説明

光学センサ装置

【課題】
塵埃や油の飛沫の多いエレベーター環境下で光学式センサを用いる際、光学窓若しくはレンズ,ミラー等の汚れを、簡便な手法で防止する。
【解決手段】
一方の端部に外部流体と接する開口部を有し、他方の端部に光学窓0206を有する鏡筒0207と、該鏡筒に対し熱対流を生成せしめる手段を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学センサ関連装置に係り、特に、エレベーター昇降路など汚れの多い環境下で、光学式センサを用い位置や速度を検出するものに好適である。
【背景技術】
【0002】
従来エレベーター乗りかごの昇降路内における絶対位置を検出するものとして、調速機やモータシーブに連結されたロータリーエンコーダからのパルスを利用することで行われてきた。また、汚れた環境下で光学センサを利用するには、特許文献1〜3に示すように、外部で用意した清浄空気を圧送する方式が用いられてきた。
【0003】
【特許文献1】特開平6−229819号公報
【特許文献2】特開平8−15583号公報
【特許文献3】特開2005−181090号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来のロータリーエンコーダを用いた絶対位置検出では、乗りかごとロータリーエンコーダとはロープを介し間接的に接続されているため、ロープの揺れ,伸び,伝播時間などの影響を受け、必ずしも正確な値を少ない遅れ時間で得られるわけではなかった。更にロープの昇降路内構造物との干渉(引っ掛かり)や切断など、考慮すべき課題が多数残存している。この傾向は、揚程の増加に伴い更に顕著化する。
【0005】
距離計測の分野ではレーザなど光学的検出手段を用いる方法が一般的に行われている。
乗りかごから、昇降路の上端若しくは下端との距離を計測できれば、乗りかごの絶対位置を、ロープの介在無しで直接計測できる。しかしながら、エレベーターの昇降路内は、潤滑のための油脂類の飛沫や、昇降路外より持ち込まれる塵埃により、汚れを生じやすい環境にある。そこで光学センサの適用には、上記の汚れに対する対策が必要とされる。
【0006】
特許文献1〜3に示すものでは、外部で用意した清浄空気を圧送するため、清浄な圧縮空気を確保するためには、可動部を有するポンプ類を新たに備える必要があり、補機類の増加と保守性の低下を招いていた。
【0007】
本発明の目的は、上記従来技術の課題を解決し、光学センサの汚れによる機能劣化を防止することにある。特に、塵埃や油の飛沫の多いエレベーター環境下で光学式センサを用いる際、光学窓若しくはレンズ,ミラー等の汚れを、簡便な手法で防止することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するため、本発明は、重力加速度方向の端部に開口部を有し、重力加速度と逆方向の端部に光学窓を有し、前記重力加速度方向の開口部以外は気密性を有する筒構造の光学センサ用の鏡筒と、該鏡筒外部より前記光学窓を介し鏡筒下部開口部を臨む位置に光学センサを有してなる光学センサ装置を有した光学センサ装置であって、前記鏡筒内の流体に熱対流を発生させる手段を有するものである。
【0009】
また、重力加速度方向の端部に開口部をもつ鏡筒を有する光学センサ装置であって、前記鏡筒内の流体が流れを有し、該流れの方向が変化する箇所近辺において、前記鏡筒内の流体により運搬された塵埃の堆積量が相対的に多い箇所と少ない箇所を有し、前記堆積量が少ない箇所に、光学窓を配置したものである。
【発明の効果】
【0010】
本発明によれば、加熱手段あるいは冷却手段により、鏡筒内の流体(空気)に熱対流を形成したり、対流による流線が、光学窓への汚れを付着せしめない方向としたりすることができ、光学センサの汚れによる機能劣化を防止することができる。
【発明を実施するための最良の形態】
【0011】
