説明

光学的変位測定器

【課題】新しい方法により、使いやすい光学的変位測定器を提供することである。
【解決手段】測定対象物8の前方に円錐形状の対物プリズム16が配置される。光源12、コリメートレンズ14により、対物プリズム16の中心光軸30から平行に偏移した往路光40が対物プリズム16を通り、その円錐形状の界面で屈折して測定対象物8に入射される。測定対象物8の表面で反射された光は、対物プリズム16に戻され、その円錐形状の界面で再び曲げられ、往路光40に平行な復路光46となる。中心光軸30からの復路光46のオフセット量は、測定対象物8の変位に応じて変化する。復路光46を集光レンズ18で焦点19に集光し、ピンホール光学素子20で散乱光の影響を抑制して、光位置検出センサ22でオフセット量を検出し、測定対象物8の変位を測定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は光学的変位測定器に係り、特に、光源からの光を、対物光学系を介して対象物に入射し、対象物からの反射光を検出部で検出して対物光学系と対象物との間の変位を測定する光学的変位測定器に関する。
【背景技術】
【0002】
対象物の変位を非接触により測定するものとして、非特許文献1、非特許文献2に述べられている「光を用いる三角測量方式」が知られている。これは、半導体レーザ等からの光ビームを被測定表面に照射し、この照射された表面の反射光を集光レンズ等で像を結ばせ、照射方向とは異なる方向に置かれた光位置検出器上に結ばせるもので、表面が移動すれば位置検出器上のビームの位置が変化するので、三角測量の原理で、被測定表面の変位を求めることができる。
【0003】
また、非特許文献3に述べられている「光触針法」も非接触変位測定法として知られている。光触針法には、臨界角法、非点収差法、ナイフエッジ法、ヘテロダイン法等があるが、いずれも微小スポットを対象の物上に結ばせ、その反射光を集光し、その状態を検出する。したがってきわめて感度が高く、小型軽量であり、例えば光学的表面粗さ計用の光触針子として利用される。
【0004】
また、特許文献1には、オートフォーカス技術の1つとして「ピンホール方式」が開示されている。ピンホール方式とは、対象物からの反射光を2つの光に分割し、一方の分割反射光の結像点の前と他方の分割反射光の結像点の後とにそれぞれ配置されたピンホールを有するピンホール板と、この各ピンホール板の直後に配置された光検出器とを用い、この光検出器の出力に基づいて焦点ずれを検出するものである。オートフォーカス技術によれば、対象物の上に常に焦点が合うようにレンズが移動するので、そのレンズの移動量から対象物の変位を測定できる。
【0005】
【特許文献1】特開平7−43148号公報
【非特許文献1】谷善平編著,「新版オプト・デバイス応用ノウハウ」,第1刷,CQ出版株式会社,2000年12月15日,p322−323
【非特許文献2】小林昭監修,「超精密生産技術体系,第3巻,計測・制御技術」,第1刷,フジテクノシステム,1995年7月15日,p172−173
【非特許文献3】谷田貝豊彦著,「応用光学 光計測入門」,第4刷,丸善株式会社,1992年3月15日,p120
【発明の開示】
【発明が解決しようとする課題】
【0006】
非接触により対象物の変位を測定する従来技術のうち、「光を用いる三角測量方式」は高速で物体表面位置を検出できるが、三角測量法の原理上、高精度のためには光源と光位置検出器との距離を大きくとる必要がある。したがって、測定面の近くに測定のための十分な空間を要し、例えば狭い入り口を有する筐体内部のワークの変位測定等に向いていない。
【0007】
また、「光触針法」は非常に高分解能であるが、その反面高精度検出の範囲が合焦位置の近傍に限られるため、測定範囲が極めて狭い。例えば通常数μmの範囲でのみ測定が可能である。また、物体の表面の状態によって測定値が左右される問題を有する。その様子を、図7を用いて説明する。
【0008】
図7は、「光触針法」において、測定対象物8に照射された光が戻ってきたとき、それを検出レンズ4で測定対象物8の物点位置を検出する様子を示す図である。図7(a),(b),(c)は、検出レンズ4と測定対象物8との間の距離が図7に示すX軸方向にそってそれぞれ異なり、図7(b)は、測定対象物8が検出レンズ4の合焦位置にあり、図7(a)はそれより−ΔX1だけ検出レンズ4側に近い場合、図7(c)はそれより+ΔX2だけ検出レンズ4側に遠い場合である。測定対象物8の表面が粗く、検出レンズ4が散乱光により測定対象物8の位置を測定するときは、図7(a),(b),(c)に対応し、測定対象物8の物点位置をそれぞれ−ΔX1,0,+ΔX2と検出するものと考えられる。一方、測定対象物8の表面が鏡面のときは、測定対象物8を鏡としたときの、検出レンズ4の合焦位置の鏡像6が測定されるので、図7(a),(b),(c)に対応する測定対象物8の物点位置は、それぞれ−2ΔX1,0,+2ΔX2と検出するものと考えられる。
