説明

偏光素子、及び透過型液晶プロジェクター

【課題】可視光域で所望の消光比をもち、強い光に対する耐光特性のある偏光板、該偏光板を用いた液晶プロジェクター、該偏光素子の作成方法を提供する。
【解決手段】可視光に対し透明な基板と、金属からなり前記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、前記反射層上に形成された誘電体層と、無機微粒子が線状に配列されてなる無機微粒子層とを有し、前記無機微粒子層は、前記帯状薄膜に対応する位置において、前記誘電体上の前記帯状薄膜の頂部の両側面部に形成され、前記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する、偏光素子。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、強い光に対する耐久性を有する偏光素子及び該偏光素子を用いた液晶プロジェクターに関するものである。
【背景技術】
【0002】
液晶表示装置はその画像形成原理から液晶パネル表面に偏光板を配置する事が必要不可欠である。偏光板の機能は、直交する偏光成分(いわゆるP偏光波、S偏光波)の片方を吸収し他方を透過させる事である。このような偏光板として従来フィルム内にヨウ素系や染料系の高分子有機物を含有させた二色性の偏光板が多く用いられている。
【0003】
二色性の偏光板の一般的な製法として、ポリビニルアルコール系フィルムとヨウ素などの二色性材料で染色を行った後、架橋剤を用いて架橋を行い、一軸延伸する方法が用いられる。このように延伸により作製されるため、一般にこの種の偏光板は収縮し易い。またポリビニルアルコール系フィルムは親水性ポリマーを使用していることから、特に加湿条件下においては非常に変形し易い。また根本的にフィルムを用いるためデバイスとしての機械的強度が弱い。これを避けるため透明保護フィルムを接着する方法が用いられることがある。
【0004】
ところで近年、液晶表示装置はその用途が拡大し高機能化している。それに伴い液晶表示装置を構成する個々のデバイスに対して高い信頼性、耐久性が求められる。例えば透過型液晶プロジェクターのような光量の大きな光源を使用する液晶表示装置の場合には偏光板は強い輻射線を受ける。よって、これらに使用される偏光板には優れた耐熱性が必要となる。しかしながら、上記のようなフィルムベースの偏光板は有機物であることからこれらの特性を上げることにはおのずと限界がある。
【0005】
この問題に対して、米国コーニング社よりPolarcorという商品名で耐熱性の高い無機偏光板が販売されている。この偏光板は銀微粒子をガラス内に拡散させた構造をしており、フィルム等の有機物を使用しておらず、その原理は島状微粒子のプラズマ共鳴を利用するものである。すなわち、貴金属や遷移金属の島状粒子に光が入射した時の表面プラズマ共鳴による光吸収を利用するものであり、吸収波長は、粒子形状、周囲の誘電率の影響を受ける。ここで島状微粒子の形状を楕円形にすると長軸方向と短軸方向の共鳴波長が異なり、これにより偏向特性が得られ、具体的には長波長側での長軸に平行な偏光成分を吸収し、短軸と平行な偏光成分を透過させるという偏光特性が得られる。しかしながら、Polarcorの場合、偏光特性が得られる波長域は赤外部に近い領域であり、液晶表示装置で求められるような可視光域をカバーしていない。これは島状微粒子に用いられている銀の物理的性質によるものである。
【0006】
特許文献1には、上記の原理を応用し熱還元によりガラス中に微粒子を析出させることによるUV偏光板が示されており、具体例に金属微粒子として銀を用いることが提示されている。この場合は、先のPolarcorとは逆に短軸方向での吸収を用いるものと考えられる。Figure1に示されているように400nm付近でも偏光板として機能はしているが消光比が小さくかつ吸収できる帯域が非常に狭いので、仮にPolarcorと特許文献1の技術を組み合わせたとしても可視光全域をカバーできる偏光板にはならない。
【0007】
また、非特許文献1には、金属島状微粒子のプラズマ共鳴を使った無機偏光板の理論解析が述べられている。この文献によればアルミニウム微粒子は銀微粒子より共鳴波長が200nm程度短く、このためアルミニウム微粒子を用いることで可視光域をカバーする偏光板を製作できる可能性があることが記述されている。
【0008】
また特許文献2には、アルミニウム微粒子を使った偏光板の幾つかの作成方法が示されている。その中でケイ酸塩をベースとしたガラスではアルミニウムとガラスが反応するので基板としては望ましくなくカルシウム・アルミノ硼酸塩ガラスが適している記述されている(段落0018,0019)。しかし、ケイ酸塩を使用したガラスは光学ガラスとして広く流通しており、信頼性の高い製品を安価に入手でき、これが適さないという事は経済的に好ましくない。またレジストパターンをエッチングすることで島状粒子を形成する方法が述べられている(段落0037,0038)。通常プロジェクターで使用する偏光板は数cm程度の大きさが必要でかつ高い消光比が要求される。従って、可視光用偏光板を目的とした場合、レジストパターンサイズは可視光波長より充分に短い、すなわち数十ナノメートルの大きさが必要であり、またかつ高い消光比を得るためにはパターンを高密度に形成する必要がある。またプロジェクター用として使用する場合には大面積が必要である。しかしながら記述されているようなリソグラフィにより高密度微細パターン形成を応用する方法では、そのようなパターンを得るために電子ビーム描画などを用いる必要がある。電子ビーム描画は個々のパターンを電子ビームより描く方法であり生産性が悪く実用的でない。
【0009】
また特許文献2には、アルミニウムを塩素プラズマにより除去すると記述されているが、通常そのようにエッチングした場合にはアルミニウムパターンの側壁に塩化物が付着する。市販のウエットエッチング液(例えば東京応化工業のSST−A2)により除去可能であるが、アルミ塩化物に反応するこのような薬液はアルミニウムにもエッチング速度は遅いながらも反応はするので、述べられているような方法で所望のパターン形状を実現する事は難しい。
【0010】
さらに特許文献2には、別な方法として、パターン化されたフォトレジスト上に斜め成膜によりアルミニウムを堆積しフォトレジストを除去する方法が記述されている(段落0045,0047)。しかしこのような方法では、基板とアルミニウムの密着性を得るために、ある程度基板面にもアルミニウムを堆積する必要があるものと考えられる。しかしこれは堆積したアルミニウム膜の形状が段落0015に記述されている適当な形状である扁長の楕円体を含む扁長の球体とは異なる事を意味する。また、段落0047には表面に垂直な異方性エッチングにより過沈積分を除去すると記述されている。偏光板として機能させるにはアルミニウムの形状異方性は極めて重要である。従ってレジスト部と基板面に堆積するアルミニウムの量をエッチングにより所望の形状が得られるように調整する必要があると考えられるが、段落0047に記述されているような0.05μmというサブミクロン以下のサイズでこれらを制御する事は非常に困難と考えられ、生産性の高い製作方法として適しているか疑問である。また偏光板の特性として透過軸方向は高い透過率が求められるが、通常基板にガラスを用いる場合ガラス界面から数%の反射は避けられず、これに対する対策がなされておらず高い透過率を得ることが難しい。
【0011】
また特許文献3には、斜め蒸着による偏光板について記述されている。この方法は使用帯域の波長に対して透明及び不透明な物質を斜め蒸着により微小柱状構造を製作することで偏光特性を得るものであり、特許文献1と異なり簡便な方法で微細パターンを得られるため生産性の高い方法と考えられるが問題点もある。すなわち、始めに形成される使用帯域に対し不透明な物質の微小柱状構造のアスペクト比、個々の微小柱状構造の間隔、直線性は良好な偏光特性を得るために重要な要素であり特性の再現性の観点からも意図的に制御されるべきものであるが、この方法では蒸着粒子の初期堆積層の影となる部分に次に飛来する蒸着粒子が堆積しないことにより柱状構造が得られるという現象を利用しているため、上記の項目を意図的に制御することが難しかった。これを改善する方法として、蒸着前にラビング処理により基板に研磨痕を設ける方法が記述されているが、一般的には蒸着膜の粒子径は最大でも数十nm程度の大きさであり、このような粒子の異方性を制御するにはサブミクロン以下のピッチを研磨により意図的に製作する必要があった。しかし一般の研磨シート等ではサブミクロン程度が限界でありそのような微細な研磨痕を製作することは容易でない。また前記のようにAl微粒子の共鳴波長は周りの屈折率に大きく依存しこの場合の透明及び不透明な物質の組み合わせが重要であるが、特許文献3には可視光域で良好な偏光特性を得るための組み合わせについて記述がされていない。また特許文献1と同様に通常基板としてガラスを用いる場合、ガラス界面から数%の反射は避けられず、これに対する対策がなされていなかった。
【0012】
また非特許文献2には、Lamipolと称する赤外通信用の偏光板についての記述されている。これはAlとSiO2の積層構造をしており、この文献によれば非常に高い消光比を示す。また非特許文献3には、Lamipolの光吸収を担うAlの代わりにGeを使うことで波長1μm以下で高い消光比を実現できることが述べられている。また同資料中のFig3からTe(テルル)も高い消光比が得られることが期待できる。このようにLamipolは高い消光比が得られる吸収型偏光板であるが、吸光物質と透過性物質の積層厚が受光面の大きさとなるために数cm角の大きさが必要なプロジェクター用途の偏光板には向かない。
【0013】
特許文献4には、ワイヤグリッド型偏光板が開示されている。これは、基板上に使用帯域の光の波長よりも小さいピッチで金属細線を形成したもので、金属細線と平行とする偏光成分の光を反射し、直交する偏光成分を透過させる事で所定の偏光特性を出現させる。
【0014】
また特許文献5には、ワイヤグリッド型偏光素子を金属格子上に誘電層/金属層を形成し、計3層とする事で金属格子から反射した光を干渉効果により打ち消す事により、一般には反射型であるワイヤグリッドを吸収型として用いる方法が開示されている。このような多層構造で得られる光学特性を利用し吸収型偏光板として使用する場合には、誘電層上に形成される金属層の膜厚及び光学特性が所望の特性を得るために重要な要素となると考えられるが当該特許ではそれが考慮されていない。すなわち当該特許ではこの点について記述されておらず詳細は不明であるが、記述されているような干渉効果を得るためには上部金属層を光が通過する必要がある。光が通過するという事はその過程で光の一部が上部金属膜で吸収される事を意味する。吸収があると透過軸方向の透過率が下がり、これは偏光透過軸の特性としては望ましくなく、特に可視域で高い透過率が要求される液晶表示装置においては好ましくない。すなわち吸収効果を持つ偏光板は、本質的に吸収層の光学異方性の制御しなければ機能せず、偏光板として応用する事は実用上難しい。
【0015】
また特許文献6には、半導体ナノロッドをガラス中に分散させた無機偏光板について記載されている。可視光域で良好な偏光特性を得られる事が記載されているが、これは前記コーニング社のPolarcorと同様の手法で製作されるために延伸工程が必要となり大型化が難しい。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】米国特許第6772608号明細書
【特許文献2】特開2000−147253号公報
【特許文献3】特開2002−372620号公報
【特許文献4】米国特許第6122103号明細書
【特許文献5】米国特許第6813077号明細書
【特許文献6】特開2006−323119号公報
【非特許文献】
【0017】
【非特許文献1】J.Opt.Soc.Am.A Vol.8,No.4 619−624
【非特許文献2】Applied Optics Vol.25 No.2 1986 311−314
【非特許文献3】J. Lightwave Tec. Vol.15 No.6 1997 1042−1050
【非特許文献4】ナノ粒子オプトサイエンスの展開 応用物理 第73巻 第7号 2004
【非特許文献5】J. Microelectromechanical Systems Vol.10 No.1 2001 33−40
【発明の概要】
【発明が解決しようとする課題】
【0018】
本発明は、以上の従来技術における問題に鑑みてなされたものであり、可視光域で所望の消光比をもち、強い光に対する耐光特性のある偏光板及び該偏光板を用いた液晶プロジェクターを提供することを目的とする。
【課題を解決するための手段】
【0019】
本発明によれば、可視光に対し透明な基板と、金属からなり上記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、上記反射層上に形成された誘電体層と、無機微粒子が線状に配列されてなる無機微粒子層と、を有し、上記無機微粒子層は、上記帯状薄膜に対応する位置において、上記誘電体上の上記帯状薄膜の頂部の両側面部に形成され、上記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する、偏光素子が提供される。
【0020】
また本発明によれば、光源と、液晶パネルと、入射側偏光板と、出射側偏光板とを有し、上記入射側偏光板又は上記出射側偏光板のいずれかは、可視光に対し透明な基板と、金属からなり上記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、上記反射層上に形成された誘電体層と、無機微粒子が線状に配列されてなる無機微粒子層を有し、上記無機微粒子層は、上記帯状薄膜に対応する位置において、上記誘電体層上の上記帯状薄膜の頂部の両側面部に形成され、上記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する偏光素子である、透過型液晶プロジェクターが提供される。
【発明の効果】
【0021】
本発明の偏光素子によれば、可視光域で所望の消光比を持ちつつ、従来の偏光素子よりも耐久性の高いものを提供することができる。
また本発明の液晶プロジェクターによれば、強い光に対して優れた耐光特性をもつ偏光素子を備えるので、信頼性の高い液晶プロジェクターを実現することができる。
【図面の簡単な説明】
【0022】
【図1】本発明に係る偏光素子の第1の実施の形態における構成を示す概略図である。
【図2】基板の凹凸部の断面図である。
【図3】本発明に係る偏光素子表面の凹凸形状を示す断面図である。
【図4】斜めスパッタ成膜の構成を示す概略図である。
【図5】本発明に係る偏光素子の第2の実施の形態における構成を示す概略図である。
【図6】図5に示した偏光素子の作用を説明する図である。
【図7】図5に示した偏光素子の構成の変形例を示す概略側断面図である。
【図8】図5に示した偏光素子の出射面迷光対策例(1)を示す図である。
【図9】図5に示した偏光素子の出射面迷光対策例(2)を示す図である。
【図10】本発明に係る偏光素子の第2の実施の形態のバリエーションの構成を示す概略図である。
【図11】図10に示した構成の偏光素子における出射面迷光対策例(1)を示す図である。
【図12】図10に示した構成の偏光素子における出射面迷光対策例(2)を示す図である。
【図13】本発明に係る液晶プロジェクターの光学エンジン部分の構成を示す断面図である。
【図14】静止した基板に対するGeの斜めスパッタ成膜を行う方法の説明図と成膜したGe膜の光学定数の測定結果を示す図である。
【図15】回転する基板に対するGeのスパッタ成膜(垂直方向からの入射)を行う方法の説明図と成膜したGe膜の光学定数の測定結果を示す図である。
【図16】スパッタ成膜したSi膜の光学定数の測定結果を示す図である。
【図17】光学異方性を有するGe膜の偏光透過特性を示す図である。
【図18】実施例2のサンプル構成を示す概略図である。
【図19】実施例2の光学特性の結果を示す図である。
【図20】実施例3の光学特性の結果を示す図である。
【図21】Agからなり光学異方性を有する無機微粒子層の光学定数を示す図である。
【図22】図21の無機微粒子層を有する偏光素子の偏光透過特性を示す図である。
【図23】平板上の無機微粒子層の表面組織を示す図である。
【図24】図3(c)に示す構成の偏光素子サンプルの偏光特性を示す図である。
【図25】図3(c)に示す構成の偏光素子サンプル断面の元素分布マッピング図である。
【図26】図3(c)に示す構成の偏光素子サンプルにおける無機微粒子層の観察結果のスケッチ図である。
【図27】図3(c)に示す構成の偏光素子サンプルにおける無機微粒子層の電子線回折像である。
【図28】図5に示す構成の偏光素子サンプルの偏光特性を示す図である。
【図29】図5に示す構成の偏光素子サンプルの透過コントラストを示す図である。
【図30】図5に示す構成の偏光素子サンプルにおける無機微粒子層の観察結果のスケッチ図である。
【図32】斜めスパッタ成膜における無機微粒子の長径と膜厚との関係を示す図である。
【図31】図5に示す構成の偏光素子サンプルを上から見たSEM像である。
【図33】光学特性シミュレーションにおける偏光素子の前提条件を示す図である。
【図34】無機微粒子層の構成材料がGe微粒子、Ge薄膜である場合の偏光素子の光学特性を示す図である。
【図35】平板上に基板傾斜角θを変化させて斜めスパッタ成膜した場合のGe微粒子のアスペクト比分布である。
【図36】基板傾斜角θを変化させて斜めスパッタ成膜した場合の図3(c)に示す構成の偏光素子サンプルの偏光特性を示す図である。
【図37】実施例7の斜め成膜方法の説明図である。
【図38】実施例7のGe微粒子層サンプルの偏光特性を示す図である。
【図39】図5に示す構成の偏光素子における反射層としてのアルミ高さとコントラストとの関係図である。
【図40】実施例8の偏光素子サンプルの偏光特性を示す図である。
【図41】ラビング処理により形成されたテクスチャー構造の凹凸状態を示す図である。
【図42】ラビング処理前後の基板の透過率特性を示す図である。
【図43】ラビング処理された基板上に設けられたGe微粒子膜(反射防止膜)の表面組織を示す図である。
【図44】ラビング処理による反射防止膜の偏光特性の改善を示す図である。
【図45】実施例10のSiからなる無機微粒子層のサンプルの偏光特性を示す図である。
【図46】実施例10のSnからなる無機微粒子層のサンプルの偏光特性を示す図である。
【発明を実施するための形態】
【0023】
本発明に係る偏光素子は、可視光に対し透明な基板と、無機微粒子が該基板上で一方向に連なって配列されてなる線状の無機微粒子層とを備え、該無機微粒子層が前記基板上に一定間隔に並べられて一次元格子状のワイヤグリッド構造となる偏光素子であって、前記無機微粒子は、該無機微粒子の配列方向の径が長く、配列方向と直交する方向の径が短い形状異方性を有することを特徴とするものである。また、前記無機微粒子層の光学定数として、前記無機微粒子の配列方向の光学定数が該無機微粒子の配列方向と直交する方向の光学定数よりも大であることを特徴とする。詳しくは、前記無機微粒子の配列方向の屈折率が該無機微粒子の配列方向と直交する方向の屈折率よりも大であり、前記無機微粒子の配列方向の消耗係数が該無機微粒子の配列方向と直交する方向の消耗係数よりも大であることを特徴とするものである。
【0024】
以下に、本発明に係る偏光素子の第1の実施の形態における構成について説明する。なお、本発明を図面に示した実施形態をもって説明するが、本発明はこれに限定されるものではなく、実施の態様に応じて適宜変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
【0025】
本実施の形態では、偏光素子は、可視光に対し透明な材料からなり前記基板の主面と平行な一方向に延びた凸部が該基板上に一定間隔に設けられてなり、前記無機微粒子層は該凸部の頂部または少なくとも一方の側壁部に形成されてなるものである。
図1に、本発明に係る偏光素子の第1の実施の形態における構成例を示す。図1(a)は偏光素子10の断面図、図1(b)は偏光素子10の平面図である。
【0026】
図1に示すように、偏光素子10は、可視光に対し透明な基板11の表面に設けられた凸部14aの一側面部に無機微粒子層15を選択的に形成することにより、該無機微粒子層15を基板11上で一定間隔に並べられたワイヤグリッド構造としたものである。
【0027】
ここで、基板11は、使用帯域の光(本実施形態では可視光域)に対して透明で屈折率が1.1〜2.2の材料、例えば、ガラス、サファイア、水晶などで構成されている。本実施形態では、ガラス、特に、石英(屈折率1.46)やソーダ石灰ガラス(屈折率1.51)が用いられることが好ましい。ガラス材料の成分組成は特に制限されず、例えば光学ガラスとして広く流通しているケイ酸塩ガラスなどの安価なガラス材料を用いることができ、製造コストの低減を図ることができる。なお、基板11の構成材料として、熱伝導性の高い水晶やサファイア基板を用いることにより、発熱量の多いプロジェクターの光学エンジン用偏光素子として有利に用いることができる。
【0028】
凹凸部14は、基板11の主面と平行な一方向(吸収軸Y方向)に延びるように基板11の主面上に形成された断面形状が矩形の凸部14aが、基板11の吸収軸Y方向と直交する方向(透過軸X方向)に可視光域の波長よりも小さいピッチで周期的に形成されてなるものである。また凹凸部14は、無機微粒子層15を形成するために設けられるものであり、凹凸部14の加工サイズやパターン形状によって無機微粒子層15のワイヤグリッド構造が決定され、偏光素子10の所期の偏光特性を得るために重要である。すなわち、凹凸部14の加工サイズ、パターン形状は、目的とする偏光特性(消光比)や対象とする可視光波長領域に応じて適宜設定される。具体的には、図2において、凹凸部14の溝の(X方向の)ピッチは0.5μm以下、凹凸部14のライン幅(凸部14aの形成幅)は0.25μm以下、凹凸部14の形成深さは1nm以上である。
【0029】
なお、凹凸部14のピッチ、ライン幅/ピッチ、凹部深さ(凸部高さ)、凸部長さ、上部ライン幅/底部ライン幅は、それぞれ以下の範囲とするのが好ましい。
0.05μm<ピッチ<0.8μm、
0.1<(ライン幅/ピッチ)<0.9、
0.01μm<凹部深さ<0.2μm、
0.05μm<凸部長さ、
1.0≦(上部ライン幅/底部ライン幅)
【0030】
凹凸部14は、基板11に直接形成してもよいし、別途形成してもよい。凹凸部14の形成方法としては、研磨シートによるラッピングによる形成方法、半導体デバイス作製で用いられるようなフォトレジストを基板に塗布してマスクを使った露光によりパターンを作製した後、そのパターンを形成したフォトレジストをマスクとして基板をエッチングする方法、凹凸部14の形状寸法に対応して形成された金型を用いて、基板上に金型形状を転写する方法(ナノインプリント法)などがあり、適宜採用すればよい。
【0031】
なお、凹凸部14の凸部の形状は四角形や台形などの矩形状、あるいは鋸歯形状、三角形状に形成することができる。図3(a)は凹凸部14の凸部14aが断面矩形状で、その一側面部に無機微粒子層15を形成した例を示している。また、図3(b)は凹凸部16の凸部16aが断面鋸歯形状で、その垂直方向に立設した一側面部に無機微粒子層15を形成した例を示している。凸状部の断面を鋸歯状に形成することで、凸状部の頂部への膜の付着を回避することができる。また、図3(c)は凹凸部17の凸部17aが断面三角形状で、その一側面に無機微粒子層15を形成した例を示している。
【0032】
このような凸部14aの頂部または少なくとも一方の側壁部に無機微粒子層15を形成することにより、形状異方性を有する無機微粒子層15を所望の微細形状で基板11表面に縞状に分布させることができ、無機微粒子の孤立化を実現することができる。また、あらかじめ機械的に形成した凹凸部14の上に無機微粒子層15を形成するようにしているので、凹凸部14を安定して形成できるとともに、その上に形成される無機微粒子層15の形状制御を容易に行うことができる。
【0033】
無機微粒子層15は、凸部14aの頂部または少なくとも一方の側壁部に無機微粒子を付着させることにより、基板11の主面と平行な一方向(吸収軸Y方向)に該無機微粒子が線状に配列されてなるものである。「無機微粒子が線状に配列されてなる」とは、無機微粒子が相互につながった連続した帯状の膜、無機微粒子が適度な大きさにまとまってそれぞれ独立した島状となり、その島が一方向に並んだ不連続な膜のいずれの状態でもよく、粒界が形成されていればよい。また、一定間隔で規則的に設けられた複数の凸部14aそれぞれに無機微粒子層15が形成されることにより、無機微粒子層15の形成パターンが縞状(一次元格子状)となりワイヤグリッド構造を呈する。
【0034】
本発明では、無機微粒子は、該無機微粒子の配列方向の径が長く、配列方向と直交する方向の径が短い形状異方性を有する。また、無機微粒子は使用帯域の波長以下のサイズであって、個々の粒子が完全に孤立化していることが望ましい。
【0035】
また本発明では無機微粒子層15の光学定数として、吸収軸Y方向(前記無機微粒子の配列方向)の光学定数が透過軸X方向(該無機微粒子の配列方向と直交する方向)の光学定数よりも大であることが肝要である。詳しくは、無機微粒子層15の吸収軸Y方向の屈折率が透過軸X方向の屈折率よりも大であり、吸収軸Y方向の消耗係数が透過軸X方向の消耗係数よりも大であることを特徴とする。この特性を得るためには、無機微粒子層15を、斜めスパッタ法により成膜する。
【0036】
本発明の無機微粒子層15を形成するための斜めスパッタ成膜の様子を図4に示す。なお、ここではイオンビームスパッタの例を示しているが、これに限定されるものではなく、スパッタリング法であればいずれの方式のものでもよい。
【0037】
図4において、1は基板11を支持するステージ、2はターゲット、3はビームソース(イオン源)、4は制御板である。ステージ1は、ターゲット2の法線方向に対して所定角度θ傾斜しており、基板11は凹凸部14の凸部14aの長手方向がターゲット2からの無機微粒子の入射方向に対して直交する向きに配置されている。角度θは、例えば0°から15°である。ビームソース3から引き出されたイオンは、ターゲット2へ照射される。イオンビームの照射によりターゲット2から叩き出された無機微粒子は、基板11の表面に斜め方向から入射して付着する。このとき、基板11上に一定間隔(例えば50mm)で平板状の制御板4を配置すれば基板11表面への入射粒子の方向を制御し、凸部14aの側壁部にのみ粒子を堆積させることができる。このときの無機微粒子層15の膜厚は、200nm以下であることが好ましい。
【0038】
以上のように、スパッタリング法により成膜時に基板11をターゲット2に対して傾斜させて無機微粒子の入射方向を制限することにより、凸部14aの頂部または一側面部に選択的に形成されて配列方向の径が長く、配列方向と直交する方向の径が短い形状異方性を有する無機微粒子が線状に配列されてなり、吸収軸Y方向の光学定数が透過軸X方向の光学定数よりも大となる無機微粒子層15を得ることができる。
【0039】
ここで、無機微粒子層15に用いられる材料(無機微粒子を構成する材料)としては、偏光素子10として使用帯域に応じて適切な材料が選択される必要がある。すなわち、金属材料や半導体材料がこれを満たす材料であり、具体的には金属材料として、Al,Ag,Cu,Au,Mo,Cr,Ti,W,Ni,Fe,Si,Ge,Te,Sn単体もしくはこれらを含む合金が挙げられる。また半導体材料としては、Si,Ge,Te,ZnOが挙げられる。さらに、FeSi2(特にβ−FeSi2),MgSi2,NiSi2,BaSi2,CrSi2,CoSi2などのシリサイド系材料が適している。
【0040】
また無機微粒子層15に用いられる材料が半導体材料の場合、その吸収作用には半導体のバンドギャップエネルギーが関与している。なぜなら、このエネルギー以下の光を吸収するからである。従って半導体材料を可視光の偏光素子とする場合にはバンドギャップエネルギーは使用帯域以下になっている事が必要である。例えば、可視光使用を考えた場合には波長400nm以上での吸収、すなわちバンドギャップとしては3.1eV以下の材料を使用する必要がある。バンドギャップエネルギーは非特許文献4に記載されているように、微粒子のサイズにも依存し、特に数nmになると急激に上昇する傾向があるので、このようなサイズ効果も考慮して材料とその厚みを決定する必要がある。このような観点からバルク状態でのバンドギャップエネルギーが小さい半導体材料が好ましく、例えば、Geはバルク状態でのバンドギャップエネルギーが0.67eV(波長約1.85μm)と小さいので、可視光用偏光素子としては望ましい材料である。
【0041】
以上の構成とすることにより、偏光素子10は、可視光域で所望の消光比を持ちつつ、従来の偏光素子よりも耐久性の高いものとなる。
【0042】
また、必要に応じて、基板表面、裏面に反射防止膜をコートすることで、空気と基板の界面での反射を防止し、透過軸透過率を向上させることができる。反射防止膜としては、一般的に用いられるMgF2などの低屈折率膜や、低屈折率膜と高屈折率膜で構成される多層膜などで構わない。また、図1に示す構成とした後、その表面にSiO2などの使用帯域で透明な物質を保護膜として偏光特性に影響を与えない範囲の膜厚でコートすることは、耐湿性の向上など信頼性向上に有効である。但し、無機微粒子の光学的特性は周囲の屈折率によっても影響を受けるため、保護膜の形成により偏光特性の変化が生じる場合がある。また入射光に対する反射率は保護膜の光学厚さ(屈折率×保護膜の膜厚)によっても変化するので、保護膜材料とその膜厚は、これらを考慮して選択されるべきである。材料としては屈折率が2以下、消衰係数が零に近い物質が望ましい。このような物質としてSiO2、Al2O3などがある。これらは一般的な真空成膜法(化学気相成長法、スパッタ法、蒸着法など)や、これらが液体中に分散された状態のゾルを、スピンコート法、ディッピング法などで成膜可能である。さらに非特許文献5に記載されているような自己組織化膜も使用可能である。耐湿性向上の目的では撥水性の自己組織化膜が好ましい。Perfluorodecyltrichlorosilane(FDTS)、Octadecanetrichlorosilane(OTS)などがその一例である。撥水性を有するので防汚対策の面からも有効である。これから、薬品メーカー、例えば米国Gelest社より購入可能でありディッピングにより成膜できる。また、気相成長によっても成膜可能で、米国Applied Microstructures社より専用装置も販売されている。なお、このようなシラン系の自己組織化膜の場合には、密着性を向上する目的で、偏光素子上に密着層としてSiO2を上記方法でコートした後に自己組織化膜を堆積させてもよい。
【0043】
次に、本発明に係る偏光素子の第2の実施の形態における構成について説明する。
本実施の形態では、金属からなり前記基板の主面と平行な一方向に延びた帯状薄膜が該基板上に一定間隔に設けられてなる反射層と、前記反射層上に形成された誘電体層とを備え、前記無機微粒子層は前記帯状薄膜に対応する位置であって前記誘電体層上に形成されてなることを特徴とするものである。
【0044】
図5は、本発明に係る偏光素子の第2の実施の形態における構成例を示す概略図である。図5(a)は偏光素子20の断面図、図5(b)は偏光素子20の平面図である。
図5に示すように、可視光に対し透明な基板21の表面に設けられた反射層22を構成する薄膜22aと誘電体層23の積層構造の上に無機微粒子層25を選択的に形成することにより、該無機微粒子層25を基板21上で一定間隔に並べられたワイヤグリッド構造としたものである。
【0045】
ここで、基板21は、第1の実施の形態における基板11と同じ材料から構成されるものである。
【0046】
反射層22は、金属からなり基板21の主面と平行な一方向(吸収軸Y方向)に帯状に延びた薄膜22aが基板21上に配列されてなるものである。反射層22の構成材料には、種々の材料を用いることができ、例えばAl,Ag,Cu,Mo,Cr,Ti,Ni,W,Fe,Si,Ge,Teなどの金属あるいは半導体材料を用いることができる。なお、金属材料以外にも、例えば着色等により表面の反射率が高く形成された金属以外の無機膜や樹脂膜で構成されていてもよい。
【0047】
薄膜22aは、可視光域の波長よりも小さいピッチで基板21の表面に配列され、例えば、フォトリソグラフィ技術を用いた上記金属膜のパターン加工によって形成されるもの(金属格子)である。反射層22は、ワイヤグリッド型偏光子としての機能を有し、基板21の表面に入射した光のうち、ワイヤグリッドの長手方向に平行な方向(Y軸方向)に電界成分をもつ偏光波(TE波(S波))を減衰させ、ワイヤグリッドの長手方向と直交する方向(X軸方向)に電界成分をもつ偏光波(TM波(P波))を透過させる。
【0048】
なお、反射層22(薄膜22a)のピッチ、ライン幅/ピッチ、薄膜高さ(厚さ、格子深さ)、薄膜長さ(格子長さ)は、それぞれ以下の範囲とするのが好ましい。
0.05μm<ピッチ<0.8μm
0.1<(ライン幅/ピッチ)<0.9
0.01μm<薄膜高さ<1μm
0.05μm<薄膜長さ
【0049】
誘電体層23は、基板21の表面にスパッタ法、気相成長法、蒸着法などの一般的な真空成膜法あるいはゾルゲル法(例えばスピンコート法によりゾルをコートし熱硬化によりゲル化させる方法)により成膜されたSiO2などの可視光に対して透明な光学材料で形成されている。誘電体層23は、無機微粒子層25の下地層を形成するとともに、後述するように、無機微粒子層25で反射した偏光に対して、無機微粒子層25を透過し反射層22で反射した当該偏光の位相が半波長ずれる膜厚で形成されている。具体的には1〜500nmの範囲で適宜設定するとよい。当該偏光の位相を調整し干渉効果を高める目的で形成され、半波長ずれる膜厚が望ましいが、無機微粒子層が吸収効果を有するので反射した光を吸収する事ができ、膜厚が最適化されていなくてもコントラストの向上は実現でき、実用上は、所望の偏光特性と実際の作製工程の兼ね合いで決定してかまわない。実用上の膜厚範囲は1〜500nmである。
【0050】
誘電体層23を構成する材料は、SiO2、Al2O3、MgF2などの一般的な材料を用いることができる。これらは、スパッタ、気相成長法、蒸着法などの一般的な真空成膜法やゾル状の物質を基板上にコートし熱硬化させることで薄膜化が可能である。また、誘電体層23の屈折率は1より大、2.5以下とすることが好ましい。無機微粒子層25の光学特性は、周囲の屈折率によっても影響を受けるため、誘電層材料により偏光素子特性を制御する事も可能である。
【0051】
無機微粒子層25は、薄膜22aに対応する位置であって誘電体層23上に無機微粒子を付着させることにより、基板21の主面と平行な一方向(吸収軸Y方向)に該無機微粒子が線状に配列されてなるものである。また、一定間隔で規則的に設けられた複数の薄膜22aそれぞれの上に無機微粒子層25が形成されることにより、無機微粒子層25の形成パターンが縞状となりワイヤグリッド構造を呈する。
【0052】
図5では、無機微粒子層25は、薄膜22aの長手方向(Y軸方向)に平行に長軸方向を有するとともに長手方向に直交する方向(X軸方向)に短軸方向を有する長楕円形状の島状の無機微粒子25aがY軸方向に配列された構成となっている。また、無機微粒子25aは使用帯域の波長以下のサイズであって、個々の粒子が完全に孤立化していることが望ましい。
【0053】
本発明では無機微粒子層25の光学定数として、吸収軸Y方向(前記無機微粒子の配列方向)の光学定数が透過軸X方向(該無機微粒子の配列方向と直交する方向)の光学定数よりも大であることを特徴とする。詳しくは、無機微粒子層25の吸収軸Y方向の屈折率が透過軸X方向の屈折率よりも大であり、吸収軸Y方向の消耗係数が透過軸X方向の消耗係数よりも大であることを特徴とする。この特性を得るためには、無機微粒子層25を、斜めスパッタ法により成膜する。その詳細は第1の実施の形態で示した方法と同じである。また、無機微粒子層25に用いる材料も第1の実施の形態における無機微粒子層15で用いる材料と同じである。
【0054】
以上のように構成される本実施形態の偏光素子20は、基板21の表面側、即ち、帯状の薄膜22a、誘電体層23及び無機微粒子層25の形成面側が光入射面とされる。そして、偏光素子20は、光の透過、反射、干渉、光学異方性による偏光波の選択的光吸収の4つの作用を利用することで、反射層22のワイヤグリッド長手方向に平行な電界成分(Y軸方向)をもつ偏光波(TE波(S波))を減衰させるとともに、ワイヤグリッド長手方向に垂直な電界成分(X軸方向)をもつ偏光波(TM波(P波))を透過させる。
【0055】
すなわち、図6(a)に示すように、TE波は、形状異方性を有する無機微粒子25aからなる無機微粒子層25の光学異方性による偏光波の選択的光吸収作用によって減衰される。薄膜22aはワイヤグリッドとして機能し、図6(b)に示すように、無機微粒子層25及び誘電体層23を透過したTE波を反射する。このとき、無機微粒子層25を透過し薄膜22aで反射したTE波の位相が半波長ずれるように誘電体層23を構成することによって、薄膜22aで反射したTE波は無機微粒子層25で反射したTE波と干渉により打ち消し合って減衰される。以上のようにしてTE波の選択的減衰を行うことができる。前記のように半波長ずれる膜厚が望ましいが、無機微粒子層が吸収効果を有するので、誘電層の膜厚が最適化されていなくてもコントラストの向上は実現でき、実用上は、所望の偏光特性と実際の作製工程における経済的効率から決定されてかまわない。
【0056】
また、出射側で低反射が必要な場合には、逆に反射層側から光を入射すればよい。この場合も無機微粒子層の選択的吸収効果により、前記と同等の透過コントラストが得られる。後記のように、透過コントラストの大きさは反射層厚に依存するからである。これを実際の使用について当てはめると、例えば後述する本発明の液晶プロジェクターの光学エンジン部分(図13)において、液晶パネルへの望ましくない反射光を避ける目的で入射偏光板10Aに本発明の偏光板を使用する場合には、本偏光板の膜面(図6の無機微粒子層25側)を液晶パネル側に向くように配置する。そうする事により、望ましくない反射光は、光源側に戻る事となる。出射偏光板10Bもしくは10Cとして本発明の偏光板を使用する場合にも同様に本偏光板の膜面(図6の無機微粒子層25側)を液晶パネル側に向けるとよい。入射偏光板と出射偏光板に使用する場合とでは本偏光板への光の入射方向が逆になるが、前記のようにどちら側から光を入射させても同等の透過コントラストが得られるので実用上問題ない。
【0057】
偏光素子20は、例えば以下のようにして製造することができる。即ち、基板21に金属膜及び誘電膜を積層し、フォトリソグラフィなどにより金属膜及び誘電膜の格子パターンを形成した後、斜めスパッタ成膜法により無機微粒子層25を形成する。斜めスパッタ成膜時の入射角度を調節することで、帯状薄膜22a及び誘電体層23からなる凸部の頂点付近に集中的に微粒子を堆積させることが可能となる。
【0058】
上記以外にも、透明基板上に透明材料を一次元格子状に形成し、この格子の凸部上に金属層、誘電体層及び無機微粒子層を順次斜め成膜により積層する方法も適用可能である。更には、基板上に金属膜、誘電膜、微粒子膜を順次積層した後、これらを一括して一次元格子状にエッチングする方法を用いてもよい。
【0059】
更に、図7に示すように、基板21上に反射層22を一次元格子状に形成した後、誘電体層23を基板21の表面全域に形成する。これにより、誘電体層23は、反射層22の帯状薄膜22aの直上で凸部、帯状薄膜22a間で凹部となる凹凸形状を有する。その後、斜めスパッタ成膜法により、誘電体層23の凸部の頂部の側面部に無機微粒子層25を形成することで、図5の例と同様な作用効果を有する偏光素子を作製することができる。無機微粒子層25の形成領域は図示する誘電体層23の頂部の一側面部に限らず、両側面部であってもよい。
【0060】
なお、本発明の偏光素子として、図5において誘電体層23を省略した構成の偏光素子としてもよい。すなわち、可視光に対し透明な基板21の表面に設けられた反射層22を構成する薄膜22aの上に無機微粒子層25を選択的に形成することにより、該無機微粒子層25を基板21上で一定間隔に並べられたワイヤグリッド構造とする。この構成でも、可視光域で所望の消光比(コントラスト:透過軸透過率/吸収軸透過率)を持たせることが可能である。
【0061】
つぎに、液晶プロジェクターにおける出射面迷光対策(ゴースト対策)として、偏光素子20の裏面側に選択的光吸収層を設けた例を説明する。
図8はその偏光素子20Aの概略構成を示す側断面図である。なお、図において上述の偏光素子20と同一構成部分については同一の符号を付し、その詳細な説明は省略する。
【0062】
本実施形態の偏光素子20Aは、基板21の表面(一方の面)に、一次元格子状の反射層22が形成されており、この反射層22の上に誘電体層23及び無機微粒子層25が順次形成されている。そして、基板21の裏面(他方の面)には、誘電材料からなる凹凸部26と、この凹凸部26の凸部の頂部又は少なくとも一側面部に形成された第2の無機微粒子層27とからなる光学異方性による偏光波の選択的光吸収層28が設けられている。
【0063】
この光学異方性による偏光波の選択的光吸収層28が設けられていない偏光素子20においては、基板21の裏面側が反射層22による鏡面を呈するため、偏光素子を透過し当該偏光素子の次段に配置されたレンズ等の他の光学素子で反射して戻った光は、上記鏡面で再び反射されることになる。このような迷光は、液晶プロジェクターにおいてゴースト等の画質の劣化を引き起こす。
【0064】
本実施形態では、基板21の裏面側に上記構成の光学異方性による偏光波の選択的光吸収層28を設けることにより、上記迷光を吸収し反射層22における反射を防止する。光学異方性による偏光波の選択的光吸収層28を構成する凹凸部26は、誘電体層23と同様な材料からなるとともに、反射層22の帯状薄膜22aが延びる方向と同一方向に延びるように形成された一次元格子状に形成されている。第2の無機微粒子層27は、凹凸部26の凸部の頂部又は側面部に無機微粒子が線状に配列されて形成されており、基板21表面側の無機微粒子層25と同様な材料で構成されることにより、基板21裏面からの入射光の選択的光吸収効果を出現させる。
【0065】
凹凸部26の形成方法としては、誘電体層23の形成方法と同様にスパッタ法やゾルゲル法等によって形成される。凹凸形状の付与は、フォトリソグラフィ技術を用いたパターン加工やナノインプリント法によるプレス形成が好適である。第2の無機微粒子層27の形成方法としては、基板21表面側の無機微粒子層25の形成方法と同様な斜め成膜が好適である。第2の無機微粒子層27は、凹凸部26の凸部の頂部又は一側面部あるいは両側面部に形成される。
【0066】
あるいは、偏光素子20Aの別の作製方法として、図1に示す偏光素子10と図5に示す偏光素子20とを用いて、お互いの基板11,21の裏面同士を透明接着剤により貼り合わせて偏光素子20Aとしてもよい。この場合、無機微粒子層15、25の無機微粒子の配列方向が揃うようにするとよい。
【0067】
つぎに、液晶プロジェクターにおける別のゴースト対策として、基板21と反射層22との間に反射防止層を設けた例を説明する。
図9はその偏光素子20Bの概略構成を示す側断面図である。なお、図において上述の偏光素子20と同一構成部分については同一の符号を付し、その詳細な説明は省略する。
【0068】
本実施形態の偏光素子20Bは、上述の偏光素子20Aと同様な目的で構成されている。即ち、本実施形態の偏光素子20Bは、基板21と反射層22との間に、反射防止層29が形成されている。このように一次元格子状の反射層22の直下に反射防止層29を設けることにより、基板21の裏面からの入射光の反射を防止するようにしている。
【0069】
反射防止層29は、例えばカーボンブラック膜等の黒色層が好適である。これにより、基板21裏面からの入射光を効率よく吸収することができる。また、カーボンのほか、酸素欠損したシリコン酸化物層や、反射層22よりも反射率の低い低反射材料層が適用可能である。あるいは無機微粒子層25と同様のものを反射防止層29としてもよい。なお、図示の例では、反射層22と反射防止層29との間で干渉効果を得る事により反射率軽減を図る事を目的として誘電体層2aが設けられている。この誘電体層2a及び反射防止層29の格子形状への加工は、例えば反射層22のパターン加工で同時に行うことができる。
【0070】
さらに、液晶プロジェクターにおけるまた別のゴースト対策として、つぎの方法がある。すなわち基板21について、その表面をラビング処理して、該表面にその後形成される無機微粒子層25の無機微粒子25aの配列方向に対応するように微細なすじが一方向に揃った状態の凹凸からなるテクスチャー構造を形成し、ついで、該ラビング処理後の表面に無機微粒子25aの配列方向に対応するように前述した斜めスパッタ法により形状異方性を有する無機微粒子からなる薄膜(反射防止層)を形成するとよい。前記テクスチャー構造により無機微粒子の長軸方向がすじの長手方向となるように無機微粒子の配列性が向上して薄膜の偏光特性が改善され、ゴースト対策効果を高めることができる。同時に偏光素子としての透過コントラスト特性の増大も期待できる。
【0071】
本発明の第2の実施の形態のバリエーションとして、前記無機微粒子層25上に、前述した誘電体層23/無機微粒子層25の積層構造を1または複数積み重ねた多層構造としてもよい。図10にその構成例を示す。
【0072】
図10において、偏光素子30は、基板21上に反射層22を構成する帯状薄膜22a、誘電体層23、無機微粒子層25がこの順番で積層されており、該無機微粒子層25上に誘電体層23/無機微粒子層25の積層構造26aがさらに積み重ねられたワイヤグリッド構造となっている。また、この積層構造26aの上にさらに積層構造26aを積み重ねていってもよい。これにより、各層間の干渉効果を高めて所望の波長での透過軸方向コントラストを増大させると同時に、透過型液晶表示装置において好ましくない偏光素子からの反射成分を広範囲に渡り低下させることができ、図5の構成の偏光素子20よりも薄い膜厚で高コントラスト、低反射を実現することができる。
【0073】
本発明の偏光素子30の製作方法としては例えばつぎの3つの方法がある。すなわち、第一の方法としては、基板21に反射層材料(金属格子材料)、誘電体膜を積層し、ナノインプリントやフォトリソグラフィなどの手法により一次元格子パターンを形成あるいはエッチングした後、斜めスパッタ成膜法により微粒子を成膜するものである。これによれば斜めスパッタ成膜時の入射角度を調節することで、凸部となった誘電体層23の頂点付近に集中的に無機微粒子を堆積させることが可能である。また第二の方法としては、透明基板上に透明材料を用いて一次元格子形状の凹凸部を形成し、反射層材料、誘電体層材料、無機微粒子材料を順次積層数分斜め成膜により積層するものである。また第三の方法としては、反射層の薄膜(金属格子膜)の上に(誘電体膜/無機微粒子薄膜)の積層構造を積層数分だけ順次積層した後にエッチングするものである。なお無機微粒子材料は完全な島状になっている必要はなく、粒界が形成されていればよい。また誘電体層23と無機微粒子層25はスパッタ成膜及びエッチングによる形成方法と斜めスパッタ成膜による形成方法とを組み合わせて製作してもよい。なお、上記の製造プロセスを実行する上で基板材料の種類に限定は無いが、発熱量の多いプロジェクターに応用する場合には、熱伝導性の高い水晶やサファイア基板が適している。
【0074】
ところで、これまで述べた構造の偏光素子30のままでは、光の出射面(反射層22)が金属でできているために戻り光がある場合には反射率が高くなってしまう。そこで、本実施の形態においても前述した出射面迷光対策をとるとよい。
図11、図12に本実施の形態における出射面迷光対策例を示す。
【0075】
図11は、図8の構成を本実施の形態に適用した例である。
偏光素子30Aは、偏光素子30において、基板21の反射層22形成面とは反対面(裏面)に誘電材料からなる凹凸部26と、この凹凸部26の凸部の頂部又は少なくとも一側面部に形成された第2の無機微粒子層27とからなる光学異方性による偏光波の選択的光吸収層28が設けられてなるものである。
【0076】
図12は、図9の構成を本実施の形態に適用した例である。
偏光素子30Bは、偏光素子30において、一次元格子状の反射層22の直下に反射防止層29が設けられ、さらに反射層22と反射防止層29との間で干渉効果を得る目的で誘電体層2aが設けられている。なお、図12において反射層22下の誘電体層2aは無くてもよく、単に反射層22の下に反射防止層29が形成されていてもよい。また、反射防止層29が無機微粒子層25と同じものである場合はコントラストの向上にも寄与するものとなるが、単に戻り光の反射防止をする目的であれば反射層22の下に反射防止層29として該反射層22よりも反射率が低い層(低反射層)を設けるとよい。低反射材料としては反射層22よりも反射率が低ければ効果があり、カーボンや酸素欠損SiOxなどの酸化膜を使用したり、あるいは金属または半導体微粒子などを用いたりすることも可能である。
【0077】
反射層22の下に反射防止層29及び誘電体層2aを付加する場合、あるいは反射防止層29を反射層22直下に作製する場合、これらの膜を反射層用の膜の成膜前に成膜し反射層22形成のためのエッチングの際に同時にエッチングすると、反射層22の帯状薄膜22a直下にのみこれらの層を形成できるので透過特性に影響を与えないことが可能である。
【0078】
また、第2の実施形態においても必要に応じて、基板表面、裏面に反射防止膜をコートすることで、空気と基板の界面での反射を防止し、透過軸透過率を向上させることができる。反射防止膜としては、一般的に用いられるMgF2などの低屈折率膜や、低屈折率膜と高屈折率膜で構成される多層膜などで構わない。なお、図5あるいは図7に示す構成とした後、その表面にSiO2などの使用帯域で透明な物質を保護膜として偏光特性に影響を与えない範囲の膜厚でコートすることは、耐湿性の向上など信頼性向上に有効である。但し、無機微粒子の光学的特性は周囲の屈折率によっても影響を受けるため、保護膜の形成により偏光特性の変化が生じる場合がある。また入射光に対する反射率は保護膜の光学厚さ(屈折率×保護膜の膜厚)によっても変化するので、保護膜材料とその膜厚は、これらを考慮して選択されるべきである。材料としては屈折率が2以下、消衰係数が零に近い物質が望ましい。このような物質としてSiO2、Al2O3などがある。これらは一般的な真空成膜法(化学気相成長法、スパッタ法、蒸着法など)や、これらが液体中に分散された状態のゾルを、スピンコート法、ディッピング法などで成膜可能である。さらに非特許文献5に記載されているような自己組織化膜も使用可能である。耐湿性向上の目的では撥水性の自己組織化膜が好ましい。Perfluorodecyltrichlorosilane(FDTS)、Octadecanetrichlorosilane(OTS)などがその一例である。撥水性を有するので防汚対策の面からも有効である。これから、薬品メーカー、例えば米国Gelest社より購入可能でありディッピングにより成膜できる。また、気相成長によっても成膜可能で、米国Applied Microstructures社より専用装置も販売されている。なお、このようなシラン系の自己組織化膜の場合には、密着性を向上する目的で、偏光素子上に密着層としてSiO2を上記方法でコートした後に自己組織化膜を堆積させてもよい。
【0079】
つぎに、本発明に係る液晶プロジェクターについて説明する。
本発明の液晶プロジェクターは、光源となるランプと、液晶パネルと、前述した本発明の偏光素子10,20,20A,20B,30,30A,30Bのいずれかとを備えるものである。
【0080】
図13に、本発明に係る液晶プロジェクターの光学エンジン部分の構成例を示す。
液晶プロジェクター100の光学エンジン部分は、赤色光LRに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、緑色光LGに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、青色光LBに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、それぞれの出射メイン偏光素子10Cから出てくる光を合成し投射レンズに出射するクロスダイクロプリズム60とを備えている。ここで、本発明の偏光素子10,20,30は、入射側偏光素子10A、出射プリ偏光素子10B、出射メイン偏光素子10Cそれぞれに適用されている。
【0081】
本発明の液晶プロジェクター100では、光源ランプ(不図示)から出射される光をダイクロイックミラー(不図示)により赤色光LR、緑色光LG、青色光LBに分離し、それぞれの光に対応する入射側偏光素子10Aに入射させ、ついでそれぞれの入射側偏光素子10Aで偏光された光LR、LG、LBは液晶パネル50にて空間変調されて出射され、出射プリ偏光素子10B、出射メイン偏光素子10Cを通過した後、クロスダイクロプリズム60にて合成されて投射レンズ(不図示)から投射される構成となっている。光源ランプは高出力のものであっても、強い光に対して優れた耐光特性をもつ本発明の偏光素子10,20,30を用いているため、信頼性の高い液晶プロジェクターを実現することができる。
【0082】
なお、本発明の偏光素子は、前記液晶プロジェクターへの適用に限定されるわけではなく、使用環境として熱を受ける偏光素子として好適である。例えば、自動車のカーナビやインパネの液晶ディスプレイの偏光素子として適用することができる。
【実施例】
【0083】
以下に、本発明に係る偏光素子における偏光特性を検証した結果を示す。
(実施例1)
まず、図4の斜めスパッタ成膜によって形成した無機微粒子層の光学特性について検証を行った。
図14にこのような斜めイオンビームスパッタによる光学異方性増強効果の実験結果を示す。図14Aに示すように、イオンビームスパッタ法によりガラス基板41の表面に対して10°方向で、基板41を静止状態でGeスパッタ粒子を入射、堆積させてGe粒子膜44を作製した。図14Bは、作製したGe粒子膜44の光学定数(屈折率、消衰定数)の測定結果を示している。測定は分光エリプソメーターにより行った。この時の膜厚は10nmである。この実験では光学異方性が生じたことにより、面内で光学定数すなわち屈折率n及び消衰定数kに違いがあった。なお、比較のために、図15Aに示すように基板41の垂直方向から基板41を回転させながらGeスパッタ粒子を成膜したところ、得られたGe粒子膜44の光学定数として、図15Bに示すように屈折率n及び消衰定数kの光学異方性は生じておらず、各光学定数は文献値に近い値であった。
【0084】
また、ターゲット2の組成をGeからSiに変え、前記Geスパッタ成膜の場合と同じ条件でガラス基板41上にSi粒子膜を形成し、その光学定数の測定を行った。その結果を図16に示す。
Siの場合も、ガラス基板41の表面に対して10°方向で斜めスパッタ成膜した場合(図16A)には、光学異方性が生じたことにより、面内で光学定数すなわち屈折率n及び消衰定数kに違いが認められた。また、基板41の垂直方向から基板41を回転させながらスパッタ成膜した場合(図16B)には屈折率n及び消衰定数kの光学異方性は生じていなかった。
【0085】
つぎに、図14Aの条件にてガラス基板41上に膜厚20nmのGe粒子膜44が形成されている場合の偏光透過率をシミュレーション計算により求めた。その結果を図17に示す。ここでは、X軸方向に平行に電場が振動している光にはX軸方向の光学定数を用い、Y軸方向に電場が振動している光にはY軸方向の光学定数を用いて偏光透過率の計算を行っている。その結果によると、光学異方性特性を持つことにより偏光方向で透過率が異なるようになっている。すなわち、このような光学異方性を有する膜を偏光素子の材料として用いることで、偏光素子の特性向上が期待できる。
【0086】
(実施例2)
つぎに、無機微粒子層の光学異方性の有無が偏光素子に与える影響を調べた。具体的には、図1及び図5の偏光素子の構成を前提として、波長厳密結合波解析(RCWA)によりその偏光特性を求めた。ここでは、図18に示すように、ガラス基板41上にワイヤグリッド構造のGeからなる無機微粒子層45を有する構成として、無機微粒子層45の各寸法を、ピッチ:150nm、ライン幅(Ge格子方向幅):37.5nmとし、無機微粒子層45が光学異方性有りの場合(図14Aの方法)の厚みを100nm、光学異方性無しの場合(図15Aの方法)の厚みを10nmとして計算を行った。その結果を図19に示す。
【0087】
図19では、プロジェクター等の光学エンジン用途で重要な可視域550nm以下(すなわち、緑、青色域)で光学異方性が無い(バルクと記載の点線で示すデータ)は光学異方性有り(斜めと記載の実線で示すデータ)と比べ、膜厚が薄いにもかかわらず吸収軸透過率が高くまた反射率も高い。これに対して、光学異方性有りの方は吸収軸透過率が低く反射率も低い。よって吸収型として好ましい特性となっている。膜厚に関して、この計算では光学異方性無しは10nmとしている。これを厚くすれば吸収軸透過率は減少するが、同時に反射率も高くなってしまう。よって光学異方性を有する場合のような偏光素子として好ましい特性は膜厚操作によって得ることはできない。
【0088】
(実施例3)
図19は、無機微粒子層が単層の場合の実施例であったが、このようなことは図10に示した無機微粒子層が多層構造の偏光素子についても同様なことがいえる。
ここでは、多層構造の偏光素子においてGeからなる無機微粒子層を図14Aで示した方法により光学異方性有りとした場合の偏光特性と図15Aで示した方法により光学異方性無しとした場合の偏光特性を波長厳密結合波解析(RCWA)で計算した。また、ここで用いた多層構造は、基板側からGe(15nm)/反射層;Al(240nm)/誘電体層;SiO2(205nm)/無機微粒子層;Ge(90nm)(表面側)の多層構造(かっこ内は各層の膜厚)とし、無機微粒子層の各寸法を、ピッチ:150nm、ライン幅(Ge格子方向幅):37.5nmとした。なお、偏光素子出射面への戻り光の再反射による迷光の影響を抑えるために、反射層より基板側にGe層を設けている。計算の結果を図20に示す。
単層の場合(図19)と同様に光学異方性が無い場合(等方と記載の点線で示すデータ)には、可視域550nm以下で光学異方性が有る場合(異方と記載の実線で示すデータ)よりも吸収軸の反射率が高く透過軸の透過率が低いという結果となる。よって吸収型偏光素子としては好ましくない。以上のように光学異方性が偏光素子の偏光特性に与える効果は大きい。
【0089】
(実施例4)
以上のように光学異方性を有する無機微粒子層を偏光素子に用いる事で偏光特性の向上が可能となる。そして、好ましくは無機微粒子層の光学定数が(透過軸方向光学定数)<(吸収軸方向光学定数)、すなわち(透過軸方向屈折率)<(吸収軸方向屈折率)及び(透過軸方向消衰係数)<(吸収軸方向消衰係数)の関係を満足していることが肝要である。これを示す実施例を図21、図22に示す。
図21は、図5の構造の偏光素子のうち、無機微粒子層25としてAgを斜めスパッタ成膜法により形成した場合のAg膜(無機微粒子層25)の光学定数を示すものである。この場合もGeのように光学異方性を有することがわかる。しかしながら、波長550nm付近でX,Y方向の屈折率の大小が反転、波長440nm付近でX,Y方向の消衰係数が反転している。
図22は、図17と同様にして、図21に示すAg膜(無機微粒子層25)の光学定数によりAg膜厚が20nmの場合の偏光透過率を計算した結果である。低波長域になるに従い偏光透過率が低下していき、波長450nm付近で、x、y方向透過率の大小が反転している。これは図21の光学定数の反転によるものであり、偏光素子に応用する場合にはこのような反転特性を持つ事は偏光透過率の低下を意味するので好ましくない。また、吸収軸では消衰係数大なら吸収率大であり、また透過軸では空気層から入射した光が減衰や反射されずに透過することが望ましい、すなわち屈折率が小さい方が望ましい(空気の屈折率=1のため)。よって、望ましい無機微粒子層の光学定数としては使用帯域で光学定数の反転が無く、かつ(透過軸方向光学定数)<(吸収軸方向光学定数)、すなわち、(透過軸方向屈折率)<(吸収軸方向屈折率)及び(透過軸方向消衰係数)<(吸収軸方向消衰係数)の関係を満足していることである。
【0090】
(実施例5)
つぎに、本発明の偏光素子における光学異方性発現と無機微粒子との関係について調査を行った。
(1)平板上の無機微粒子層
まず、単結晶Si基板の表面にSiO2を10nm成膜した表面が平滑な基板を用いて、実施例1と同じ条件(斜めスパッタ成膜、基板面に対して垂直方向からスパッタ成膜)でGe粒子膜を形成し、AFM(原子間力顕微鏡)により該Ge微粒子膜におけるGe微粒子の形状を観察した。その結果を図23に示す。
図23(a)に示す、斜めスパッタ成膜サンプルでは個々の微粒子が明確に観察され、該微粒子にはGe入射方向に対して垂直方向に径が長く、Ge入射方向に径が短い形状異方性が生じていた。これに対して、図23(b)に示す、基板面に対して垂直方向からスパッタ成膜したサンプルでは、同じ倍率では粒子サイズが非常に小さく非常に平坦な膜表面になっているために微粒子形状が観察できなかった。
【0091】
(2)偏光素子10
つぎに、図3(c)に示す構成の偏光素子のサンプルを作製した。ここでは、まず水晶基板に塗布したポリマー層(Micro Resist Technology社製mr-I 8010E)を一次格子パターン(ピッチ150nm、ライン/スペース比=0.7、深さ150nm)のモールドで熱式ナノインプリント法によりプレス成形してモールドパターンをポリマー層に転写し、ついで該ポリマー層をレジストマスクとしてCF4ガス+Arガスにより水晶基板をエッチングして、一方向に延びた凸部17aが一定間隔に設けられた基板11とした。ついで、図4のイオンビームスパッタ装置により、常温の基板11に基板傾斜角θ=5°として実施例1の斜めスパッタ成膜を行ってGeからなる膜厚30nmの無機微粒子層15を形成した後、SiO2からなる膜厚15nmの偏光素子保護層を気相成長法により成膜してサンプルとした。なお、基板11の裏面側には反射防止膜としてSiO2/Ta2O5の多層膜をスパッタリングにより形成した。得られた偏光素子サンプルの偏光特性を調査した。その結果、図24に示すように、吸収軸の透過率が透過軸の透過率よりも低い光学異方性を示した。
【0092】
この偏光素子サンプルについて、断面よりTEMによる元素分布を分析したところ、図25の元素分布マッピングに示すように、Siが主成分の基板の凸部17aそれぞれの頂部から側壁にかけてGeからなる無機粒子層15が形成されていることがわかった。この結果に基づき、当該偏光素子サンプルにおける無機微粒子層15を詳細に観察した。その結果を図26に示す。図26(a)は、断面から観察したときのスケッチであり、図25の元素分布結果を加味したものである。また、図26(b)は上から観察したときのスケッチである。
【0093】
図26(b)に示すように、一次格子状の凸部17aそれぞれの頂部から側壁部にかけて凸部17aの長手方向に沿う態様で、無機微粒子層15が形成されており、また無機微粒子層15は形状異方性を有する無機微粒子15aが連なって配列して構成された線あるいは帯として観察された。また無機微粒子15aは個々の粒子が明確に観察され、該無機微粒子の長軸方向が配列方向となり、短軸方向が配列方向と直交する方向となっている状態が観察された。
【0094】
また、図25のGe部分について電子線回折像を調べたところ、図27に示すように、明確な輝線が認められないことから、無機微粒子層15を構成するGe微粒子15aの結晶構造はアモルファスであることが分かった。アモルファスであるということは、成膜されたGe微粒子は結晶学的な方位を持っていないということである。なお一般に、低温成膜されたGe膜の構造はアモルファス状態になりやすいことが知られている(DUBEY M,MCLANE G F,JONES K A,LAREAU R T,ECKART D W,HAN W Y,ROBERTS C,DUNKEL J,WEST L C, Mat. Res. Soc. Symp. Proc. Vol.340. 411-416(1994))。
【0095】
(3)偏光素子20
つぎに、図5に示す構成の偏光素子のサンプルを作製した。ここでは、ガラス(コーニング1737)製の基板21上に、反射層22としてピッチ150nm、格子深さ200nmのアルミニウム格子を作製し、その上に誘電体層23としてSiO2を30nmを形成し、ついで本実施例の偏光素子10と同じ条件で斜めスパッタ成膜を行って無機微粒子層25としてGe微粒子層を30nm積層し、最表層に保護膜として膜厚30nmのSiO2を形成して、図5に示す偏光素子サンプルを作製した。図28に、その偏光素子サンプルの偏光特性を示す。吸収軸の透過率がほぼゼロとなり、また反射率も低い値になっている。また、図29に、この場合の透過率の比をコントラストとして示すが、透過コントラストが550nm域を中心とする緑域では3000以上、450nm付近の青域を含む可視光全域では1500以上となっており、偏光素子として良好な特性を示していた。
【0096】
この偏光素子サンプルについて、断面より観察したところ、図30(a)のスケッチに示すように、基板21上に設けられた一次格子状の反射層22及び誘電体層23それぞれの頂部から側壁にかけてGeからなる無機粒子層25が形成されていることがわかった。
【0097】
また、図30(b)及び図31に、この偏光素子サンプルを上から観察した結果を示す。図30(b)はスケッチであり、図31はその基となるSEM像である。
一次格子状の誘電体層23それぞれの頂部から側壁部にかけて誘電体層23の長手方向に沿う態様で、無機微粒子層25が形成されており、また無機微粒子層25は形状異方性を有する無機微粒子25aが連なって配列して構成された線あるいは帯として観察された。また無機微粒子25aは、該無機微粒子の長軸方向が配列方向となり、短軸方向が配列方向と直交する方向となっている状態が観察された。
【0098】
以上の結果から、本発明の偏光素子における無機微粒子は斜めスパッタ成膜により形状異方性を有し、かつ該無機微粒子が一次元格子状に配列された際にその長軸方向が一次元格子の格子方向に揃えられた状態で形成されている。またアモルファスの状態にある。本発明ではこれらのことが光学異方性の発現に影響していると考えられる。なお、斜め蒸着によって形状異方性をもつ微粒子が成膜されるが、この形状異方性を示すことはステアリング効果(Steering Effect)と呼ばれている(Jikeun Seo, S.-M. Kwon, H.-Y. Kim and J.-S. Kim Phys. Rev. B67 121402(2003))。
【0099】
なお、斜めスパッタ成膜では、図32に示すように、膜厚(無機微粒子の成長方向の厚さ)とともに成膜粒子の形状が変化し、光学異方性に影響する。すなわち、無機微粒子の膜厚bが粒子の長径aよりも小さい場合(図32A)、基板面上の2方向(X,Y方向)で光学異方性を持ち、粒子長径aの方向が吸収軸となる。これに対して、無機微粒子の膜厚bが粒子の長径aよりも大きい場合(図32B)、無機微粒子の厚み方向と面内の軸方向で光学異方性を持ち、粒子膜厚bの方向が吸収軸となることから、図32Aと図32Bとでは光学異方性の方向が実質的に逆転することになる。本発明の偏光素子10,20では、格子方向を吸収軸として使用するので、膜厚が厚いと偏光特性が低下する事を意味する。よって、図32Aのように(粒子長径a)>(粒子膜厚b)の関係となる領域で使用する事が望ましい。
【0100】
ところで、光学異方性をもたない薄膜(例えばゲルマニウム薄膜)を無機微粒子層25の代わりに誘電層23上に形成しても、その膜厚を最適化することにより吸収軸方向の反射率の抑制は可能である。しかしこの場合には、抑制は干渉効果が支配的なために、波長帯域が狭く、透過軸方向の吸収があるために透過軸透過率が減少するという問題がある。さらに干渉効果は膜厚に敏感なので、所望の特性を得るためには、厳密な誘電体層23の膜厚、ゲルマニウム薄膜の膜厚の制御が必要である。これに対し本発明では、光学異方性をもったゲルマニウム微粒子を用いるので、設計範囲が広く、製造も容易である。
【0101】
そこで、波長厳密結合波解析(RCWA)法により、偏光素子20における無機微粒子層25が薄膜である場合と微粒子である場合とによる光学特性の違いをシミュレーションした。ここでは、反射層22について膜厚(アルミ厚):200nm,格子ピッチ:150nm,アルミ幅:45nmとし、誘電体層23について膜厚(SiO2):30nmとして、Ge薄膜とGe微粒子の膜厚に対する波長450nmにおける吸収軸反射率、透過軸透過率、透過コントラストの依存性を計算した。またGe薄膜の光学定数は、図15Bの値を使い、Ge微粒子の光学定数は、格子に成膜された場合の異方性増大を考慮するため、図33に示すモデルにて、入射光の波長よりも十分に小さい微粒子が誘電体層中に軸方向をそろえて分布していると仮定して計算で求めた。さらに誘電体層23中のGeの体積率は0.4、アスペクト比は20として計算した。
その結果を図34に示す。図34(a)が吸収軸反射率、図34(b)が透過軸透過率、図34(c)が透過コントラストの結果である。Ge微粒子の場合の方がGe薄膜の場合よりも、コントラストが同程度で、さらに透過率が高く、かつ反射率を軽減できる膜厚範囲が広いことがわかる。
【0102】
(実施例6)
つぎに、無機微粒子のアスペクト比と偏光素子におけるコントラストとの関係を調べた。
(1)平板上への斜めスパッタ成膜
まず図4のイオンビームスパッタ装置を用いて、基板傾斜角θ=20,10°と変化させて、平坦なSi基板上に膜厚30nmのGe微粒子層を形成し、得られたサンプルをSEMで観察し、SEM像中の任意のGe微粒子40個を抽出し、そのサイズ(長径(長軸長さ)、短径(短軸長さ))を測定してアスペクト比を求めた。
図35に、その結果をアスペクト比のヒストグラムとして示す。ヒストグラムの分布として、図35(a)(基板傾斜角θ=20°)よりも図35(b)(基板傾斜角θ=10°)の方がよりアスペクト比が大きくなるほうに分布がシフトする傾向が見られた。また、このときのGe微粒子の長軸長さの平均値は、基板傾斜角θ=20°のときが30nm、基板傾斜角θ=10°のときが63nmであり、アスペクト比の平均値は、基板傾斜角θ=20°のときが3.2、基板傾斜角θ=10°のときが4.0であった。
【0103】
また図4のイオンビームスパッタ装置を用いて、基板傾斜角θ=20,10°と変化させて、平坦なガラス基板(コーニング1737)上に膜厚10nmのGe微粒子層を形成したサンプルについて透過率を測定し、波長550nmにおける透過率の比をコントラストとして求めた。なお、x方向、y方向は図14Aの関係としている。その結果を表1に示す。基板傾斜角θを小さくするとGe微粒子のアスペクト比が大きくなるとともにコントラストが大きくなる傾向が見られた。
【0104】
【表1】

【0105】
(2)偏光素子10
実施例5の偏光素子10について、無機微粒子層15形成時の斜めスパッタ成膜条件のうち基板傾斜角θ=10,20°の2水準とし、それ以外は実施例5の偏光素子10と同じ条件で偏光素子サンプルを作製した。本サンプルについて透過軸、吸収軸の透過率を測定し、波長550nmにおける透過率の比をコントラストとして求めた。その結果を図36及び表2に示す。本発明の偏光素子においても基板傾斜角θを小さくするとコントラストが大きくなる傾向が見られた。
【0106】
【表2】

【0107】
以上のように、斜めスパッタ成膜により基板面内に形状異方性をもつ無機微粒子を成膜することができるが、無機微粒子の長径と短径との比であるアスペクト比は無機微粒子の入射角度(図4でいう基板傾斜角θ)に依存し、その角度が小さい方がアスペクト比が大きくなる。また、アスペクト比が大きくなると同時に透過コントラストも大きくなる。このように斜めスパッタ成膜によるステアリング効果を利用することで、良好な特性を有する偏光素子を実現することができる。
【0108】
(実施例7)
成膜方法(ドライプロセス)の種類を変えて、Alからなる反射層22を一次元格子状(ピッチ150nm)に設けた基板上にGe微粒子層を斜め成膜した。ここでは、つぎの3種類のドライプロセスを用いた。
(a)電子ビーム蒸着(図37(a))
Geを装着した蒸発源の法線方向に対して10度傾けた基板を該蒸発源から80cm離してセットし、成膜速度0.3nm/secの電子ビーム蒸着を行った。
(b)マグネトロンスパッタ(図37(b))
Geターゲットの法線方向に10度傾けた基板を該ターゲットから40cm離してセットし、成膜速度0.1nm/secのマグネトロンスパッタ成膜を行った。
(c)イオンビームスパッタ(図37(c))
本発明で例示した図4に示すスパッタ成膜方法である。ここでは、基板をθ=45度でセットし、Geターゲットから15cm離して、成膜速度0.2nm/secでイオンビームスパッタ成膜を行った。
なお、基板は実施例5の偏光素子10の場合と同じ基板11を用い、図14Aと同様にGe入射方向が格子長手方向(x方向)に直交する方向(y方向)となるようにセットした。また、Ge微粒子層の膜厚はいずれも10nmとした。
【0109】
得られたサンプルについて、透過率を測定した。その結果を図38に示す。
3つのサンプルのうち、イオンビームスパッタによる成膜法が透過率も高く、x方向、y方向の透過率の差が大きいことから、本発明の偏光素子の成膜方法として最も好ましいことが分かる。
【0110】
(実施例8)
本発明に係る偏光素子のうち、図5に示す構成の偏光素子20において、反射層22の高さ(膜厚)を変えることでその透過コントラストを容易に制御することができる。その一例として図39に、Alからなる一次格子状の反射層22としてピッチ150nm、アルミ幅37.5nmの場合の反射層膜厚(アルミ高さ)と透過コントラストの波長厳密結合波解析(RCWA)による計算結果を示す。
【0111】
また図5に示す構成の偏光素子20において、誘電体層23の高さ(膜厚)を変えることでその光学特性を容易に制御することができる。ここでは、ガラス(コーニング1737)製の基板21上に、Alからなる一次格子状の反射層22としてその膜厚(アルミ高さ)を200nm、そのピッチを150nm、格子幅を50nmとし、RFスパッタ成膜によるSiO2からなる誘電体層23としてその膜厚を0,19,37,56,74nmと変化させ、Ge微粒子からなる無機微粒子層25としてその膜厚を30nmとして、本発明の偏光素子20のサンプルを作製し、得られたサンプルの波長450,550,650nmにおける誘電層膜厚と透過軸透過率、コントラスト、吸収軸反射率の関係を求めた。その結果を表3に示す。
【0112】
【表3】

【0113】
得られた結果より、例えば吸収軸反射率を軽減したい場合には誘電体層23の膜厚を19〜37nmの範囲とすればよい。また、反射の影響が少ない用途に用いる場合には誘電体層13の膜厚を0として使用することも可能である。これは、製作工程の減少を意味し、生産性の向上につながる。また、波長450〜650nmで高いコントラストを実現しており、使用波長範囲が広いプロジェクター用途に適している。
一方、透過率に関しては、波長450nmでは70%以上、波長550,650nmでは80%以上の高い透過率を示している。格子のピッチをより狭める事で透過率のさらなる向上も可能である。
また、コントラストに関しては、金属格子の高さにより調整することが可能である。より高いコントラストが必要な場合はアルミ格子を高くすればよく、下げたい場合は低くすればよい。
【0114】
つぎに、図40に、実施例5の偏光素子20と同じ構造で、アルミ高さを30nmにした場合の偏光特性を示す。この場合、反射層の膜厚が薄い(アルミ高さが低い)ので、コントラストは青域で3程度になっているが、図28と同様に反射率はGe微粒子の効果で2%以下に抑えられている。このような性能を有する偏光素子の場合、Ge微粒子は、図31のSEM像に示されるように、反射層/誘電体層からなる凸部の側壁に堆積し、異方性光学吸収素子として良好な形状をしている。このことは、図1,図3に示す偏光素子10についても同様に言える。
【0115】
本発明の偏光素子では、格子形状(図2における凸部14aや図5における反射層22/誘電体層23の形状や高さ、一次格子のピッチなど)とステアリング効果(無機微粒子のサイズ、アスペクト比、配列性など)とを組み合わせることで、吸収型偏光素子として好適な微粒子形状を実現することができる。
【0116】
(実施例9)
図5に示す偏光素子20において、出射面迷光対策(ゴースト対策)として、基板21についてその表面を後に形成される無機微粒子25aの配列方向に対応するように細かいスジが一方向に揃った状態であるテクスチャー構造となるようにラビング処理し、該ラビング処理後の表面に無機微粒子25aの配列方向に対応するように形状異方性を有する無機微粒子からなる薄膜(反射防止層29となる薄膜(以下、反射防止膜))を形成するとよい。具体的には、研磨テープなどの研磨材により機械的にテクスチャー構造を基板21の表面に形成し、その後無機微粒子からなる反射防止膜を斜めスパッタ成膜法により形成することで、格子上に成膜される無機微粒子層25と同様にステアリング効果による形状異方性を有する無機微粒子とすることができるので、無機微粒子の偏光効果が高まり、結果としてゴースト抑制効果を高めることが可能となる。以下、具体的に実施した例を説明する。
【0117】
ここでは、研磨材として日本ミクロコーティング製D20000を用いて効果の検証を行った。基板にはコーニング1737ガラスを用い、D2000で表面を一方向に擦る事によってテクスチャーを形成した。図41に、AFM(原子間力顕微鏡)によりテクスチャー形成後の基板表面を測定した結果を示す。横軸は基板上の位置、縦軸は表面の凹凸高さである。基板表面の凹凸の平均ピッチは160nmであった。また、テクスチャー形成前後での基板の透過率を調べたところ、図42に示すように、テクスチャー形成前後(研磨前後)で透過率が変化していないことがわかった。すなわち本方法により、基板の透過特性を悪化させずにかつ簡単にナノレベルの精密加工をすることが可能である。
【0118】
つぎに、前記テクスチャー形成後の基板に、図4のイオンビームスパッタ装置により、基板傾斜角θ=5°として斜めスパッタ成膜を行ってGe微粒子からなる膜厚10nmの反射防止膜を形成したが、このときGe入射方向と基板との関係を、図14Aにおいてy方向がテクスチャー長手方向となるように基板を配置してスパッタ成膜した。得られたサンプルについて、AFM(原子間力顕微鏡)により該反射防止膜におけるGe微粒子の形状を観察したところ、図43に示すように、テクスチャーに沿ってGe微粒子が整列している状態が観察された。
【0119】
図44に、このサンプルの透過特性を示す。比較として、基板をラビング処理していない1737ガラス基板を用い、それ以外は同一条件で反射防止膜を形成したサンプルについても透過特性を調べた。図44では本実施例サンプルを「テクスチャー基板」、比較サンプルを「基板まま」と表記している。その結果、両者ともにステアリング効果により偏光特性が見られるが、テクスチャーを形成した方が、x方向の透過率がより高く、y方向の透過率との差が大きく、良好な偏光特性を示していた。
本発明では、本実施例サンプル(テクスチャー構造を有する基板上に反射防止膜を形成したもの)を用いて、その上に図5における偏光素子20の層構造を形成するが、反射層22あるいは誘電体層23をパターン加工すると同時に前記反射防止膜も格子状に加工して反射防止層29とする。これにより、ゴースト対策効果を高めることができると同時に偏光素子としての透過コントラスト特性の増大も期待できる。
【0120】
(実施例10)
上記実施例ではほとんどの場合にGeを例に偏光素子の実施例を示してきたが、他の材料でも形状異方性を有する無機微粒子を形成することができる。したがって、材料を選択することで、目的の波長の偏光素子とすることが可能である。
図45,図46は、それぞれSi、Snを用いて膜厚30nmの無機微粒子として、図3(c)の偏光素子10の構成で製作した場合の偏光特性である。なお、裏面の反射防止膜は形成していない。これらの材料の場合には反射率はGeより若干高いが、青域での透過軸偏光特性が高くなっており、目的によっては偏光素子としての使用が可能である。
【符号の説明】
【0121】
1・・・ステージ、2・・・ターゲット、3・・・ビームソース、4・・・制御板、10,10A,10B,10C,20,20A,20B,30,30A,30B・・・偏光素子、11,21,41・・・基板、14,16,17・・・凹凸部、14a,16a,17a・・・凸部、15,25,45・・・無機微粒子層、22・・・反射層、22a・・・帯状薄膜、23,2a・・・誘電体層、25a・・・無機微粒子、26・・・凹凸部、27・・・無機微粒子層(光学異方性による偏光波の選択的光吸収層)、28・・・光学異方性による偏光波の選択的光吸収層、29・・・反射防止層、44・・・Ge粒子膜、50・・・液晶パネル、60・・・クロスダイクロプリズム、100・・・液晶プロジェクター



【特許請求の範囲】
【請求項1】
可視光に対し透明な基板と、
金属からなり前記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、
前記反射層上に形成された誘電体層と、
無機微粒子が線状に配列されてなる無機微粒子層と、
を備え、
前記無機微粒子層は、前記帯状薄膜に対応する位置において、前記誘電体上の前記帯状薄膜の頂部の両側面部に形成され、
前記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する、偏光素子。
【請求項2】
前記無機微粒子層上に、前記誘電体層及び前記無機微粒子層の積層構造を1又は複数有する、請求項1に記載の偏光素子。
【請求項3】
前記無機微粒子は、バンドギャップエネルギーが3.1eV以下の半導体材料からなる、請求項1又は2のいずれかに記載の偏光素子。
【請求項4】
前記無機微粒子層の膜厚は200nm以下である、請求項1〜3のいずれか1項に記載の偏光素子。
【請求項5】
前記基板と前記反射層との間に、反射防止層を有する、請求項1〜4のいずれか1項に記載の偏光素子。
【請求項6】
前記基板上に凹凸部が形成され、前記凹凸部のピッチは0.05〜0.8μmであり、前記凹凸部のライン幅をピッチで除算した値は0.1〜0.9であり、前記凹凸部の凹部深さは0.01〜0.2μmであり、前記凹凸部の凸部長さは0.05μmより小さく、前記凹凸部の上部ライン幅を底部ライン幅で除算した値は1.0以上である、請求項1〜5のいずれか1項に記載の偏光素子。
【請求項7】
前記偏光素子の最表面に、使用帯域の光に対して透明な偏光子保護層が形成されている、請求項1〜6のいずれか1項に記載の偏光素子。
【請求項8】
前記偏光素子保護層は、SiO2により形成される、請求項7に記載の偏光素子。
【請求項9】
前記無機微粒子は、Al,Ag,Cu,Au,Mo,Cr,Ti,W,Ni,Fe,Si,Ge,Te,Snの単体又はこれらを含む材料からなる請求項1〜8のいずれか1項に記載の偏光素子。
【請求項10】
前記基板は、ガラス、サファイア、又は水晶で形成され、
前記基板上にピッチ0.5μm以下、ライン幅0.25μm以下、深さ1nm以上の凹凸部が形成される、請求項1〜9のいずれかに記載の偏光素子。
【請求項11】
前記無機微粒子層の透過軸方向屈折率が吸収軸方向屈折率より小さく、且つ、透過軸方向消衰係数が吸収軸方向消衰係数より小さい、請求項1〜10のいずれかに記載の偏光素子。
【請求項12】
前記無機微粒子は、Si,Ge,Te,若しくはZnO、又はFeSi2,MgSi2,NiSi2,BaSi2,CrSi2,若しくはCoSi2からなる、請求項1〜11のいずれかに記載の偏光素子。
【請求項13】
光源と、液晶パネルと、入射側偏光板と、出射側偏光板と、
を備え、
前記入射側偏光板又は前記出射側偏光板のいずれかは、
可視光に対し透明な基板と、金属からなり前記基板上に一方向に延びた帯状薄膜が一定間隔に設けられてなる反射層と、前記反射層上に形成された誘電体層と、無機微粒子が線状に配列されてなる無機微粒子層を有し、
前記無機微粒子層は、前記帯状薄膜に対応する位置において、前記誘電体層上の前記帯状薄膜の頂部の両側面部に形成され、
前記無機微粒子が線状に配列された方向と同じ方向を長手方向とするワイヤグリッド構造を有する偏光素子である、
透過型液晶プロジェクター。
【請求項14】
前記出射側偏光板が、前記基板よりも前記無機微粒子層が前記液晶パネル側に配置される偏光素子である、請求項13に記載の透過型液晶プロジェクター。
【請求項15】
前記入射側偏光板が、前記基板よりも前記無機微粒子層が前記液晶パネル側に配置される偏光素子である、請求項13に記載の透過型液晶プロジェクター。
【請求項16】
前記反射層は金属層である、請求項13〜15のいずれかに記載の透過型液晶プロジェクター。
【請求項17】
前記無機微粒子は、バンドギャップエネルギーが3.1eV以下の半導体材料からなる、請求項13〜16のいずれかに記載の透過型液晶プロジェクター。
【請求項18】
前記無機微粒子層の膜厚は200nm以下である、請求項13〜17のいずれかに記載の透過型液晶プロジェクター。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図24】
image rotate

【図26】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図23】
image rotate

【図25】
image rotate

【図27】
image rotate

【図31】
image rotate

【図35】
image rotate


【公開番号】特開2012−123392(P2012−123392A)
【公開日】平成24年6月28日(2012.6.28)
【国際特許分類】
【出願番号】特願2011−284165(P2011−284165)
【出願日】平成23年12月26日(2011.12.26)
【分割の表示】特願2009−261221(P2009−261221)の分割
【原出願日】平成19年6月28日(2007.6.28)
【特許番号】特許第4957867号(P4957867)
【特許公報発行日】平成24年6月20日(2012.6.20)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】