図1は、本発明の一実施例であるエレベーター装置を示す。乗りかご0105とつり合い錘0107はメインロープ0106で相互に接続され、メインロープ0106は巻き上げ機0108に巻き掛けられている。巻き上げ機0108が制御装置0111の指令により、メインロープ0106を駆動する。これにより、乗りかご0105(以降単に“かご”と表記する場合がある)及びつり合い錘0107が昇降路内を移動する。かごには、かご側制御装置0201が搭載され、かご側制御装置0201には、少なくとも、光学センサユニット0203が接続されている。かご側制御装置0201は、光学センサユニット0203よりの計測値、及び必要に応じその他センサ0204よりの計測値を用いた判定処理を行い、判定結果を制御装置0111へ送信するか、若しくは必要に応じて非常止め装置0114を含むかご設置の安全装置を作動させるかの少なくとも一方を行う。尚、0203,0204などかご設置のセンサからの計測値は、かご側制御装置0201経由若しくは直接、制御装置0111へ伝送してもよい。
【0012】
乗りかごの絶対位置の正確な計測が必要な用途の例として、終端階減速装置(ETSD)がある。同機能を適用することで、昇降路の終端階付近での最高速度を下げられるため、ピットやオーバヘッド長の短縮,緩衝器の小型化など種々の利点を得られる。図16に終端階減速装置適用時の制限速度閾値の例を示す。同図横軸は、昇降路内の基準位置からの高さである。例えばピット床面や、下部ファイナルリミットスイッチなどを基準にしても良い。縦軸はかご速度である。0301は定格速度で、かごが正常時に走行する速度である。0302は制限速度で、この速度を超過した場合、制動動作を行う必要がある。図示では0302は1本に省略しているが、通常、主索を経由して制動を行うブレーキのトリガとなる閾値と、非常止め動作のためのトリガとなる閾値の少なくとも2本が存在する。0303および0304は、終端階減速装置動作域である。図示では、最上階付近と最下階付近の閾値のカーブが対称であるが、非対称でも良い。終端階減速装置を利用する場合、同機能は、制御装置0111若しくはかご側制御装置0201の少なくとも一方で実現する。
【0013】
図2に光学センサユニット0203の構成例を示す。光学センサ0205は、レンズやプリズム若しくは透明材からなる光学窓0206を介し、鏡筒0207内の流体0209に対向している。加熱手段0208は、鏡筒内の流体0209を加熱する。冷却手段0212は、鏡筒内の流体0209を冷却する。
【0014】
ここで、鏡筒0207は、開口部を重力加速度方向0211に対向しているものとする。以降、重力加速度方向を下、同方向と逆方向を上と表記する。鏡筒0207において、流体の出入りできる開口部は下端部のみとする。流路分離壁0216は上昇流と下降流の流路を分離することで、熱対流形成を補助する。本実施例では、加熱手段0208及び冷却手段0212の設置箇所として、流路分離壁0216を利用しているが、流路の分離機能と加熱/冷却の設置機能の兼用は必須ではない。
【0015】
図6に加熱手段と冷却手段の設置場所の例を示す。同図(a)−(d)はそれぞれ、光学センサユニット0203の部分を抽出したものである。同図(a)は、加熱手段0208を鏡筒0207の外に設置した例である。前出の図2に示した加熱手段設置場所と比較し、同設置場所はより広い表面積をもつため、鏡筒内の流体に対する入熱量が増し、より効率的な熱対流の発生が可能となる。また、図6(b)に示すとおり、流路分離壁0216への加熱手段の設置と併用しても良い。流路形状が異なる場合も同様に、上昇する熱対流に接する壁面に加熱手段を、下降する熱対流に接する壁面に冷却手段を設ける。図6(c),(d)は、流路形状が同心円筒でない場合の例である。いずれの場合でも、光学窓0206から光学ターゲット0219を望む光軸と、加熱/冷却手段位置との間に隔離距離を設けることで、陽炎の影響を軽減できる。
【0016】
図7に廃熱手段の例を示す。加熱手段が単独で独立した壁面に設置可能であるのに対し、ペルチェ素子等を利用する冷却手段を独立した壁面に設置する場合、廃熱を処理する手段が必要である。図2や図6(b),(d)のように、冷却手段と隣接する面に加熱手段を配置するケースでは、多くの場合でペルチェ素子の廃熱で加熱手段を兼ねることができる。隣接する面に廃熱を行えない場合、図7(a),(b)のごとく、伝熱手段0256、および放熱手段0257を用いて鏡筒0207外へ廃熱を行う。
【0017】
図8に廃熱の分流の例を示す。冷却/加熱手段にペルチェ素子を用いる場合、同素子における発熱量は、吸熱量の数倍に達する。よって、冷却面と隣接する面からの放熱のみでは、壁面温度が望ましい温度範囲を超えるなど、鏡筒内の熱収支のアンバランスに起因する弊害が生じる可能性がある。そこで、冷却時に発生する熱を、複数の加熱手段設置箇所0208−1,0208−2や、放熱手段0257で分担して消費することで、局所的な温度の上昇を防止できる。
【0018】
図3にデフレクタ(そらせ板)の使用例を示す。本実施例は、鏡筒が設置されている移動体の速度が速い場合においても、鏡筒内に所望の熱対流を保持する例である。ここでは、所望の熱対流の方向を、鏡筒周辺部で上昇、中心部で下降する方向とする。
【0019】
図3(a)において、周囲流体に対する鏡筒の移動方向が0250のとき、鏡筒の開口部におけるほとんどの領域は、周囲気圧に対し高い状態(以降正圧と記す)となる。同図において、鏡筒開口部における正圧域をHで示す。ここで、同図(b)に示すがごとく、鏡筒の移動方向が0251となった場合、鏡筒開口部の外周部では周囲流体の巻き込みにより、気圧が低い状態(以降負圧と記す)となる。この領域を同図ではLで示す。同図(b)のように、鏡筒開口部の中心部が正圧域、周辺部が負圧域となった場合、その圧力差の程度によっては、所望の熱対流と逆の流れを形成する。上記の正圧/負圧域は、時間的/空間的平均の傾向を模式的に示したものである。実際には、エレベーター実運用域でのレイノルズ数では、乱流若しくはカルマン渦により変動する。しかし、時間的/空間的平均し、正圧/負圧となり続けた場合、逆流の原因となる。
【0020】
そこで、同図(d)のように、あらたに、デフレクタ0252を設ける。デフレクタによって、鏡筒の移動方向が0251の場合においても、鏡筒開口部のほぼ全ての領域で、正圧域が形成されるため、所望の熱対流の方向を保持できる。これは、周囲流体の巻き込みによる負圧域が、デフレクタの作用により、鏡筒開口部周辺部の更に外側に形成されるためである。一方、同図(c)のように、デフレクタを有した状態で、鏡筒の移動方向が0250となる場合においても、鏡筒開口部のほぼ全ての領域で正圧になるため、所望の熱対流の方向を保持できる。また、前述のごとくここで形成される正圧域はあくまでも時間的/空間的平均の傾向であるため、乱流等により変動を伴う。しかし、鏡筒内の熱対流を形成する流体が慣性をもつため、上記変動による影響は軽減できる。前記流体の慣性と熱対流の流速は、鏡筒長の延長により増加せしめることが可能であるため、本鏡筒の適用環境に応じ適宜調整する。標準的なエレベーターの運行速度範囲で上記機能を実現できるデフレクタ形状の一例を図13に示す。Dの値の一例は、0.05mである。各々の寸法dは、厳密に同一値である必要はない。
【0021】
鏡筒の形状は、必要な熱対流の流量が得られ、光学窓表面の塵埃の付着を防止する効果を得られるものであれば、必ずしも二重の円筒である必要はない。たとえば、図4に示すように、長方形断面の鏡筒とすることで、製作製の向上や平面形状の発熱/吸熱素子の利用が可能となるなどの利点が見込める。
【0022】
図5は光学窓配置場所選択の例である。塵埃の質量は0ではないため、鏡筒内流体の流れベクトルの方向が変化する点近傍で、慣性により流れに追従できず、特定箇所近傍に付着する。同図(a)にて、鏡筒内の熱対流によって、塵埃が堆積する箇所が0253のとき、光学窓は、同図Pの位置若しくはQの位置に設けることができる。鏡筒の形状が二重円筒など他の形状の場合でも同様に、塵埃の堆積を避けて光学窓を配置する。塵埃の堆積は、対称性のある鏡筒形状の場合でも、必ずしも対称形状とは限らない。これは、一般に鏡筒周囲に存在する構造物により、鏡筒周囲の流速分布に偏りが存在するためである。よって、光学窓の配置の際には、上記特性を考慮する。塵埃の堆積する箇所0253は、実験の他、計算により予測することが可能である。発光素子と受光素子との間で、光軸のずれが許容できる場合、図5(b)に示すように、発光ユニット0254用の光学窓と、受光ユニット0255用の光学窓を、異なる箇所に配置することができる。特に発光素子として半導体レーザを用いる場合、発光側の光学窓の径は小さくすることができるため、光学窓設置位置の自由度が増す。塵埃の堆積する箇所0253を回避した部分が狭い場合において有利である。
【0023】
図9は、冷却手段として自然冷却を用いる例である。一般に冷却と加熱の双方を行えるペルチェ素子は、加熱のみを行うヒータと比較し高価である。よって、加熱手段としてヒータを用い、冷却を自然冷却とすれば、安価に装置を構成しうる。図9では、鏡筒外の放熱手段0258−1に伝熱手段0256で連結された、鏡筒内の放熱手段0258−2を用い、鏡筒内流体の冷却を行う。加熱手段0208はヒータなど、発熱作用のみをもつ素子で構成する。
【0024】
図10に流路断面積比による効果を示す。鏡筒0207のA−A′断面を、同図下に示す。加熱/冷却手段の図示は省略しているが、熱対流の向きは流路分離壁0216内側が下降流、外側が上昇流とする。いま、流路分離壁0216内側の断面積をSd,流路分離壁と鏡筒で囲まれる部分の断面積をSaとすると、下降流の速度Vdと上昇流の速度Vaとの比Vd/Vaは、およそSa/Sdとなる。例えば、下降流部の断面積Sdを上昇流部の断面積Saの半分とすれば、下降流の流速は、上昇流の流速の約倍となる。下降流部の流速が大きい場合、鏡筒開口部から鏡筒中心軸付近を経由し光学窓0206前面に粒子が入射する確率を低減できる。
【0025】
図11(a)に加熱/冷却手段の制御の例を示す。本実施例では、加熱手段0208及び冷却手段0212を設置している壁面の温度を、あらかじめ設定した値に制御する例である。ここでは、加熱と冷却はそれぞれ独立に制御可能と仮定している。温度センサ0220は対象としている加熱/冷却手段の設置している壁面の温度を検出する。壁面と隣接する流体の温度を計測する場合は、計測値が変動しやすいためフィルタ処理など対策を施しても良い。同検出値を、温度設定値保持手段0221に保持している設定温度と温度比較手段0222を用い比較し、必要に応じ駆動手段0223にて、加熱/冷却手段を駆動する。同図における記号に付した−Hは加熱手段、−Lは冷却手段にそれぞれ対応した制御手段を示している。また、Tref.H,Tref.Lは、加熱手段,冷却手段にそれぞれ対応した温度設定値である。Tref.Hは、たとえば周囲温度センサ0224を用いて計測した鏡筒周囲流体の温度+ΔTh,Tref.Lは、鏡筒周囲流体の温度−ΔTlに設定する。いま、高さ約0.5m,外側直径0.05mの円筒状鏡筒においてΔTh=10℃,ΔTl=10℃としたときには、壁面の摩擦を無視すれは、0.5m/s程度の下降流を発生することが可能である。鏡筒内の下降流速は、必ずしも鏡筒の移動速度より高い必要はない。これは移動に伴う鏡筒周囲流体の圧力が、鏡筒開口部の下降流部と上昇流部に同様に作用するためである。また、ΔTh,ΔTlの絶対値は必ずしも等しい必要はない。加えて、光学センサユニット0203の設置対象である移動体の移動速度に応じ、ΔTh,ΔTlを変化させても良い。この場合、熱時定数を考慮し、移動体の移動開始が予測される時点より前の段階でΔTh,ΔTlの増減を開始し、適切な温度差を形成するようにしても良い。エレベーターの場合、かごにおけるドア閉ボタン押し下げや、ドア閉のタイムアウトなど、かごの移動開始時刻を容易に類推できる手段を多数有しているため、必要に応じ制御装置0111を経由させるなどを行い、移動開始時間前に、より大きな温度差による、より大きな流速の熱対流を形成させる。逆に移動体がしばらく運行しない場合は、より小さな流速の熱対流とすることで、エネルギ消費を削減しても良い。
【0026】
周囲温度センサ0224−H,0224−Lは、1つのセンサを共用しても良い。温度センサの設置位置は、加熱手段0208や冷却手段0212からの熱の影響が及ばない箇所に設置する。更に、周囲温度センサ0224は、乗りかご0105の移動範囲となる昇降路内に複数設置してもよい。複数の周囲温度センサの計測値において、最高温度をT−EnvMax,同最低温度をT−EnvMinとしたとき、Tref.Hの算出にT−EnvMaxを用いるか、若しくはTref.Lの算出にT−EnvMinを用いるかの少なくとも一方を適用することで、鏡筒内の熱対流の安定生成に寄与する。
【0027】
前出の図11(a)では、加熱手段0208と冷却手段0212の双方の温度制御を行ったが、少なくとも一方のみの制御でも良い。例えば加熱/冷却手段として、ペルチェ素子を利用する場合には、加熱手段0208のみを温度制御すると好適である。図11(b)は、加熱手段0208のみを制御する例である。ペルチェ素子の発熱量は、吸熱量の数倍に達するため、冷却手段側のみの温度制御を行うと、加熱手段側の温度が、鏡筒など光センサユニット0203関連機器の適正温度を超える可能性がある。そこで、加熱手段0208側の温度制御を行い、冷却側は、加熱手段に設定された発熱量に対応した吸熱量をそのまま利用する。この場合でも、冷却手段は鏡筒内の流体の温度を相対的に低下させるため下降流を発生し、加熱手段側の上昇流とあいまって、鏡筒内の熱対流の形成が可能である。
【0028】
図12は、流速に基づいた加熱/冷却手段制御の例である。本構成では、流速センサ0260による流速値と、流速設定値保持手段0261に設定した流速とを、流速比較手段0262を用いて比較することで、鏡筒内の熱対流の流速を適切な範囲に制御する。駆動手段0223は、加熱手段0208もしくは冷却手段0212の少なくとも一方を駆動する。本方式は、光学センサユニットの汚れ防止機能の根源である熱対流の流速を制御量とすることで、より直接的な効果を期待できる。一方、鏡筒開口部付近の乱流の影響により、流速センサ検出値の変動が大きくなり、時定数の大きなフィルタが必要になる可能性を有する。流速センサ0260の設置位置は、上昇流側とすると、光学窓0206前面の光路の障害となりにくい利点がある。流速センサ0260の設置位置を下降流側にすると、図10で示した、断面積比による熱対流の増速を適用している際に、検出感度の面で有利となる。加えて、流速センサ設置位置が流路上で光学窓の後になるため、流速センサにより生じる乱流で、光学窓近傍の流線を乱す可能性を低減できる。
【0029】
光学窓から望む鏡筒開口部は必ずしも重力加速度方向を指向せずとも良い。図14は、鏡筒開口部方向と重力方向との関係を示す図である。塵埃や油脂類のミストの光学窓への付着を、熱対流のみで防止できる場合、同図(a),(b)のごとく、鏡筒開口部を重力加速度方向と逆方向(上方)に指向させることが可能である。鏡筒開口部の指向方向を下方に限定しないことで、光学センサユニット0203の構成する際の自由度が増す。例えばエレベーターに利用する場合、光学ターゲット0219を昇降路の上方に設置する構成をとることが可能となる。本構成は、光学ターゲット0219の汚れ対策が、光学センサユニット0203の汚れ対策と比較し、より困難な場合に有利である。図14(c),(d)のごとく、鏡筒開口部を重力加速度方向に対し、斜め方向や直交方向としても、熱対流を生成することができる。鏡筒開口部が斜め方向の場合、斜行エレベーターやエスカレータ等、移動方向が重力加速度に対し斜め方向となる移動体に利用できるほか、上下方向に移動する一般的なエレベーターにおいても、かごから見た斜め方向の昇降路壁に検出対象がある場合に利用できる。開口部が重力加速度方向に対し直交方向となる場合でも同様で、例えば斜行でない一般のエレベーターから、昇降路の側壁に設置したバーコードや光学マーカーなどの検出対象を検出する際に利用できる。また図14の実施例に限らず、光学センサユニット0203をかご以外に昇降路壁など移動を伴わない箇所に設置する場合においても、本実施例の汚れ防止手法は適用可能である。
【0030】
図15に粒子捕捉器の適用例を示す。同図0263に示す粒子捕捉器を、流路上の光学窓到達前に設けることで、光学窓近傍へ到達する粒子の数を減ずる。粒子捕捉器は、ラビリンス構造のほか、圧損が適切であれば、フィルタ等でもよい。粒子捕捉器前後の圧力P1,P2の差を利用し流速検出手段の一部の機能を兼ねても良い。
【図面の簡単な説明】
【0031】
【図1】本発明の一実施形態によるエレベーター構成図。
【図2】本発明の一実施形態による光学センサユニットの構成図。
【図3】本発明の一実施形態によるデフレクタを使用した例を示す図。
【図4】本発明の一実施形態による流路形状を示す図。
【図5】本発明の一実施形態による光学窓配置場所選択の例を示す図。
【図6】本発明の一実施形態による加熱/冷却手段設置場所の例を示す図。
【図7】本発明の一実施形態による廃熱手段の例を示す図。
【図8】本発明の一実施形態による廃熱の分流の例を示す図。
【図9】本発明の一実施形態による自然冷却手段を用いる例を示す図。
【図10】本発明の一実施形態による流路断面積比による効果を示す図。
【図11】本発明の一実施形態による加熱/冷却手段制御の例を示す図。
【図12】本発明の一実施形態による加熱/冷却手段制御の例を示す図。
【図13】デフレクタ形状の例を示す図。
【図14】鏡筒開口部方向と重力方向との関係を示す図。
【図15】本発明の一実施形態による粒子捕捉器の適用例を示す図。
【図16】本発明の一実施形態による終端階減速装置利用時の制限速度パタンを示す図。
【符号の説明】
【0032】
0102 ガイドレール
0105 かご(乗りかご)
0106 メインロープ
0107 つり合い錘
0108 巻き上げ機
0109 ブレーキ
0111 制御装置
0114 非常止め装置
0201 かご側制御装置
0203 光学センサユニット
0204 その他センサ
0205 光学センサ
0206 光学窓
0207 鏡筒
0208 加熱手段
0209 鏡筒内流体
0211 重力加速度方向
0212 冷却手段
0213 上昇流形成部
0214 下降流形成部
0216 流路分離壁
0219 光学ターゲット
0220 温度センサ
0221 温度設定値保持手段
0222 温度比較手段
0223 駆動手段
0224 周囲温度センサ
0250,0251 鏡筒進行方向
0252 デフレクタ(そらせ板)
0253 塵埃堆積箇所
0254 発光ユニット
0255 受光ユニット
0256 伝熱手段
0257 放熱手段
0258 熱流束
0260 流速センサ
0261 流速設定値保持手段
0262 流速比較手段
0263 粒子捕捉器
0301 定格速度
0302 制限速度
0303,0304 終端階減速装置動作域

【特許請求の範囲】
【請求項1】
周囲流体に対し開口部を有する鏡筒と、前記鏡筒開口部を鏡筒内の流体を介して望む位置に光学センサ若しくは光学窓を有してなる光学センサ装置であって、前記鏡筒内の流体を加熱もしくは冷却する手段を有することを特徴とする光学センサ装置。
【請求項2】
周囲流体に対し開口部を有する鏡筒を有してなる光学センサ装置であって、鏡筒内流体に熱対流を生じせしめる手段と、該熱対流により鏡筒内に付着する塵埃の堆積量を鏡筒内位置に依存し不均一にせしめる鏡筒形状を有し、塵埃の堆積量が相対的に少ない箇所から、前記鏡筒開口部を望む位置に光学センサ若しくは光学窓を配置したことを特徴とする光学センサ装置。
【請求項3】
請求項1から2に記載のものにおいて、鏡筒内における熱対流の流路を鏡筒の長さ方向に沿って分離する構造物を鏡筒内に有することを特徴とする光学センサ装置。
【請求項4】
請求項1から3に記載のものにおいて、光学センサ装置が、光学センサ若しくは光学窓より開口部を望む方向及びその逆方向に移動する場合の双方において、鏡筒開口部全域が周囲流体の圧力より相対的に高い領域となるよう周囲流体を誘導するそらせ板を備えたことを特徴とする光学センサ装置。
【請求項5】
請求項1から4に記載のものにおいて、前記鏡筒内の壁面若しくは流体の温度を検出する手段,温度測定値と温度設定値を比較する手段,鏡筒を加熱する手段若しくは冷却する手段の少なくとも一方とそれらを駆動する手段を有することを特徴とする光学センサ装置。
【請求項6】
請求項1から4に記載のものにおいて、前記鏡筒内の流体の流速を検出する手段,流速測定値と流速設定値を比較する手段,鏡筒を加熱する手段若しくは冷却する手段の少なくとも一方とそれらを駆動する手段を有することを特徴とする光学センサ装置。
【請求項7】
請求項1から6に記載のものにおいて、鏡筒開口径に対する、鏡筒の開口端部から光学センサ若しくは光学窓までの長さの比を3以上としたことを特徴とする光学センサ装置。
【請求項8】
請求項1から7に記載の光学センサ装置を備えたことを特徴とする移動体システム。
【請求項9】
請求項1から7に記載の光学センサ装置を備えたことを特徴とするエレベーターシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2010−78328(P2010−78328A)
【公開日】平成22年4月8日(2010.4.8)
【国際特許分類】
【出願番号】特願2008−243533(P2008−243533)
【出願日】平成20年9月24日(2008.9.24)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】