【0009】
つまり、測定対象物8の表面の状態が散乱面か鏡面か等によって、同じ物体からの反射光から異なる物点位置が検出されることがある。このように、「光触針法」は測定範囲が極めて狭く、その物体の表面の状態によって測定値が左右される問題を有する。
【0010】
また、特許文献1に記載されるようなオートフォーカス技術及びその改良技術は、常に対象物の上でフォーカスを合わせるようにし、そのときのレンズの移動量から対象物の変位を測定できるので測定範囲を広く取れる。しかしながら、オートフォーカス動作においては、例えば段差等で対象物表面の変位が不連続な場合等にレンズ追従の方向を見失い、新たなサーチ動作を要する恐れがあり、高速測定に対応が困難なことがある。
【0011】
このように、非接触式変位測定においては、さまざまな方法が提案されているが、高精度化、高速化、低価格化、使い勝手向上、信頼性向上等の面から見ると、それぞれ長所もあり、反面課題もある。
【0012】
本発明の目的は、光学的な変位測定において、新しい方法により、使いやすい光学的変位測定器を提供することである。
【課題を解決するための手段】
【0013】
1.本発明の原理
本発明は、円錐形状プリズムの光学的特性を利用し、光源からの光を円錐形状プリズムの中心光軸より偏らせて対象物に入射し、その反射光を再び円錐形状のプリズムを通して戻すと、対象物と円錐形状プリズムとの間の変位に応じ、戻ってきた光は円錐形状プリズムの中心光軸からオフセットすることに基づいて対象物の変位を測定するものである。
【0014】
図1に、その様子を示す。図1では、変位を測定しようとする測定対象物8の前方に円錐形状の対物プリズム16が配置され、光源12及びその光を平行光にするコリメートレンズ14は、その光軸を円錐形状の対物プリズム16の中心光軸30から平行に偏移して配置される。図1の例では、対物プリズム16の下半分側から光源12からの平行光が対物プリズム16に供給される。この光を、対物プリズム16に入って行く光の意味で往路光40と呼ぶことにする。
【0015】
対物プリズム16に入った平行光は、対物プリズム16の円錐形状の界面で、平行な光のまま、対物プリズム16の材料で定まる屈折率に従った角度で曲げられた光42となる。そして測定対象物8にその角度で入射し、測定対象物8の表面で入射角と等しい反射角で平行な光のまま反射し、対物プリズム16の円錐形状の方に戻される。戻された光44は、円錐形状の界面で、再び曲げられ、元の往路光40に平行な光となる。この光を対物プリズムから帰ってくる光の意味で復路光46と呼ぶことにする。図1からわかるように、復路光46は往路光40に平行で、往路光40が中心光軸30の下側を進む光とすれば、復路光46は、往路光40と中心光軸30に対し反対側の上側を戻る光となる。
【0016】
図1(a),(b),(c)は、対物プリズム16と測定対象物8との間隔、すなわち対物プリズム16の中心光軸30に沿って、対物プリズム16から見た測定対象物8の位置を変えてある。すなわち、図1(a)は、中心光軸30と測定対象物8との交点付近にちょうど対物プリズム16からの光42が当たる場合で、これを測定対象物8の位置の標準状態とすると、図1(b)は、測定対象物8の位置が標準状態より対物プリズム16側に近いとき、図1(c)は、測定対象物8の位置が標準状態より対物プリズム16側から遠いときを示している。
【0017】
このように、測定対象物8の位置が標準状態からずれると、往路光40が同じでも、対物プリズム16により曲げられた光42が測定対象物8の表面に当たる点が変化し、それに応じ、測定対象物8から戻される光44の光路が変わり、戻される光44が対物プリズム16の円錐形状の界面に当たる位置が変化する。したがって、対物プリズム16で再び曲げられた復路光46は、往路光40に平行ではあるが、中心光軸30からのオフセット量が標準状態のものと変化する。
【0018】
図1(a),(b),(c)の例では、矢印で示すように、復路光46の中心光軸30からのオフセット量は、測定対象物8が対物プリズム16に近づくと少なくなり、遠ざかると大きくなる。したがって、復路光46の中心光軸30からのオフセット量を光学的に検出することで、測定対象物8の中心光軸30に沿った変位を求めることができる。
【0019】
図1からわかるように、往路光40を中心光軸30に平行とすれば復路光46も中心光軸30に平行となる。つまり、対物プリズム16へ供給する往路光40も、対物プリズム16から測定対象物8の変位情報を含んで戻ってくる復路光46も、対物プリズム16の中心光軸30に対し平行で、光源12等の光供給源や、変位情報を検出する検出部等は、平行光線のまま、対物プリズム16の背後から必要なだけ離すことができる。したがって、測定面の近くに測定のための十分な空間を要することなく、例えば狭い入り口を有する筐体内部のワークの変位測定等に向いている。
【0020】
本発明は、このように、円錐形状プリズムの光学的特性を利用し、光源からの光を円錐形状プリズムの中心光軸より偏らせて対象物に入射し、その反射光を再び円錐形状のプリズムを通して戻すと、対象物と円錐形状プリズムとの間の変位に応じ、戻ってきた光は円錐形状プリズムの中心光軸からオフセットすることに基づいて対象物の変位を測定するものである。
【0021】
2.課題解決手段
本発明に係る光学的変位測定器は、往路光を屈折させて対象物に光を当て、対象物から反射する光を屈折させて復路光とする対物光学系であって、往路光を中心光軸に平行な光としたときに、対象物の位置にかかわらず、復路光を往路光に平行な光とする対物光学系と、対物光学系の中心光軸から平行に偏移させた光を、対物光学系を介して対象物に当てる光源と、対象物と対物光学系との間の変位に応じて対物光学系の中心光軸からオフセットする復路光を検出する検出部と、を備えることを特徴とする。
【0022】
また、本発明に係る光学的変位測定器は、往路光を屈折させて対象物に光を当て、対象物から反射する光を屈折させて復路光とする対物光学系であって、往路光を中心光軸に平行な光としたときに、対象物の位置にかかわらず、復路光を往路光に平行な光とする対物光学系と、対物光学系の中心光軸と光軸を合わせて配置され、光源の光の方向を変えて対物光学系の中心光軸から平行に偏移させた光とし、対物光学系を介して対象物に光を当て、対象物からの復路光を検出部に導く偏向ビームスプリッタと、対象物と対物光学系との間の変位に応じて対物光学系の中心光軸からオフセットする復路光を検出する検出部と、を備えることを特徴とする。
【0023】
また、本発明に係る光学的変位測定器において、偏向ビームスプリッタと対物光学系との間に設けられ、復路光の中心軸からのオフセット量を拡大する拡大光学系を備えることが好ましい。
【0024】
また、本発明に係る光学的変位測定器において、光源の光を2つに分ける光学系であって、これらの光を偏向ビームスプリッタを通すことで光の方向が変更されたときに対物光学系の中心光軸からの偏移量の異なる2つの往路光となるように、2つの光を生成する2光線光学系を備え、検出部は、2つの往路光に応じた2つの復路光のそれぞれについて対物光学系の中心光軸からのオフセットを検出し、それらの平均化に基づき、対象物と対物光学系との間の変位を求めることが好ましい。
【0025】
また、検出部は、対物光学系の中心光軸と同軸又は平行な集光軸を有し、オフセットの大きさに応じて集光軸から偏移する復路光を集光軸上の焦点に集光する集光レンズと、焦点を隔てて集光レンズの反対側に配置され、オフセットの大きさに応じて変化する集光後の光の集光軸からの偏移量を検出する光学的検出器と、を備えることが好ましい。
【0026】
また、本発明に係る光学的変位測定器において、集光レンズの集光軸上の略焦点位置に配置され、集光軸近傍の光のみ通す絞り光学素子を備えることが好ましい。
【0027】
また、対物光学系は、略円錐形状を有するプリズム、又は略円錐形状のプリズムと断面形状が略同一のプリズム、又は略円錐形状のプリズムと断面形状が略同一の光学素子の組み合わせのいずれか1であることが好ましい。
【発明の効果】
【0028】
本発明に係る光学的変位測定器によれば、新しい方法により、対象物の変位測定に使いやすいものとなる。
【発明を実施するための最良の形態】
【0029】
以下において図面を用い、本発明に係る実施の形態につき、詳細に説明する。以下において、往路光を屈折させて対象物に光を当て、対象物から反射する光を屈折させて復路光とする対物光学系として、略円錐形状を有するプリズムを説明するが、これ以外の対物光学系であっても、往路光を中心光軸に平行な光としたときに、対象物の位置にかかわらず、復路光を往路光に平行な光とするものであればよい。例えば、三角プリズムのように、略円錐形状のプリズムと断面形状が略同一のプリズムでもよく、また一体構造でなくても複数の光学プリズムや光学平行板を組み合わせて同等の断面形状を形成する複合光学素子でもよい。また、場合によっては、中心光軸に対称として分離して配置される複数の光学素子の組み合わせでもよい。
【実施例1】
【0030】
図2は、光学的変位測定器10の構成要素を示す図で、図1の原理で説明した各要素に、検出部の要素を加えたものである。図1と同様の要素については同一の符号を付し、重複する説明は省略する。光学的変位測定器10は、図1で説明した部分と、これにより得られた復路光46の中心光軸30からのオフセット量の変化を検出する検出部とから構成される。そして、図1と比較しやすいように、測定対象物8の位置を標準位置、対物プリズムに近い位置、遠い位置に対応させ、それぞれ図2(a),(b),(c)として示してある。
【0031】
光学的変位測定器10の構成要素のうち、図1で説明した部分は、レーザ光を放出する光源12、光源からの光を平行にするコリメートレンズ14、略円錐形状の対物プリズム16の部分で、上記のように、コリメートレンズ14により平行にされた往路光40は、対物プリズム16の中心光軸30から平行に偏移している。より詳しくは、図1の例で、対物プリズム16の下半分の部分に往路光40が供給される。そして、上記のように、測定対象物8から戻された光44は対物プリズム16を経て、往路光40に平行な復路光46となる。
【0032】
対物プリズム16は、対物面側が円錐状で、光源側は例えば円柱状の光学部品である。円錐の頂角は、測定対象物8との間隔、あるいは変位の所要分解能等で定めることができる。例えば、対象物との間隔が少ない環境で測定を行うときは頂角が大きいほうが適しており、変位の分解能をあげるには頂角が小さいほうが適している。円錐の中心軸が対物プリズム16の光学的中心軸、すなわち中心光軸30で、上記のように、往路光40が中心光軸30に平行かつ偏移するように、光源12とコリメートレンズ14が配置される。かかる対物プリズム16は、光学用ガラス、光学用プラスチック等の光学材料を加工又は成形して得ることができる。
【0033】
検出部は、集光レンズ18とピンホール光学素子20と光位置検出センサ(Position Sensitive Detector:PSD)22とから構成され、復路光46の中心光軸30からのオフセット量の変化を検出する機能を有する。
【0034】
集光レンズ18は、凸レンズのような結像レンズで、集光軸32に平行な光線を、集光軸上の焦点19に集光する機能を有する光学素子である。集光軸32は、対物プリズム16の中心光軸30に平行で、好ましくは、測定対象物8が標準の位置、すなわち図2(a)の状態における復路光46の中心光路と同軸であることがよい。
【0035】
ピンホール光学素子20は、小さなピンホールを有する光遮蔽板で、集光軸32上の焦点19の位置に垂直に置かれる。そして、ピンホールが、ちょうど集光軸32がその中を通過するように配置される。ピンホール光学素子20は、測定対象物8からの散乱光を遮蔽し、中心光軸30に平行な復路光のみピンホールを通過するようにする絞り機能を有する。
【0036】
その様子を図3に示す。すなわち、測定対象物8の表面が鏡面でなく、散乱光成分60があるときは、ある成分は集光レンズ18から遠くそれるが、ある成分は対物プリズム16を通過する光62となる。この光62は、対物プリズム16の中心光軸30に必ずしも平行とならず、集光レンズ18で集光されても必ずしも焦点19の上に合焦しないノイズ光成分64となる。そこで、ピンホール光学素子20により、集光レンズ18を通った光のうち、焦点19の位置における集光軸32近傍のものだけを通すようにする。すなわち、中心光軸30に平行でない復路光46は、集光レンズ18を通っても焦点19に合焦しないので、このようなノイズ光成分64を、ピンホール光学素子20により遮蔽することができる。かかるピンホール光学素子20は、光を遮蔽する材質の板材に、適当な貫通穴を設けたものを用いることができる。板材の厚さ及びピンホールの大きさは、光位置検出センサ22の感度等で定めることができる。
【0037】
光位置検出センサ22は、焦点19に対し集光レンズ18の反対側に配置され、光点の位置あるいは光像を検出できる光学素子で、市場で一般にPSDと呼ばれているものを用いることができる。また、2次元配置CCD(Charge Coupled Device:CCD)等の撮像素子を用いることもできる。光位置検出センサ22の2次元的測定範囲の中心は、集光軸32にほぼ一致させることが好ましい。こうすることで、測定対象物8が標準位置にあるときにおける復路光46の光路の中心と集光軸とを合わせる上記の例の場合、測定対象物8が標準位置にあるときの復路光46の像を、光位置検出センサ22のほぼ中心にくるようにできる。そして、光位置検出センサ22の中心からの像のずれの大きさにより、測定対象物8の変位の大きさを検出できる。
【0038】
かかる構成の光学的変位測定器10の作用を説明する。最初に図2(a)の測定対象物8が標準位置にあるときを説明する。光源12とコリメートレンズ14の光源系の光軸は、対物プリズム16の中心光軸30と平行に偏移して配置されるので、コリメートレンズ14により生成された往路光40は、中心光軸30に平行で、例えば中心光軸30より下側に偏移した光として対物プリズム16に供給され、対物プリズム16の屈折率及び円錐形状の角度に従って曲げられた光42となり、測定対象物8の表面に当てられる。図3に示すように通常、測定対象物8からは正反射光以外にさまざまな方向に散乱光60が戻るが、円錐形状の対物プリズム16の性質として、図3に示すように、距離に応じて特定の角度の光のみが通過後中心光軸30に平行となる。結果として、測定対象物8が鏡面である場合の反射光と同じ経路を持って戻される光44のみが往路光40に平行な復路光46となり、集光レンズ18以後の検出部で検出されることになる。図2(a)及び後で述べる図2(b),(c)にはそのようにして戻される光44と、それによる復路光46のみが示されている。
【0039】
ここで、復路光46の光路の中心と集光レンズ18の集光軸32とを同軸として、復路光46は集光レンズ18により焦点19に集光される光48となり、さらにピンホール効果により焦点19より進められる光50は、光位置検出センサ22上に像を結ぶ。この場合、光位置検出センサ22の中心と集光軸32とを合わせるので、像は、光位置検出センサ22のちょうど中心を重心位置としてある広がりをもったものとして結ばれる。
【0040】
なお、測定対象物8が鏡面である場合の反射光と同じ経路を持って戻される光以外の成分は、略焦点19の位置に配置されるピンホール光学素子20により進路を妨げられ、光位置検出センサ22上には到達しない。したがって、測定対象物8の表面が鏡面であろうと散乱面であろうと、ピンホール光学素子20の作用により、測定対象物8が鏡面である場合の反射光と同じ経路を持って戻される光の成分のみが評価され、測定対象物8の表面状態又は表面形状等の表面性状に左右されにくくなる。
【0041】
次に、図2(b)のように、測定対象物8が標準位置よりも対物プリズム16側に近い位置に変位すると、光源12及びコリメートレンズ14からの往路光40は同じでも、円錐形状の対物プリズム16によって曲げられ斜めに測定対象物8に当たる光は、標準位置に比べ、測定対象物8のより下側に当たる。したがって、測定対象物8から戻される光44は、対物プリズム16の円錐形状の中心光軸30からより近いところで屈折され、復路光46は、標準位置の場合に比べ、図2(b)の矢印で示すように、中心光軸30とのオフセット量が少なくなる。
【0042】
中心光軸30とのオフセット量が少ない復路光46は、上記の例で、集光軸32より下側の光となり、集光レンズ18で焦点19に集光されると、さらに進んで、光位置検出センサ22の上側のほうに重心位置をもつ像を結ぶ。
【0043】
一方、図2(c)のように、測定対象物8が標準位置よりも対物プリズム16側から遠い位置に変位すると、対物プリズム16によって曲げられ斜めに測定対象物8に当たる光は、標準位置に比べ、測定対象物8のより上側に当たり、測定対象物8から戻される光44は、対物プリズム16の円錐形状の中心光軸30からより遠いところで屈折され、復路光46は、標準位置の場合に比べ、図2(c)の矢印で示すように、中心光軸30とのオフセット量が多くなる。中心光軸30とのオフセット量が多い復路光46は、上記の例で、集光軸32より上側の光となり、集光レンズ18で焦点19に集光されると、さらに進んで、光位置検出センサ22の下側のほうに重心位置をもつ像を結ぶ。
【0044】
このように、測定対象物8の中心光軸30に沿った変位に応じ、光位置検出センサ22に結ばれる像の重心位置が変化する。この変化量を光位置検出センサ22の撮像面上の位置信号として検出し、図示されていない変換器により、変換率あるいは変換関数を用いて、測定対象物8の変位として出力することができる。
【実施例2】
【0045】
図4は、光源12及びコリメートレンズ14の光軸を、対物プリズム16の中心光軸30から傾けて用いる場合の光学的変位測定器70の構成を示す図である。図2と同様の要素には同一の符号を付し、詳細な説明を省略する。ここでは、光源12及びコリメートレンズ14の光軸を、対物プリズム16の中心光軸30から傾け、偏向ビームスプリッタ72と(1/4)波長板74とを対物プリズム16の手前に配置する。
【0046】
偏向ビームスプリッタ72は、コリメートレンズ14からの平行光を受けて、これを分けてS偏光成分の光の方向を90度変えて対象物側、すなわち対物プリズム16側に向かわせる機能を有する光学部品である。かかる偏向ビームスプリッタ72は、図4に示すように、半透膜を間にはさんだ2つの直角プリズムで構成することができる。この場合半透膜の傾きは、中心光軸30に対し、45度とする。
【0047】
(1/4)波長板74は、S偏光成分の光を入射するときはこれを円偏光の光に変換し、円偏光の光を入射するときはS偏光成分の光と90度の位相差を有するP偏光成分の光に変換する光学素子である。かかる(1/4)波長板74は、周知の複屈折性材料のフィルム等を、中心光軸30に対し所定の光軸傾きで配置して構成することができる。
【0048】
そして、図4の例では、対物プリズム16の中心光軸30に、集光レンズ18の集光軸を同軸として合わせ、偏向ビームスプリッタ72の中心軸も対物プリズム16の中心光軸30上にくるように配置される。
【0049】
このような構成の光学的変位測定器70の作用を説明する。なお、図4において説明を簡単にするため、測定対象物8の位置を標準位置とし、光の経路は、代表光の1本で示した。光源12からのレーザ光はコリメートレンズ14により平行光となり、対物プリズム16の中心光軸30に対し90度の角度で偏向ビームスプリッタ72に供給される。この光は偏向ビームスプリッタ72で90度曲げられ、(1/4)波長板74を経て円偏向の光としての往路光40となる。往路光40は、対物プリズム16の中心光軸30に平行で、かつ偏移している。したがって、図2で説明したと同様に、円錐形状の対物プリズム16によって曲げられた光42は測定対象物8に当てられ、測定対象物8から反射して戻された光44は再び円錐形状の対物プリズム16で曲げられて、往路光40に平行な復路光46となる。
【0050】
復路光46は、(1/4)波長板74により円偏向の光からP偏向の光に変換され、偏向ビームスプリッタ72をそのまま中心光軸30に沿って直進し、集光レンズ18により焦点19に集光される光48となり、さらにピンホール光学素子20のピンホール効果により焦点19より進められる光50は、光位置検出センサ22上に像を結ぶ。なお、ピンホール光学素子20の散乱光ノイズ除去作用は、図3で述べたものと同じである。
【0051】
測定対象物8が中心光軸30に沿って変位すると、その大きさに応じ、光位置検出センサ22上の像の重心位置が変化する。したがって、この変化量を光位置検出センサ22の撮像面上の位置信号として検出し、図示されていない変換器により、変換率あるいは変換関数を用いて、測定対象物8の変位として出力することができる。
【0052】
このように、偏向ビームスプリッタ72と(1/4)波長板74とを用いることで、光源系を対物プリズム16の中心光軸30に対し傾けることができ、光学的変位測定器70の構成配置の自由度を増すことができる。また、割合容積の大きい光学系を対物プリズム16の中心光軸から偏移させて配置する必要がなくなり、対物プリズム16の外径を小さくできる。なお、この場合でも、往路光40と復路光46とは対物プリズム16の中心光軸30に対しいずれも平行であるので、(1/4)波長板74等を対物プリズム16の背後から必要なだけ離すことができる。したがって、測定面の近くに測定のための十分な空間を要することなく、例えば狭い入り口を有する筐体内部のワークの変位測定等に向いている。
【実施例3】
【0053】
対象物の変位の検出についてその分解能を向上させるため、光学系の途中に拡大レンズ系を設けることができる。図4で説明した構成に、さらに拡大レンズ系を設けた光学的変位測定器80の例を図5に示す。図4と同様の要素には同一の符号を付し、詳細な説明を省略する。この光学的変位測定器80においては、(1/4)波長板74と対物プリズム16との間の光路に、2つの凸レンズ82,84からなる拡大光学系が設けられる。
【0054】
この構成によれば、往路光及び復路光の中心光軸30からのオフセット量は、拡大光学系の前後で拡大される。すなわち、対物プリズム16に入る往路光40及び戻される復路光46の中心光軸30からのオフセット量より、(1/4)波長板74に入る光及び戻される光の中心光軸30からのオフセット量のほうが大きい。このようにオフセット量が拡大された光が集光レンズ18により焦点19に集光され、ピンホール光学素子20のピンホール効果によりさらに進められて光位置検出センサ22上に像を結ぶ。したがって、光位置検出センサ22は、測定対象物8の変位に応じた像の位置の変化を、より拡大して検出することができる。
【実施例4】
【0055】
図2等で説明した光学的変位測定器10等は、測定対象物8に対して測定光が斜めに当たる。したがって、図2(a),(b),(c)からも分かるように、測定対象物8の変位により、測定光の当たる位置が若干ずれる。すなわち測定対象物8の変位により測定ポイントが若干ずれる。図6は、測定対象物8に2方向から測定光を当て、それぞれの測定光に基づくデータについて平均処理等を行うことで、測定ポイントのずれの影響を抑制することができる光学的変位測定器90の構成を示す図である。この光学的変位測定器90においては、図4の構成に、さらに、光源の光を2つに分ける2光線光学系を設けている。図4と同様の要素については同一の符号を付し、詳細な説明を省略する。なお、図6において説明を簡単にするため、測定対象物8の位置を標準位置とし、それぞれの光の経路は、1本で代表させて示した。
【0056】
この光学的変位測定器90において、光源12とコリメートレンズ14の光軸は、対物プリズム16の中心光軸30と平行に配置される。そして、中心光軸30に平行なコリメートレンズ14の光は、無偏向ビームスプリッタ92と、ミラー94により、中心光軸30と90度傾いた2つの平行光に分けられる。ここで、無偏向ビームスプリッタ92と、ミラー94とが、上記の2光線光学系に相当する。
【0057】
無偏向ビームスプリッタ92は、入射した光を反射光と透過光に分ける光学素子で、例えば2つの三角プリズムを組み合わせて得ることができる。無偏向ビームスプリッタ92の反射・透過面は、中心光軸30に45度傾いて配置される。また、ミラー94は、無偏向ビームスプリッタ92に対し、光源12等の反対側に配置され、反射面は、中心光軸30に45度傾いて配置される。そして、無偏向ビームスプリッタ92とミラー94の配置は、コリメートレンズ14から出た光は、無偏向ビームスプリッタ92の反射・透過面によって、一方は反射により90度向きを変更され、他方は透過によりそのまま直進してミラー94の反射面に当たり、そこで90度向きを変更されるように設定される。
【0058】
無偏向ビームスプリッタ92とミラー94により、進路を90度変更された2つの光96,97は、偏向ビームスプリッタ72に供給される。2つの光96,97は、偏向ビームスプリッタ72によって90度向きを変更され、(1/4)波長板74を通過したあと2つの往路光40,41となる。そして、2つの光96,97の偏向ビームスプリッタ72に入射する配置関係は、2つの往路光40,41の中心光軸30に対するオフセット量が互いに異なるように設定される。好ましくは、図6に示すように、2つの往路光40,41は中心光軸30に対し互いに対称関係となるのがよい。すなわち、2つの光96,97は、偏向ビームスプリッタ72の半透膜と中心光軸30とが交わるところに関し、互いに対称な位置で、偏向ビームスプリッタ72の半透膜に入射するように配置されるのがよい。
【0059】
2つの往路光40,41は、図6の例では、中心光軸30の上側及び下側を対称な関係で進み、対物プリズム16によりそれぞれ曲げられた光42,43となる。測定対象物8からは、それぞれ戻された光44,45となり、再び対物プリズム16で屈折されて、2つの往路光40,41に平行な復路光46,47となる。図6の例では測定対象物8を標準位置としたので、復路光46は往路光41と重なり、復路光47は往路光40と重なるように示されている。
【0060】
2つの復路光46,47は、図4の説明と同様に、それぞれ(1/4)波長板74、偏向ビームスプリッタ72を通り、集光レンズ18により焦点19に集光される光48,49となり、さらにピンホール光学素子20のピンホール効果により焦点19より進められる光50,51は、光位置検出センサ22,23上に像を結ぶ。光位置検出センサ22,23は、一体構造のものとしてもよい。なお、ピンホール光学素子20の散乱光ノイズ除去作用は、図3で述べたものと同じである。
【0061】
測定対象物8が中心光軸30に沿って変位すると、上記のように、測定ポイントが測定対象物8の表面で若干ずれる。このとき、往路光40,41を中心光軸30に対し対称とするときは、対物プリズム16によって曲げられた光42,43は、中心光軸30に対し対称の関係で測定対象物8に当てられる。したがって、測定対象物8の変位により、光が当たる測定ポイントは、中心光軸30から対称に若干ずれた2つの位置となる。光位置検出センサ22,23は、この中心光軸30に対し対称の2つの測定ポイントについて、その変位を検出することになる。
【0062】
このように、図6の構成の光学的変位測定器90は、測定対象物8の変位により、中心光軸30から対称に若干ずれた2つの測定ポイントについて、その変位を検出することができる。そこで、これらのデータに基づき、適当な平均化処理を行い、測定対象物8の変位による測定ポイントの変化の影響を抑制できる。図6の例のように、2つの往路光40,41を中心光軸30に対し対称とするときは、平均化処理は単純平均でよい。2つの往路光40,41の中心光軸30からのオフセット量が同じでないときは、適当な重み付け平均化処理を行うことがよい。
【図面の簡単な説明】
【0063】
【図1】本発明に係る光学的変位測定の原理を説明する図である。
【図2】本発明に係る実施の形態における光学的変位測定器の構成を示す図である。
【図3】本発明に係る実施の形態におけるピンホール光学素子の作用を説明する図である。
【図4】第2の実施形態における光学的変位測定器の構成を示す図である。
【図5】第3の実施形態における光学的変位測定器の構成を示す図である。
【図6】第4の実施形態における光学的変位測定器の構成を示す図である。
【図7】従来技術の非接触式変位測定器の課題を説明する図である。
【符号の説明】
【0064】
4 検出レンズ、6 合焦位置の鏡像、8 測定対象物、10,70,80,90 光学的変位測定器、12 光源、14 コリメートレンズ、16 対物プリズム、18 集光レンズ、19 焦点、20 ピンホール光学素子、22,23 光位置検出センサ、30 中心光軸、32 集光軸、40,41 往路光、46,47 復路光、60 散乱光成分、64 ノイズ光成分、72 偏向ビームスプリッタ、74 (1/4)波長板、82,84 凸レンズ、92 無偏向ビームスプリッタ、94 ミラー。

【特許請求の範囲】
【請求項1】
往路光を屈折させて対象物に光を当て、対象物から反射する光を屈折させて復路光とする対物光学系であって、往路光を中心光軸に平行な光としたときに、対象物の位置にかかわらず、復路光を往路光に平行な光とする対物光学系と、
対物光学系の中心光軸から平行に偏移させた光を、対物光学系を介して対象物に当てる光源と、
対象物と対物光学系との間の変位に応じて対物光学系の中心光軸からオフセットする復路光を検出する検出部と、
を備えることを特徴とする光学的変位測定器。
【請求項2】
往路光を屈折させて対象物に光を当て、対象物から反射する光を屈折させて復路光とする対物光学系であって、往路光を中心光軸に平行な光としたときに、対象物の位置にかかわらず、復路光を往路光に平行な光とする対物光学系と、
対物光学系の中心光軸と光軸を合わせて配置され、光源の光の方向を変えて対物光学系の中心光軸から平行に偏移させた光とし、対物光学系を介して対象物に光を当て、対象物からの復路光を検出部に導く偏向ビームスプリッタと、
対象物と対物光学系との間の変位に応じて対物光学系の中心光軸からオフセットする復路光を検出する検出部と、
を備えることを特徴とする光学的変位測定器。
【請求項3】
請求項2に記載の光学的変位測定器において、
偏向ビームスプリッタと対物光学系との間に設けられ、復路光の中心軸からのオフセット量を拡大する拡大光学系を備えることを特徴とする光学的変位測定器。
【請求項4】
請求項2に記載の光学的変位測定器において、
光源の光を2つに分ける光学系であって、これらの光を偏向ビームスプリッタを通すことで光の方向が変更されたときに対物光学系の中心光軸からの偏移量の異なる2つの往路光となるように、2つの光を生成する2光線光学系を備え、
検出部は、
2つの往路光に応じた2つの復路光のそれぞれについて対物光学系の中心光軸からのオフセットを検出し、それらの平均化に基づき、対象物と対物光学系との間の変位を求めることを特徴とする光学的変位測定器。
【請求項5】
請求項1から請求項4のいずれか1に記載の光学的変位測定器において、
検出部は、
対物光学系の中心光軸と同軸又は平行な集光軸を有し、オフセットの大きさに応じて集光軸から偏移する復路光を集光軸上の焦点に集光する集光レンズと、
焦点を隔てて集光レンズの反対側に配置され、オフセットの大きさに応じて変化する集光後の光の集光軸からの偏移量を検出する光学的検出器と、
を備えることを特徴とする光学的変位測定器。
【請求項6】
請求項5に記載の光学的変位測定器において、
集光レンズの集光軸上の略焦点位置に配置され、集光軸近傍の光のみ通す絞り光学素子を備えることを特徴とする光学的変位測定器。
【請求項7】
請求項1から請求項4のいずれか1に記載の光学的変位測定器において、
対物光学系は、略円錐形状を有するプリズム、又は略円錐形状のプリズムと断面形状が略同一のプリズム、又は略円錐形状のプリズムと断面形状が略同一の光学素子の組み合わせのいずれか1であることを特徴とする光学的変位測定器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−58115(P2006−58115A)
【公開日】平成18年3月2日(2006.3.2)
【国際特許分類】
【出願番号】特願2004−239524(P2004−239524)
【出願日】平成16年8月19日(2004.8.19)
【出願人】(000137694)株式会社ミツトヨ (979)
【Fターム(参考)】