりSパラメータを測定するSパラメータ測定処理を行う(S34)。
【0042】
次に、判定部37は、Sパラメータ測定処理により得られたSパラメータ測定値と判定テーブル記憶部36に格納された判定テーブルとから、最適周波数及び最適多値数を決定する周波数多値数決定処理を行う(S37)。
【0043】
次に、選定部42は、増幅部23、エンファシス部24、EQ31の設定値の候補である設定値候補を複数決定する設定値候補決定処理を行う(S40)。
【0044】
次に、選定部42は、設定値候補の組み合わせを順次設定し、アイ開口測定部35によるアイ開口測定処理と、BER測定部34によるBER測定処理とを行う(S41)。
【0045】
次に、選定部42は、設定値候補の組み合わせ毎に得られたアイ開口及びBERに基づいて、所定の適正条件を満たす設定値候補の組み合わせである適正設定値を選択する(S42)。
【0046】
適正条件の例について説明する。適正条件Aとして、選定部42は、BERがエラーフリーとなり且つアイ開口が最大となる設定値と、BERがエラーフリーとなり且つアイ開口が最小となる設定値と、BERがエラーフリーとなり且つアイ開口が中心値に最も近くなる設定値とを、適正設定値とする。ここで、中心値は、最大値と最小値の平均値とする。適正条件Bとして、選定部42は、BERがエラーフリーとなり、且つアイ開口が予め設定された範囲内となる設定値を適正設定値とする。ユーザは、予め所定の適正条件として適正条件Aまたは適正条件Bを選択することができる。
【0047】
次に、選定部42は、適正設定値の中から所定の最適条件を満たす設定値である最適設定値を選択し、最適設定値を増幅部22、エンファシス部24、EQ31に設定する(S43)。ここで、最適条件は、アイ開口が中心値に最も近くなることである。これにより、アイ開口及び振幅が過剰になることにより発生するノイズを抑制することができ、受信感度の向上を図ることができる。
【0048】
次に、設定部43は、送信LSI11及び受信LSI12に通常の伝送を開始させる(S44)。次に、設定部43は、伝送を終了させるか否かの判定を行う(S45)。
【0049】
伝送を終了させる場合(S45,Yes)、このフローは終了する。伝送を終了させない場合(S45,No)、設定部43は、伝送条件が変更されたか否かの判定を行う(S46)。ここで、伝送条件は、例えば伝送負荷、伝送距離等である。
【0050】
伝送条件が変更されていない場合(S46,No)、このフローは処理S45へ移行する。伝送条件が変更された場合(S46,Yes)、このフローは処理S31へ移行する。
【0051】
また、設定値候補の組み合わせの全てについて処理S41〜S42を実行し、もっともBER特性がよい設定値候補で運用することも可能である。
【0052】
また、本実施の形態に係る信号伝送システムの動作は、上述したフローの全てを使用する必要はなく、必要なフローを設定して運用することも可能である。
【0053】
周波数多値数決定処理について以下に説明する。
【0054】
判定テーブルは、少なくとも一つの判定パターンを有する。判定パターンは、設定される伝送クロックの周波数範囲と設定される多値数とSパラメータ測定値が満たすべきSパラメータ条件とを有する。Sパラメータ条件は、挿入ロス条件と反射ロス条件とを有する。
【0055】
まず、判定基準が伝送品質重視である場合の周波数多値数決定処理について説明する。判定部37は、Sパラメータ測定値がSパラメータ条件を満たす判定パターンを抽出し、抽出された判定パターンのうち、多値数が2より大きく且つ多値数が最小となる判定パターンを選択する。多値数が2より大きい判定パターンにおいてSパラメータ測定値が全てのSパラメータ条件を満たさない場合、判定部37は、多値数が2の判定パターンを選択する。
【0056】
次に、判定部37は、選択された判定パターンにおける周波数範囲及び多値数を、それぞれ最適周波数範囲及び最適多値数とする。次に、判定部37は、最適周波数範囲内でSパラメータ測定値がSパラメータ条件を満たす最も高い周波数を最適周波数とする。
【0057】
次に、判定基準が伝送容量重視である場合の周波数多値数決定処理について説明する。まず、判定部37は、判定基準が伝送品質重視である場合と同様に判定パターンを選択して伝送品質重視条件とする。次に、判定部37は、多値数が最も大きい判定パターンを選択して伝送容量重視条件とする。
【0058】
伝送品質重視条件と伝送容量重視条件が同一である場合、判定部37は、その判定パターンの最適周波数範囲、最適多値数、最適周波数を決定する。伝送品質重視条件と伝送容量重視条件が異なる場合、判定部37は、伝送品質重視条件の最適周波数範囲、最適多値数、最適周波数を決定して伝送容量を算出し、伝送容量重視条件の最適周波数範囲、最適多値数、最適周波数を決定して伝送容量を算出する。し、伝送品質重視条件と伝送容量重視条件のうち伝送容量の高い方の最適周波数及び最適多値数を選択する。エラー率の許容値が少し大きめでも問題無いような信号伝送システムの場合、伝送容量重視が指定される。
【0059】
伝送品質重視及び伝送容量重視の他、伝送品質重視と同様にして複数の判定パターンが選択された場合に、BERが最も小さくなる判定パターンを選択するような判定基準が用いられても良い。
【0060】
また、例えば、判定パターンを満たす周波数の中で、反射が最も小さい周波数を最適周波数として選定することも可能である。
【0061】
設定値候補決定処理の詳細について以下に説明する。
【0062】
設定値候補決定処理において、選定部42は、増幅部23の設定値、エンファシス部24の設定値、EQ31の設定値をそれぞれ3種類ずつ決定する。
【0063】
図4は、本実施の形態に係る設定値候補決定処理の一例を示すフローチャートである。まず、選定部42は、前処理として、送信LSI11における各ポートの出力振幅値、受信LSI12における各ポートのアイ開口値、等化特性を認識してメモリ17へ格納する(S51)。ここで、アイ開口値は、振幅方向の値である。次に、選定部42は、事前の入力から、伝送特性にほとんど影響の無いSDD11の上限値(SDD11_lmt)を取得してメモリ17へ格納する(S52)。
【0064】
次に、選定部42は、Sパラメータの測定値、出力振幅値、アイ開口値に基づいて、全ての出力振幅値の中から所定の設定条件を満たす出力振幅値を3種類選定して、増幅部設定値候補とする(S61)。所定の選定条件は、当該出力振幅値にSパラメータ測定結果による伝送ロスを考慮して得られる受信LSI21の入力振幅値が予め定められた条件を満たすことである。
【0065】
次に、選定部42は、Sパラメータの測定結果に基づいて、SDD11がSDD11_lmt以下となるような周波数を全て選定してEQ設定値群とする(S62)。次に、選定部42は、EQ設定値群の中心値と、その中心値のすぐ上の値と、その中心値のすぐ下の値とを、EQ設定値候補として選定する(S63)。次に、選定部42は、事前の入力から、強調特性におけるゲインの範囲を取得する(S64)。次に、選定部42は、取得した範囲の中心値と、最大値と、最小値とを、エンファシス部設定値候補とし(S65)、このフローは終了する。
【0066】
上述した信号伝送システムの動作により、最適周波数及び最適多値数で波形、受信感度ともに良好な安定な伝送を行うことが可能となる。
【0067】
さらには、各種ばらつき要因に左右されることなく、すべての量産装置で最適設定による安定した伝送を行うことが可能になる。従って、本実施の形態に係る信号伝送システムを用いることにより、容易に高信頼性を実現する大容量の信号伝送システムを構築することが可能となる。また、負荷変動時や伝送路変更時には再度最適化を行うことで、常に安定した信号伝送システムを構築することが可能となる。
【0068】
本実施の形態に係る信号伝送システムの動作の具体例について以下に説明する。
【0069】
図5は、本実施の形態に係る判定テーブルの一例を示す表である。この判定テーブルは、送信LSI11及び受信LSI12のデータシートに基づいて作成されたものであり、3個の判定パターンを有する。各判定パターンは、判定パターン番号、周波数範囲、多値数、Sパラメータ条件である挿入ロス(IL)条件及び反射ロス(RL)条件を有する。この例において、送信LSI11及び受信LSI12は、伝送クロック周波数を1GHz〜2GHzとするときに多値数を8とすることができ、伝送クロック周波数を1GHz〜3GHzとするときに多値数を4とすることができ、伝送クロック周波数を1GHz〜5GHzとするときに多値数を2とすることができる。
【0070】
判定パターン1における挿入ロス(SDD21)をIL1とし、判定パターン1における反射ロス(SDD11)をRL1とする。また、判定パターン2における挿入ロス(SDD21)をIL2とし、判定パターン2における反射ロス(SDD11)をRL2とする。判定パターン3における挿入ロス(SDD21)をILとし、判定パターン3における反射ロス(SDD11)をRLとする。
【0071】
Sパラメータ測定処理は、SDD21(差動−差動の挿入ロス)及びSDD11(差動−差動の反射ロス)を測定してSパラメータ測定値とする。図6は、本実施の形態に係るSパラメータ測定値の一例を示すグラフである。この図において、横軸は周波数[MHz]を示し、縦軸はSDD21またはSDD11[dB]を示す。実線の測定値は、SDD11を示し、破線の測定値は、SDD21を示す。
【0072】
F_1は、判定パターン1の周波数範囲を示し、SDD21_1は、判定パターン1の挿入ロス条件を満たすSDD21の範囲を示し、SDD11_1は、判定パターン1の反射ロス条件を満たすSDD11の範囲を示す。同様に、F_2は、判定パターン2の周波数範囲を示し、SDD21_2は、判定パターン2の挿入ロス条件を満たすSDD21の範囲を示し、SDD11_2は、判定パターン2の反射ロス条件を満たすSDD11の範囲を示す。同様に、F_3は、判定パターン3の周波数範囲を示し、SDD21_3は、判定パターン3の挿入ロス条件を満たすSDD21の範囲を示し、SDD11_3は、判定パターン3の反射ロス条件を満たすSDD11の範囲を示す。
【0073】
図7は、本実施の形態に係る周波数多値数決定処理におけるSパラメータ条件の判定結果の一例を示す表である。この表は、上述した判定テーブルの例の判定パターンの他に、挿入ロス条件の判定結果(○または×)、反射ロス条件の判定結果(○または×)を示す。
【0074】
判定基準が伝送品質重視である場合、まず、Sパラメータ測定値がSパラメータ条件を満たす判定パターンとして、判定パターン2,3が抽出される。次に、多値数が2より大きく且つ多値数が最小となる判定パターンとして、判定パターン2が選択される。即ち、最適周波数範囲が1GHz〜3GHzに決定され、最適多値数が4に決定される。更に、Sパラメータ特性により、最適周波数範囲内でSパラメータ測定値がSパラメータ条件を満たす最も高い周波数である最適周波数が2.43GHzに決定される。
【0075】
この最適周波数及び最適多値数を用いた場合の伝送容量は、2.43GHz(伝送クロック周波数)×2×2=9.72Gbpsとなる。図8は、本実施の形態に係る受信信号のアイパターンの一例を示す波形図である。この図において、横軸は時間を示し、縦軸は受信電圧を示す。ここで、最適周波数=2.43GHz、最適多値数=4である。ここで、Tは、伝送クロック周期(1/伝送クロック周波数)である。この例においてT=1/2.43[GHz]=412[psec]である。また、1UI(Unit Interval)は、1シンボルの時間間隔(伝送クロック周期/2)である。この例において1UI=412[psec]/2=206[psec]である。また、データ判定タイミングDにおいて、受信電圧のレベルは、4値のいずれかを取り得る。
【0076】
もし、判定パターン3を用いて2値変調の最適化を行ったとすると、多値数が2、伝送クロック周波数が3.83GHzとなり、伝送容量は、3.83GHz×2=7.66Gbpsになる。従って、判定基準が伝送品質重視である場合に最適化された伝送容量は、最適化された2値変調の伝送容量と比較して1.27倍の大容量を実現することができる。
【0077】
また、判定基準に伝送容量重視が指定されている場合、多値数が最も高い判定パターンとして、判定パターン1が選択される。即ち、最適周波数範囲が1GHz〜2GHzに決定され、最適多値数が8に決定される。更に、Sパラメータ特性により、最適周波数範囲内でSパラメータ測定値がSパラメータ条件を満たす最も高い周波数である最適周波数が1.86GHzに決定される。
【0078】
この最適周波数及び最適多値数を用いた場合の伝送容量は、1.86GHz(伝送クロック周波数)×2×3=11.16Gbpsとなる。従って、判定基準が伝送容量重視である場合に最適化された伝送容量は、判定基準が伝送品質重視である場合に最適化された伝送容量より高くなるため、伝送容量重視の場合の最適周波数及び最適多値数が選択される。
【0079】
本実施の形態によれば、伝送路特性と送受信LSI特性を最大限に使用し、安定かつ最大性能での伝送が可能となる。加えて、各種ばらつき要因が入ってきても最適な伝送設定を容易に自動で行うことが可能となるため、量産装置でも常に安定した運用を行うことが可能となる。また、本実施の形態の信号伝送システムは、総合的に、大幅な伝送品質の向上、伝送障害の撲滅、開発、評価、調査、修理工数の大幅削減を可能とするものである。
【0080】
本発明は、その精神または主要な特徴から逸脱することなく、他の様々な形で実施することができる。そのため、前述の実施の形態は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、特許請求の範囲によって示すものであって、明細書本文には、何ら拘束されない。更に、特許請求の範囲の均等範囲に属する全ての変形、様々な改良、代替および改質は、全て本発明の範囲内のものである。
【0081】
以上の実施の形態に関し、更に以下の付記を開示する。
(付記1)
伝送路を介して信号の伝送を行う信号伝送装置であって、
前記伝送路の特性の測定を行うための第1信号を前記伝送路へ送信する第1信号送信部と、
前記第1信号送信部により送信された第1信号が前記伝送路により反射された信号に基づいて、前記伝送路の反射特性を測定する反射特性測定部と、
前記第1信号送信部により送信された第1信号が前記伝送路を通過した信号に基づいて、前記伝送路の通過特性を測定する通過特性測定部と、
前記反射特性測定部により測定された前記反射特性と前記通過特性測定部により測定された前記通過特性とに基づいて、伝送クロック周波数及び多値数を決定する決定部と、
前記決定部により決定された伝送クロック周波数及び多値数を用いて情報の変調を行い、該変調により得られた第2信号を前記伝送路へ送信する第2信号送信部と、
前記第2信号送信部により送信されて前記伝送路を通過した第2信号を、受信して復調する第2信号受信部と、
を備える信号伝送装置。
(付記2)
前記決定部は、伝送クロック周波数条件と多値数条件と反射特性条件と通過特性条件との組み合わせである判定パターンを少なくとも1個記憶し、前記判定パターンを満たす伝送クロック周波数の範囲及び多値数の範囲を決定する、
付記1に記載の信号伝送装置。
(付記3)
前記決定部は、決定された前記伝送クロック周波数の範囲及び前記多値数の範囲のうち伝送容量が最も高くなる伝送クロック周波数及び多値数を選択する、
付記2に記載の信号伝送装置。
(付記4)
前記伝送路は複数存在し、
前記第2信号送信部は、複数の前記伝送路のうちオープンレーンを検出し、該オープンレーンの出力をオフにする、
付記1に記載の信号伝送装置。
(付記5)
前記決定部は、前記伝送路における伝送品質を測定して伝送品質測定結果とし、前記伝送品質測定結果に基づいて、前記第2信号送信部による送信に用いられる増幅特性、前記第2信号送信部による送信に用いられる強調特性、前記第2信号受信部による受信に用いられる等化特性の最適化を行う、
付記1に記載の信号伝送装置。
(付記6)
前記伝送品質は、アイ開口を含み、
前記決定部は、前記増幅特性の設定値、前記強調特性の設定値、前記等化特性の設定値の組み合わせを複数取得し、複数の前記組み合わせのそれぞれに対応して前記伝送品質の測定を行い、アイ開口が中心値となる組み合わせを選択して前記第2信号送信部及び前記第2信号受信部に設定し、前記情報の伝送を行う、
付記5に記載の信号伝送装置。
(付記7)
前記伝送品質は、アイ開口及び誤り率を含み、
前記決定部は、前記増幅特性の設定値、前記強調特性の設定値、前記等化特性の設定値の組み合わせを複数取得し、複数の前記組み合わせのそれぞれに対応して前記伝送品質の測定を行い、誤り率が所定の誤り率条件を満たし且つアイ開口が中心値となる組み合わせを選択して前記第2信号送信部及び前記第2信号受信部に設定し、前記情報の伝送を行う、
付記5に記載の信号伝送装置。
(付記8)
前記伝送品質は、誤り率を含み、
前記決定部は、前記増幅特性の設定値、前記強調特性の設定値、前記等化特性の設定値の組み合わせを複数取得し、複数の前記組み合わせのそれぞれに対応して前記伝送品質の測定を行い、誤り率が最小となる組み合わせを選択して前記第2信号送信部及び前記第2信号受信部に設定し、前記情報の伝送を行う、
付記5に記載の信号伝送装置。
(付記9)
前記情報の伝送の前に、前記決定部は、前記伝送品質の測定と前記最適化を行う、
付記5に記載の信号伝送装置。
(付記10)
前記伝送路の伝送負荷が変動した場合、前記決定部は、前記伝送品質の測定と前記最適化を行う、
付記5に記載の信号伝送装置。
(付記11)
前記反射特性は、Sパラメータのうち反射ロスの周波数特性であり、
前記通過特性は、Sパラメータのうち挿入ロスの周波数特性である、
付記1に記載の信号伝送装置。
(付記12)
伝送路を介して信号の伝送を行う信号伝送方法であって、
前記伝送路の特性の測定を行うための第1信号を前記伝送路へ送信し、
送信された第1信号が前記伝送路により反射された信号に基づいて、前記伝送路の反射特性を測定すると共に、送信された第1信号が前記伝送路を通過した信号に基づいて、前記伝送路の通過特性を測定し、
測定された前記反射特性と測定された前記通過特性とに基づいて、伝送クロック周波数及び多値数を決定し、
決定された前記伝送クロック周波数及び多値数を用いて情報の変調を行い、該変調により得られた第2信号を前記伝送路へ送信し、
送信されて前記伝送路を通過した第2信号を、受信して復調する、
ことを行う信号伝送方法。
(付記13)
伝送クロック周波数条件と多値数条件と反射特性条件と通過特性条件との組み合わせである判定パターンを少なくとも1個記憶し、前記判定パターンを満たす伝送クロック周波数の範囲及び多値数の範囲を決定する、
付記12に記載の信号伝送方法。
(付記14)
決定された前記伝送クロック周波数の範囲及び前記多値数の範囲のうち伝送容量が最も高くなる伝送クロック周波数及び多値数を選択する、
付記13に記載の信号伝送方法。
(付記15)
前記伝送路は複数存在し、
複数の前記伝送路のうちオープンレーンを検出し、該オープンレーンの出力をオフにする、
付記12に記載の信号伝送方法。
(付記16)
前記伝送路における伝送品質を測定して伝送品質測定結果とし、前記伝送品質測定結果に基づいて、第2信号送信の送信に用いられる増幅特性、第2信号の送信に用いられる強調特性、第2信号の受信に用いられる等化特性の最適化を行う、
付記12に記載の信号伝送方法。
(付記17)
前記伝送品質は、アイ開口を含み、
前記増幅特性の設定値、前記強調特性の設定値、前記等化特性の設定値の組み合わせを複数取得し、複数の前記組み合わせのそれぞれに対応して前記伝送品質の測定を行い、アイ開口が中心値となる組み合わせを選択して設定し、前記情報の伝送を行う、
付記16に記載の信号伝送方法。
(付記18)
前記伝送品質は、アイ開口及び誤り率を含み、
前記増幅特性の設定値、前記強調特性の設定値、前記等化特性の設定値の組み合わせを複数取得し、複数の前記組み合わせのそれぞれに対応して前記伝送品質の測定を行い、誤り率が所定の誤り率条件を満たし且つアイ開口が中心値となる組み合わせを選択して設定し、前記情報の伝送を行う、
付記16に記載の信号伝送方法。
(付記19)
前記情報の伝送の前に、前記伝送品質の測定と前記最適化を行う、
付記16に記載の信号伝送装置。
(付記20)
前記伝送路の伝送負荷が変動した場合、前記伝送品質の測定と前記最適化を行う、
付記16に記載の信号伝送方法。
【図面の簡単な説明】
【0082】
【図1】本実施の形態に係る信号伝送システムの構成の一例を示すブロック図である。
【図2】本実施の形態に係るコントローラにおけるソフトウェアの構成の一例を示すブロック図である。
【図3】本実施の形態に係る信号伝送システムの動作の一例を示すフローチャートである。
【図4】本実施の形態に係る設定値候補決定処理の一例を示すフローチャートである。
【図5】本実施の形態に係る判定テーブルの一例を示す表である。
【図6】本実施の形態に係るSパラメータ測定値の一例を示すグラフである。
【図7】本実施の形態に係る周波数多値数決定処理におけるSパラメータ条件の判定結果の一例を示す表である。
【図8】本実施の形態に係る受信信号のアイパターンの一例を示す波形図である。
【符号の説明】
【0083】
11 送信LSI、12 受信LSI、13,14 プリント基板、15 コネクタ、16 コントローラ、17 メモリ、21 送信制御部、22 変調部、23 増幅部、24 エンファシス部、28 第1ネットワークアナライザ、31 EQ、32 復調部、33 波形記憶部、34 BER測定部、35 アイ開口測定部、36 判定テーブル記憶部、37 判定部、38 第2ネットワークアナライザ。

【特許請求の範囲】
【請求項1】
伝送路を介して信号の伝送を行う信号伝送装置であって、
前記伝送路の特性の測定を行うための第1信号を前記伝送路へ送信する第1信号送信部と、
前記第1信号送信部により送信された第1信号が前記伝送路により反射された信号に基づいて、前記伝送路の反射特性を測定する反射特性測定部と、
前記第1信号送信部により送信された第1信号が前記伝送路を通過した信号に基づいて、前記伝送路の通過特性を測定する通過特性測定部と、
前記反射特性測定部により測定された前記反射特性と前記通過特性測定部により測定された前記通過特性とに基づいて、伝送クロック周波数及び多値数を決定する決定部と、
前記決定部により決定された伝送クロック周波数及び多値数を用いて情報の変調を行い、該変調により得られた第2信号を前記伝送路へ送信する第2信号送信部と、
前記第2信号送信部により送信されて前記伝送路を通過した第2信号を、受信して復調する第2信号受信部と、
を備える信号伝送装置。
【請求項2】
前記決定部は、伝送クロック周波数条件と多値数条件と反射特性条件と通過特性条件との組み合わせである判定パターンを少なくとも1個記憶し、前記判定パターンを満たす伝送クロック周波数の範囲及び多値数の範囲を決定する、
請求項1に記載の信号伝送装置。
【請求項3】
前記決定部は、決定された前記伝送クロック周波数の範囲及び前記多値数の範囲のうち伝送容量が最も高くなる伝送クロック周波数及び多値数を選択する、
請求項2に記載の信号伝送装置。
【請求項4】
前記伝送路は複数存在し、
前記第2信号送信部は、複数の前記伝送路のうちオープンレーンを検出し、該オープンレーンの出力をオフにする、
請求項1乃至請求項3のいずれかに記載の信号伝送装置。
【請求項5】
前記決定部は、前記伝送路における伝送品質を測定して伝送品質測定結果とし、前記伝送品質測定結果に基づいて、前記第2信号送信部による送信に用いられる増幅特性、前記第2信号送信部による送信に用いられる強調特性、前記第2信号受信部による受信に用いられる等化特性の最適化を行う、
請求項1乃至請求項4のいずれかに記載の信号伝送装置。
【請求項6】
前記伝送品質は、アイ開口を含み、
前記決定部は、前記増幅特性の設定値、前記強調特性の設定値、前記等化特性の設定値の組み合わせを複数取得し、複数の前記組み合わせのそれぞれに対応して前記伝送品質の測定を行い、アイ開口が中心値となる組み合わせを選択して前記第2信号送信部及び前記第2信号受信部に設定し、前記情報の伝送を行う、
請求項5に記載の信号伝送装置。
【請求項7】
前記伝送品質は、アイ開口及び誤り率を含み、
前記決定部は、前記増幅特性の設定値、前記強調特性の設定値、前記等化特性の設定値の組み合わせを複数取得し、複数の前記組み合わせのそれぞれに対応して前記伝送品質の測定を行い、誤り率が所定の誤り率条件を満たし且つアイ開口が中心値となる組み合わせを選択して前記第2信号送信部及び前記第2信号受信部に設定し、前記情報の伝送を行う、
請求項5に記載の信号伝送装置。
【請求項8】
前記伝送路の伝送負荷が変動した場合、前記決定部は、前記伝送品質の測定と前記最適化を行う、
請求項5に記載の信号伝送装置。
【請求項9】
前記伝送路の伝送負荷が変動した場合、前記決定部は、前記伝送品質の測定と前記最適化を行う、
請求項5に記載の信号伝送装置。
【請求項10】
伝送路を介して信号の伝送を行う信号伝送方法であって、
前記伝送路の特性の測定を行うための第1信号を前記伝送路へ送信し、
送信された第1信号が前記伝送路により反射された信号に基づいて、前記伝送路の反射特性を測定すると共に、送信された第1信号が前記伝送路を通過した信号に基づいて、前記伝送路の通過特性を測定し、
測定された前記反射特性と測定された前記通過特性とに基づいて、伝送クロック周波数及び多値数を決定し、
決定された前記伝送クロック周波数及び多値数を用いて情報の変調を行い、該変調により得られた第2信号を前記伝送路へ送信し、
送信されて前記伝送路を通過した第2信号を、受信して復調する、
ことを行う信号伝送方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate