説明

光スペクトラムアナライザ

【課題】 被測定物の特性変化による被測定光のスペクトラムの時間的な変化を観測できるようにする。
【解決手段】 同期制御手段25は、特性が所定周期で繰り返し変化する被測定光Sを被測定物1から受ける際に、被測定光Sの特性変化期間に対して、分光器21の波長掃引期間の開始タイミングが1掃引毎または複数掃引毎に所定時間ずつシフトするように、分光器21または被測定物1を制御する。また、スペクトラム波形生成手段26は、同期制御手段25によって前記特性変化期間に対して波長掃引期間が所定時間ずつシフトしている間にA/D変換器23から出力されたデータに対する並べ替え処理を行い、被測定光Sの前記特性変化期間内における各時刻のスペクトラム波形のデータを生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光信号のスペクトラムを観測するための光スペクトラムアナライザにおいて、特に、入力光のスペクトラムの高速な変化を観測できるようにするための技術に関する。
【背景技術】
【0002】
被測定光のスペクトラムを観測するために、被測定光を分光器に入射して波長毎に分光し、その強度を光電変換素子で求める構造の光スペクトラムアナライザが従来から用いられている。
【0003】
光スペクトラムアナライザには種々の構造のものがあるが、大きく分けると、被測定光を回折格子などの分光素子に入射し、その回折光に含まれる波長成分をそれぞれ波長に応じた方向に出射させ、それぞれの波長毎に配置された光電変換素子で受けて波長毎の強度を検出する固定式のものと、被測定光を回折格子の回折面で受けて、その回折光をミラーで受けて回折格子に再入射し、その再入射された光に対して特定方向に出射された回折光を単一の光電変換素子で受ける構造を有し、被測定光に対する回折格子の回折面の角度あるいは回折格子に対するミラーの角度を連続的に変化させて、光電変換素子に入射する光の波長を可変する波長掃引型のものがある。
【0004】
固定式の場合、多数の光電変換素子が一体化されたイメージセンサを用いている場合が多い。
【0005】
また、波長掃引型の場合、ミラーあるいは回折格子の角度を可変する機構の駆動源としてモータを用いたものや、次の特許文献1のように、音叉を用いてミラーを回転させる構造のものも提案されている。
【0006】
【特許文献1】特公平5−28331号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところで、近年光ネットワークの発展に伴い、波長可変光源や波長可変フィルタ等においてその特性を高速に切り替えることができる光デバイスの開発が盛んに進んでおり、そのような光デバイスの波長可変時の特性変化を測定できることが要求されている。
【0008】
この測定を上記した光スペクトラムアナライザを用いて行う場合、光デバイスの特性変化速度に対して、光スペクトラムアナライザの動作速度(即ち、所定波長範囲のスペクトラムデータを取得するのに要する時間)が無視できるほど高速であれば問題ない。
【0009】
しかし、実際の光スペクトラムアナライザの動作速度は、年々高速化されている光デバイスの特性変化速度に対応できていない。
【0010】
即ち、前記した固定式の場合、波長分解能はそのイメージセンサのセンサ密度に依存し、分解能を高くするためには高密度のイメージセンサが必要となり、そのセンサから信号を読み出すための多くの時間を必要する。
【0011】
したがって、この読み出し速度により装置の動作速度が制限され、被測定光のスペクトラムの高速な変化に対応できない。
【0012】
また、前記掃引型でモータを用いたものでは、光デバイスの特性変化に全く追いつくことができない。
【0013】
また、音叉を用いたものでも、その速度は数kHz程度までであって、光デバイスの特性変化速度に対して無視できる程の高速性は有していない。また、この音叉型のものは、構造が複雑で大きな駆動電力を必要とするという別の問題も発生する。
【0014】
本発明は、この問題を解決し、被測定物の特性変化による被測定光のスペクトラムの時間的な変化を観測することができる光スペクトラムアナライザを提供することを目的としている。
【課題を解決するための手段】
【0015】
前記目的を達成するために、本発明の請求項1の光スペクトラムアナライザは、
被測定物(1)から出射された被測定光を受けて回折する回折格子(32)と、前記被測定光に対して前記回折格子から出射された光を受けて該回折格子に再入射するミラー(33)とを含み、該ミラーまたは前記回折格子を往復回転させ、前記ミラーから再入射された光に対して前記回折格子が特定方向に出射する光の波長を掃引する分光器(21)と、
前記分光器が前記特定方向に出射する光を受けてその強度を検出する光電変換素子(22)と、
前記光電変換素子の出力信号をデジタルのデータに順次変換するA/D変換器(23)とを有する光スペクトラムアナライザにおいて、
特性が所定周期で繰り返し変化する被測定光を前記被測定物から受ける際に、該被測定光の特性変化期間に対して、前記分光器の波長掃引期間の開始タイミングが1掃引毎または複数掃引毎に所定時間ずつシフトするように、前記分光器または被測定物を制御する同期制御手段(25)と、
前記同期制御手段によって前記特性変化期間に対して前記波長掃引期間が所定時間ずつシフトしている間に前記A/D変換器から出力されたデータに対する並べ替え処理を行い、前記被測定光の前記特性変化期間内における各時刻のスペクトラム波形のデータを生成するスペクトラム波形生成手段(26)とを設けたことを特徴としている。
【0016】
また、本発明の請求項2の光スペクトラムアナライザは、請求項1の光スペクトラムアナライザにおいて、
前記同期制御手段は、被測定光の特性変化周期またはその整数倍と、前記分光器の波長掃引周期またはその整数倍との差が前記所定時間となるように、前記分光器または被測定物を制御することを特徴としている。
【0017】
また、本発明の請求項3の光スペクトラムアナライザは、請求項1または請求項2の光スペクトラムアナライザにおいて、
前記分光器のミラーは、薄い基板に対するエッチングによって一体的に形成され、枠状基板(34)と、該枠状基板の内側に配置され一面側に前記回折格子からの光を反射するための反射面が形成された反射板(35)と、前記枠状基板の内縁と前記反射板の外縁との間を連結し、且つその長さ方向に捩れ変形して、前記反射板を前記枠状基板に対して回転自在に支持する連結部(36、37)とを有し、
前記ミラーの反射板をその共振周波数またはその近傍の周波数で回転駆動する駆動回路(42)を備えていることを特徴としている。
【0018】
また、本発明の請求項4の光スペクトラムアナライザは、請求項1または請求項2の光スペクトラムアナライザにおいて、
前記分光器の回折格子は、薄い基板に対するエッチングによって一体的に形成され、枠状基板(44)と、該枠状基板の内側に配置され一面側に光を回折するための溝が形成された回折板(45)と、前記枠状基板の内縁と前記回折板の外縁との間を連結し、且つその長さ方向に捩れ変形して、前記回折板を前記枠状基板に対して回転自在に支持する連結部(46、47)とを有し、
前記回折板をその共振周波数またはその近傍の周波数で回転駆動する駆動回路(52)を備えていることを特徴としている。
【発明の効果】
【0019】
上記のように構成したため、本発明の光スペクトラムアナライザでは、分光器の波長掃引速度に対して無視できない速度で特性が変化する被測定光についても、その各時刻のスペクトラム波形を正確に求めることができる。
【0020】
また、被測定光の特性変化周期またはその整数倍と、分光器の波長掃引周期またはその整数倍との差が所定時間となるように制御したものでは、被測定光の特性変化周期と分光器の波長掃引周期が大きく異なる場合であっても、被測定光の各時刻のスペクトラム波形を求めることができる。
【0021】
また、分光器のミラーまたは回折格子として、枠状基板の内側に配置された反射板または回折板を、長さ方向に捩れ変形可能な連結部によって回転自在に支持する構成とし、反射板または回折板をその共振周波数またはその近傍の周波数で回転駆動するようにしたものでは、高速で安定な波長掃引を少ない電力で行うことができる。
【発明を実施するための最良の形態】
【0022】
以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した光スペクトラムアナライザ20の構成を示している。
【0023】
この光スペクトラムアナライザ20は、波長掃引型の分光器21、光電変換素子22、A/D変換器23、メモリ24、同期制御手段25、スペクトラム波形生成手段26および表示部27を有している。
【0024】
分光器21は、図2に示すように、被測定物1から出射された被測定光Sをコリメートレンズ31によって平行光S′に変換して回折格子32の回折面32aに入射し、その回折面32aから出射される光をミラー33で受けて回折格子32に再入射し、ミラー33から再入射された光に対して回折格子32が回折した光を出射させる。
【0025】
ここで、ミラー33は、薄い基板(例えばシリコン基板)に対するエッチング処理によって軽量に且つ一体的に形成され、その固有振動数(共振周波数)の駆動信号で高速に往復回転する。
【0026】
図3は、ミラー33の要部の概略構造を表したものである。
このミラー33は、上板34a、下板34b、左右の側板34c、34dを有する矩形の枠状基板34、その内側に配置された矩形の反射板35および枠状基板34の上板34aの下縁中央部と反射板35の上縁中央部との間、下板34bの上縁中央部と反射板35の上縁中央部と間をそれぞれ連結して、反射板35を枠状基板34の枠内に支持する一対の連結部36、37とにより構成されている。
【0027】
一対の連結部36、37は、その長さ方向に捩れ変形できるように細く形成され、この連結部36、37の捩れ変形により、反射板35が回転できるようになっている。
【0028】
反射板35の少なくとも一面側は、回折格子32からの光を効率よく反射できるように加工されている。
【0029】
また、反射板35の固有振動数は、反射板35の形状、重さおよび連結部36、37の捩れ方向のバネ定数によって決まり、上記のように薄い基板のエッチングで形成された構成の場合、数kHz〜数10kHzが得られ、その固有振動数にほぼ等しい周波数の信号により、反射板35に外力を周期的に与えることで、少ない駆動電力で大きく安定な振幅の往復回転が可能となる。
【0030】
反射板35に外力を与える方法としては、電界や磁界を用いる方法があるが、ここでは電界による吸引力を利用して反射板35を駆動している。
【0031】
即ち、図3に示しているように、枠状基板34の両側板34c、34dの一面側にスペーサ38、38を挟んで電極板39、40が固定されている。
【0032】
電極板39、40には、図4の(a)に示す掃引用クロック信号Caを受けた駆動回路42から、図4の(b)、(c)示すように、掃引用クロック信号Caに同期し、且つ互いに位相が反転した駆動信号Va、Vbが印加される。
【0033】
この電圧の印加により、電極板39、40と反射板35の両端との間に静電的な力(吸引力)が交互に生じて反射板35が往復回転し、光電変換素子22が受ける光の波長が、図4の(d)のように、波長λs〜λeの範囲で連続的に且つ繰り返し掃引される。
【0034】
なお、掃引用クロック信号Caの周期内における分光器21の掃引波長は既知であるものとする。また、ここでは動作を理解しやすいように、時間に対して波長が直線的に変化する場合を示しているが非直線的に変化してもよい。
【0035】
さらに、上記のように静電的な力を与える場合、枠状基板34、反射板35および連結部36、37を導電性のある基板によって形成するか、あるいは導電性のある膜を表面に設けておく。
【0036】
光電変換素子22は、分光器21の回折格子32から特定方向に出射される光を受けて、その強度を検出する。この光電変換素子22の受光面は、必要な波長分解能を得るために図示しないスリット等によって狭く形成されている。
【0037】
また、A/D変換器23は、光電変換素子22の出力信号をクロック信号Cに同期してサンプリングし、デジタルのデータに変換してメモリ24に順次出力し、メモリ24は、同期制御手段25からのアドレス指定信号等を含む制御信号に基づいてデータを記憶する。このクロック信号Cは、この光スペクトラムアナライザ20の波長分解能および時間分解能を決定するものであり、前記した掃引用クロック信号Caおよび後述する同期用クロック信号Cbより格段に高い周波数を有している。
【0038】
上記構成の分光器21の波長掃引速度は、従来のものに比べて高速であり、定常的な光のスペクトラムを観測する場合には何ら問題なく、その光のスペクトラム波形を1回の掃引で求めることが可能であるが、前記した光デバイスのようにその特性が高速に変化する場合、その特性変化の速度を無視できる程の高速性を有しているとはいえない。
【0039】
そこで、この実施形態の光スペクトラムアナライザ20では、被測定物1の特性が高速に変化する場合、その特性が所定方向に変化する期間に対して、分光器21の波長が所定方向に変化する波長掃引期間の開始タイミングを所定時間ΔTずつ相対的にずらしながら複数回の波長掃引を行って、各掃引についてそれぞれ一連のデータを求め、それらのデータの並ベ替え処理を行って、特性変化期間内における被測定光Sの各時刻のスペクトラム波形を生成し、これを表示できるようにしている。
【0040】
即ち、同期制御手段25は、特性が所定周期で繰り返し変化する被測定光Sを被測定物1から受ける際に、その被測定光Sの特性が変化する特性変化期間に対して、分光器21の波長掃引期間の開始タイミングが1掃引毎または複数掃引毎に所定時間ΔTずつシフトするように、分光器21または被測定物1を制御する。
【0041】
ここで、被測定物1が外部クロック信号に同期して特性を変化させる構成を有している場合、同期制御手段25は、図4の(a)に示した掃引用クロック信号Caの周期Taに対して、図4の(e)のように、ΔTだけ短い(あるいは長い)周期Tbの同期用クロック信号Cbを外部クロックとして被測定物1に与える。
【0042】
この所定時間ΔTは、例えばクロック信号Cの周期(A/D変換器23のサンプリング周期)と等しいものとする。
【0043】
この同期クロック信号Cbを受けた被測定物1(例えば波長可変光源や波長可変フィルタ)からは、図4の(f)に示すように、主となるスペクトラムの中心波長がλaからλbへ変化する光が出射される。この波長範囲λa〜λbは、分光器21の掃引波長範囲λs〜λe内に含まれているものとする。
【0044】
また、スペクトラム波形生成手段26は、同期制御手段25によって被測定信号Sの特性変化期間に対して分光器21の波長掃引期間が所定時間ΔTずつシフトしている間にA/D変換器23から時系列に出力されるデータに対する並べ替え処理を行い、被測定光Sの特性変化期間内における各時刻のスペクトラム波形のデータを生成する。
【0045】
ここで、スペクトラム波形生成手段26は、A/D変換器23から出力されてメモリ24に記憶されたデータに対する並べ替え処理を行うものとするが、A/D変換器23から出力されるデータを直接受け、並べ替え処理をしながらその処理結果をメモリ24に記憶するように構成してもよい。
【0046】
また、スペクトラム波形生成手段26によって生成された各時刻のスペクトラム波形のデータは、メモリ24に記憶されているデータに上書きされるか、あるいは別のメモリ、例えば表示部27内の図示しないメモリ、メモリ24の別領域に記憶される。
【0047】
表示部27は、スペクトラム波形生成手段26が生成したスペクトラム波形のデータを受けてスペクトラム波形を表示する。この表示部27は、図示しない操作部の操作で指定された表示モードでスペクトラム波形を表示できるように構成されており、例えば個別表示モードと時間情報が指定された場合には、横軸が波長、縦軸が強度の2次元座標を表示し、その座標上に指定された時刻におけるスペクトラム波形を表示する。
【0048】
また、全体表示モードが指定された場合には、第1の横軸が波長、第1の横軸と直交する第2の横軸が時間、縦軸が強度の3次元座標を表示し、この座標上に各時刻におけるスペクトラム波形を表示する。
【0049】
次に、上記構成の光スペクトラムアナライザ20の動作を説明する。
同期用クロック信号Cbを受けた被測定物1から、例えば図5に示すように、時間経過に伴いスペクトラムが変化する被測定光Sが入力されるものとする。
【0050】
このように特性が変化する被測定光Sに対して、同期制御手段25は、例えば掃引用クロック信号Caの立ち上がりと同期用クロック信号Cbの立ち上がりとが一致したタイミングt(1)をデータの取得開始タイミングとして、メモリ24に対するアドレス信号および書込信号を出力する。
【0051】
なお、以下の説明では、被測定光の特性変化周期Tbが、所定時間ΔTの2n倍(nは1以上の整数、即ち偶数倍)に等しいものとする。
【0052】
分光器21による第1回目の波長掃引は、図5の斜線K(1)のように時刻t(1)から波長λsでスタートして波長λeまで行われる。
【0053】
この1回目の掃引で時刻t(1)におけるスペクトラム波形H(1)のうち、波長λs(=λ1)の強度P(1,1)がA/D変換器23でサンプリングされることになる。
【0054】
そして、所定時間ΔTが経過した次の時刻t(2)では、その時刻t(2)におけるスペクトラム波形H(2)のうち、波長λ2の強度P(1,2)がA/D変換器23でサンプリングされることになる。なお、図5は、図示しやすいように、所定時間ΔTの大きさを誇張しているため、スペクトラム波形に対するサンプリングポイントの間隔が大きくなっているが、実際には所定時間ΔTは短いため、スペクトラム波形に対するサンプリングポイントの間隔も、その波形を正確に表すのに必要な十分狭い間隔になる。
【0055】
以下同様に、特性が所定方向に変化する期間内における各時刻t(i)のスペクトラム波形H(i)の波長λiについての強度P(1,i)がサンプリングされてメモリ24に波長順に記憶される。
【0056】
そして、1回目の掃引の最後の時刻t(n+1)におけるスペクトラム波形H(n+1)の波長λn+1の強度P(1,n+1)がサンプリングされ、さらに掃引波長がλeまで達して、その1回目の掃引が終了する。
【0057】
1回目の掃引が終了して掃引用クロック信号Caの半周期分の時間Ta/2が経過した後に、2回目の波長掃引が開始されるが、この掃引開始タイミングは、被測定光Sの特性変化期間に対して1回目の波長掃引よりΔTだけ遅れる。
【0058】
つまり、図5の斜線K(2)で示すように、時刻t(1)からΔTだけ遅れた時刻t(2)から掃引がスタートし、前記同様に、各時刻t(2)〜t(n+1)における各スペクトラム波形H(2)〜H(n+1)の波長λ1〜λnの強度P(2,1)〜P(2、n)がサンプリングされて波長順にメモリ24に記憶される。
【0059】
なお、図5では示していないが、2回目の掃引における時刻t(n+2)の波長λn+1の強度P(2,n+1)は、被測定光Sの特性がそれまでの変化方向(主スペクトラムの中心波長が増加する方向)と反対方向に変化する期間のデータであり、ここでは無効なデータとして扱う。
【0060】
以下同様の動作が繰り返され、斜線K(n+1)で示すn+1回目の掃引開始時刻t(n+1)におけるスペクトラム波形H(n+1)の波長λs(=λ1)の強度P(n+1,1)がサンプリングされた後、無効なデータのサンプリングが行われるが、その最後のサンプリングでは、次のサイクルにおける時刻t(1)のスペクトラム波形H(1)の波長λn+1の強度P(n+1,n+1)が有効なデータとして得られる。
【0061】
また、斜線K(n+2)で示すn+2回目の掃引では、次のサイクルにおける時刻t(1)のスペクトラム波形H(1)の波長λnの強度P(n+2,n)と、時刻t(2)のスペクトラム波形H(2)の波長λn+1の強度P(n+2,n+1)とが有効なデータとして得られる。
【0062】
以下同様の動作が繰り返され、斜線K(2n)で示す2n回目の掃引では、次のサイクルにおける時刻t(1)のスペクトラム波形H(1)の波長λ2の強度P(2n,2)から、時刻t(n)のスペクトラム波形H(n)の波長λn+1の強度P(2n,n+1)までのデータが有効なデータとして得られる。
【0063】
以上の動作により、各時刻t(1)〜t(n+1)におけるスペクトラム波形H(1)〜H(n+1)について、それぞれ波長λ1〜λn+1までの強度データが全て得られる。
【0064】
ただし、この強度データのメモリ24に対する格納順は、図6に示しているように、1回の掃引毎に分光器21で掃引される波長順であり、特性変化期間の各時刻におけるスペクトラム波形のデータとしてまとまっておらず、メモリ24のアドレスに対して分散した形で格納されている。
【0065】
スペクトラム波形生成手段26は、メモリ24に記憶されたデータのうちの有効なデータを、図7のように時刻毎に並べ替えて、時間ごとのスペクトラム波形のデータを生成する。
【0066】
このように時刻毎に得られた一連のスペクトラム波形のデータは、表示部27によって表示される。例えば個別モードと時間Tが指定されている場合、図8のように、被測定光の取得開始タイミングから時間t(j)が経過したときのスペクトラム波形が表示される。
【0067】
また、全体表示モードが指定された場合には、図9に示すように、取得開始タイミングから各時刻のスペクトラム波形が3次元表示される。
【0068】
これらの表示から、被測定光の時刻毎の特性変化を容易に且つ正確に把握することができる。
【0069】
なお、図6に示すデータの格納状態から図7に示す格納状態への並べ替えは、データの取得方法が決まれば一義的に決まる。よって、前記したように、スペクトラム波形生成手段26が、A/D変換器23から出力されるデータを直接受け、上記一義的な並べ替えの規則にしたがって、メモリ24に記憶することもできる。
【0070】
上記実施形態では、分光器21の波長掃引周期Taと被測定光の特性変化周期Tbとの間に所定時間ΔTの差を設けることで、被測定光の特性変化期間に対して、分光器21の波長掃引期間の開始タイミングを1掃引毎に所定時間ΔTずつシフトさせている。これは被測定光の特性変化周期Tbを分光器21の波長掃引周期Taの近くに設定できる場合に有効であるが、前記したように、ミラー33として共振による回転を用いている場合、波長掃引周期Taの可変幅は限られており、この限られた範囲の波長掃引周期と、被測定物の特性変化周期Tbとの間に所望の時間差ΔTを与えることが困難な場合がある。
【0071】
このような場合、同期制御手段25によって、複数回の波長掃引毎に所定時間差ΔTが生じるように制御すればよい。
【0072】
即ち、波長掃引周期Taの可変範囲と、特性変化周期Tbの可変範囲の間で、
A・Ta=B・Tb±ΔT
を満足する1以上の整数A、Bを求め、波長掃引周期Taと特性変化周期Tbとが整数A、Bに対応した値となるように設定すればよい。
【0073】
この設定により、図10の(a)に示す被測定光の特性変化期間(同期用クロック信号Cbのハイレベル期間)に対して、図10の(b)のように分光器21の所定方向への波長掃引がA回行われる毎に、その開始タイミングがΔTずつシフトすることになる。
【0074】
したがって、同期制御手段25から、1回目、A+1回目、2A+1回目、…の波長掃引時のデータを取得するようにA/D変換器23へのクロック供給やメモリ24のアドレス指定を行うようにすれば、前記同様に、被測定光の各時刻におけるスペクトラム波形のデータを得ることができる。なお、このとき、取得したデータからの有効データ抽出と並べ替え処理が複雑になるが、分光器のA回毎の波長掃引時にデータを取得する代わりに、分光器の毎回の波長掃引時にデータを取得し、その中から有効となるデータを随時抽出することで、測定終了までにかかる必要時間を短縮することができる。
【0075】
また、上記実施形態の光スペクトラムアナライザ20では、ミラー33を回転駆動して波長掃引を行うようにしていたが、回折格子32側を回転駆動して波長を掃引することもできる。この場合、図3に示したミラー33と同一構造を用いることができる。
【0076】
即ち、図11に示す回折格子32のように、上板44a、下板44b、左右の側板44c、44dを有する矩形の枠状基板44、その内側に配置され、一面側に光を回折するための溝(図示せず)が形成された矩形の回折板45および枠状基板44の上板44aの下縁中央部と回折板45の上縁中央部との間、下板44bの上縁中央部と回折板45の上縁中央部と間をそれぞれ連結して、回折板45を枠状基板44の枠内に支持する一対の連結部46、47とにより構成する。この一対の連結部46、47の長さ方向に捩れ変形により、回折板45が回転できるようになっている。
【0077】
また、枠状基板44の両側板44c、44dの一面側にスペーサ48、48を挟んで電極板49、50が固定されており、前記掃引用クロック信号Caを受けた駆動回路52から各電極板49、50に対して前記図4の(b)、(c)に示したように位相が互いに反転した駆動信号Va、Vbを印加することで回折板45が往復回転し、光電変換素子22が受ける光の波長を、図4の(d)に示したように連続的に且つ繰り返し掃引させる。
【0078】
また、前記実施形態では、分光器21に与える掃引用クロック信号Caと、被測定物1に与える同期用クロック信号Cbとの間に周期差を設けて、分光器21の波長掃引期間の開始タイミングをΔTずつシフトしていたが、特性変化の開始タイミングあるいは波長掃引の開始タイミングを順次遅らせることで時間差ΔTを設けることもできる。例えば、クロック信号Cを分周器やプリセット型カウンタによって分周して、同期用クロック信号Cbを生成している場合、その分周比やプリセット値を、1回の波長掃引毎あるいは複数回の波長掃引毎に所定値(例えば1)ずつ増す、あるいは減じることで、上記同様に時間差ΔTを与えることができる。
【0079】
また、前記実施形態では、被測定光の特性が周期的に変化する場合について説明したが、特性が変化しない定常光のスペクトラム波形を求める場合には、A/D変換器23から時系列に出力される一連のデータを、そのままスペクトラム波形のデータとして表示すればよい。
【図面の簡単な説明】
【0080】
【図1】本発明の実施形態の構成を示す図
【図2】実施形態の要部の構成図
【図3】実施形態の要部の構造例を示す図
【図4】実施形態の動作を説明するためのタイミングチャート
【図5】実施形態の波長掃引と特性変化との関係を表す図
【図6】実施形態の動作を説明するためのメモリデータ図
【図7】実施形態の動作を説明するためのメモリデータ図
【図8】実施形態のスペクトラム波形の表示例を示す図
【図9】実施形態のスペクトラム波形の表示例を示す図
【図10】実施形態の他の動作例を説明するためのタイミングチャート
【図11】本発明の実施形態の要部の他の構成例を示す図
【符号の説明】
【0081】
1……被測定物、20……光スペクトラムアナライザ、21……分光器、22……光電変換素子、23……A/D変換器、24……メモリ、25……同期制御手段、26……スペクトラム波形生成手段、27……表示部、31……コリメートレンズ、32……回折格子、33……ミラー、34……枠状基板、35……反射板、36、37……連結部、39、40……電極板、42……駆動回路、44……枠状基板、45……回折板、46、47……連結部、49、50……電極板、52……駆動回路

【特許請求の範囲】
【請求項1】
被測定物(1)から出射された被測定光を受けて回折する回折格子(32)と、前記被測定光に対して前記回折格子から出射された光を受けて該回折格子に再入射するミラー(33)とを含み、該ミラーまたは前記回折格子を往復回転させ、前記ミラーから再入射された光に対して前記回折格子が特定方向に出射する光の波長を掃引する分光器(21)と、
前記分光器が前記特定方向に出射する光を受けてその強度を検出する光電変換素子(22)と、
前記光電変換素子の出力信号をデジタルのデータに順次変換するA/D変換器(23)とを有する光スペクトラムアナライザにおいて、
特性が所定周期で繰り返し変化する被測定光を前記被測定物から受ける際に、該被測定光の特性変化期間に対して、前記分光器の波長掃引期間の開始タイミングが1掃引毎または複数掃引毎に所定時間ずつシフトするように、前記分光器または被測定物を制御する同期制御手段(25)と、
前記同期制御手段によって前記特性変化期間に対して前記波長掃引期間が所定時間ずつシフトしている間に前記A/D変換器から出力されたデータに対する並べ替え処理を行い、前記被測定光の前記特性変化期間内における各時刻のスペクトラム波形のデータを生成するスペクトラム波形生成手段(26)とを設けたことを特徴とする光スペクトラムアナライザ。
【請求項2】
前記同期制御手段は、被測定光の特性変化周期またはその整数倍と、前記分光器の波長掃引周期またはその整数倍との差が前記所定時間となるように、前記分光器または被測定物を制御することを特徴とする請求項1記載の光スペクトラムアナライザ。
【請求項3】
前記分光器のミラーは、薄い基板に対するエッチングによって一体的に形成され、枠状基板(34)と、該枠状基板の内側に配置され一面側に前記回折格子からの光を反射するための反射面が形成された反射板(35)と、前記枠状基板の内縁と前記反射板の外縁との間を連結し、且つその長さ方向に捩れ変形して、前記反射板を前記枠状基板に対して回転自在に支持する連結部(36、37)とを有し、
前記ミラーの反射板をその共振周波数またはその近傍の周波数で回転駆動する駆動回路(42)を備えていることを特徴とする請求項1または請求項2記載の光スペクトラムアナライザ。
【請求項4】
前記分光器の回折格子は、薄い基板に対するエッチングによって一体的に形成され、枠状基板(44)と、該枠状基板の内側に配置され一面側に光を回折するための溝が形成された回折板(45)と、前記枠状基板の内縁と前記回折板の外縁との間を連結し、且つその長さ方向に捩れ変形して、前記回折板を前記枠状基板に対して回転自在に支持する連結部(46、47)とを有し、
前記回折格子の回折板をその共振周波数またはその近傍の周波数で回転駆動する駆動回路(52)が設けられていることを特徴とする請求項1または請求項2記載の光スペクトラムアナライザ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate