説明

光線路監視システムおよびシステムに含まれる監視装置

【課題】実用的な構成で広い測定可能距離範囲に亘って高い空間分解能でPONシステムの光線路を監視することが可能な光線路監視システムおよび装置を提供する。
【解決手段】光線路監視システム1Aは、光線路監視装置13Aおよび反射フィルタ22,…,22を備え、光線路監視装置13Aは、光源41、強度変調器42、光結合器43、監視光ゲート部44、光サーキュレータ45、偏波変調器46、遅延光ファイバ47、光結合器51、バランス検波器52、第1フィルタ53、電気信号ゲート部54、第2フィルタ55、RF検波器56、AD変換器57、制御部61Aおよび信号発生器62〜65を備える。監視光ゲート部44は、光分岐器43から出力された監視光を入力して、監視光ゲート信号Cのゲート幅w1のパルスの期間のみ該監視光を光サーキュレータ45へ出力する。電気信号ゲート部54は、バランス検波器52から出力された電気信号を入力して、電気信号ゲート信号Dのゲート幅w2のパルスの期間のみ該電気信号を第2フィルタ55へ出力する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光リフレクトメトリ技術を利用して光線路を監視するシステムおよびそれに含まれる監視装置に関するものである。
【背景技術】
【0002】
光ファイバ線路を用いて光通信を行う光通信システムにおいて、その光ファイバ線路の破断や伝送損失増加などの故障を検知することは重要である。特に、加入者系の光通信システムでは、通信事業者の局舎から伸びる第1の光線路の先に光分岐器を配置して複数の第2の光線路に分岐し、複数の加入者へ接続することによって、局舎に設置される局側端末および第1の光線路の加入者当りコストを低減するPONシステムが普及しつつあり、このようなPONシステムにおいて光ファイバ線路や加入者端末で故障が発生した場合に、迅速に故障箇所を特定して修復することが要求されている。
【0003】
そこで、光通信システムにおいては、このような故障を検知するために光線路監視システムが設けられる。光線路監視システムとしては、例えば非特許文献1に記載のシステムが知られており、光線路監視装置、光線路に設けられた反射フィルタ、反射フィルタの設置位置などの敷設情報などからなる。光線路監視装置は、光リフレクトメトリ技術を利用するものであって、光ファイバ線路等の測定対象物を監視光が伝搬する際に生じる反射光(本明細書において特に断らない限り、フレネル反射光およびレイリー散乱光を指すものとする。)に基づいて、その測定対象物における反射率分布を求めて、反射率分布の特徴点(ピークや段差など)に基づいてその測定対象物における故障の箇所を検知する。このとき、PONシステムにおいては複数の第2の光線路からの反射光を同時に受光して、個々の第2の光線路の反射率分布が有する特徴点を区別して検出する必要があり、そのために、光線路監視装置は高い空間分解能で反射率分布を測定することが要求されている。
【0004】
光リフレクトメトリ技術として、パルス状の監視光が測定対象物を伝搬する際に生じる反射光の強度の時間変化に基づいて反射率分布を測定するOTDR(Optical Time Domain Reflectometry)が知られている。OTDRで高い空間分解能を得るには、監視光のパルス幅を狭くすることが必要である。また、監視光のパルス幅を狭くすると、監視光のエネルギーの低下に因る測定の信号対雑音比(SNR: Signal to Noise Ratio)の低下を補うために、監視光のパワーを高くすることが必要である。ところが、監視光のパワーを高くすると、測定対象物において誘導ブリルアン散乱などの非線形光学現象が発現することによって測定性能の低下や通信信号への干渉が生じる可能性がある。したがって、OTDRでは、空間分解能は数メートル程度に制限される。
【0005】
一方、他の光リフレクトメトリ技術として、OCDR(Optical CoherenceDomain Reflectometry)も知られている(非特許文献2〜4を参照)。OCDRでは、光周波数が変調されて櫛歯状の光波コヒーレンス関数を有する監視光を発生させ、この監視光が測定対象物を伝搬する際に生じる反射光を入力するとともに、この監視光の一部を分岐して取り出した参照光をも入力し、これら反射光と参照光との干渉の大きさが両光の間の遅延時間差に依存することを利用して、測定対象物における特定位置における反射率を測定する。さらに、OCDRでは、監視光における光周波数変調の間隔を変化させる等により、反射率を測定する位置を変化させて、測定対象物における反射率分布を求める。OCDRでは、OTDRと比べると高い空間分解能を得ることができる。非特許文献1には、例えば5km遠方の反射点を19cmの空間分解能で測定できることが示されている。
【0006】
光波コヒーレンス関数は、時刻tを変数とする関数である光の電場V(t)の自己相関関数<V(t)・V*(t−τ)>を光強度で規格化したものであり、光パワースペクトルのフーリエ変換を光強度で規格化したものである。電場V(t)の光が2分岐されて、これら2つの分岐光の間の遅延時間差がτであるとしたとき、これら2つの分岐光の干渉縞の大きさは、その光の光波コヒーレンス関数の実部により表される。また、光波コヒーレンス関数の絶対値は、可干渉度と呼ばれ、干渉の大きさを表す。
【0007】
OCDRで用いられる監視光は、光周波数が変調されたものであって、櫛歯状の光波コヒーレンス関数を有する。具体例としては、光周波数を一定時間間隔で順にf0,f0+fs,f0−fs,f0+2fs,f0−2fs,f0+3fs,f0−3fs,・・・ というように変調された光が監視光として用いられる。或いは、変調周波数fsで光周波数を正弦波状に変調された光が監視光として用いられる。このように光周波数が変調された監視光の光波コヒーレンス関数は、fsτが整数であるときにデルタ関数形状に類似した形状のピーク(コヒーレンスピーク)を有する。すなわち、これらの監視光は、櫛歯状の光波コヒーレンス関数を有する。fsが変化すると、コヒーレンスピークの位置も変化する。
【0008】
櫛歯状の光波コヒーレンス関数は、間隔(1/fs)で配置される複数のコヒーレンスピークを有する。そのうちの1つのコヒーレンスピークが測定対象物のうちの被測定区間に存在するように、コヒーレンスピークの配置の間隔(1/fs)より短い時間幅のゲートが監視光にかけられて監視光のパルスが切り出される。
【0009】
特許文献2には、OCDRにより測定可能な距離範囲を拡大する技術が記載されている。すなわち、この文献に記載された技術では、光源を周期的に周波数変調することにより多数の櫛刃状のコヒーレンスピークを持つ光波コヒーレンス関数を有する光を発生させ、この光源からの出力光をパルス化することにより、単一のコヒーレンスピークを有する光波コヒーレンス関数とする。さらに、参照光路中に設けられる遅延ファイバを切り替えることで参照光の遅延時間を変化させるか、遅延線を含んだループ回路に参照光を伝搬させるかすることにより、監視光に対する参照光の遅延時間を変化させ、遅延時間が光源のコヒーレンス時間となるようにする。それにより、キロメートルオーダの長い距離範囲を測定することが可能となるとされている。
【0010】
また、特許文献3にも、OCDRにより測定可能な距離範囲を拡大する技術が記載されている。すなわち、この文献に記載された技術では、光源の出力光のコヒーレンス長を超える距離範囲に光波コヒーレンス関数のコヒーレンスピークが存在するように光周波数変調周期を選択することで、測定可能な距離範囲を拡大する。例として、コヒーレンス長が60mの光源を100kHz±10kHzの変調周期で周波数変調することで、約1km間隔のコヒーレンスピークを生成し、約5km遠方の反射光を測定することができるとされている。
【非特許文献1】Y. Enomoto, H. Izumita, and M.Arii, Journal of Optical Networking, vol. 6, no. 5, pp. 408-414, (2007)
【非特許文献2】K. Hotate and Z. He, Journal ofLightwave Technology, vol.24, pp.2541-2557 (2006)
【非特許文献3】T. Saida and K. Hotate, IEEEPhotonics Technology Letters, vol.10, pp.573-575 (1998)
【非特許文献4】Z. He and K. Hotate, Journal ofLightwave Technology, vol.20, pp.1715-1723 (2002)
【発明の開示】
【発明が解決しようとする課題】
【0011】
しかしながら、上記非特許文献1〜4に記載されたものを含めて従来の光線路監視システムは、実際の加入者系PONシステムにおける光ファイバ線路の監視に適用することが難しかった。それは以下の理由による。
【0012】
第1に、非特許文献1に記載された光線路監視システムでは、監視装置にOTDRを用いているため、空間分解能が2mと低かった。そのため、複数の第2の光線路の間で監視装置から反射フィルタまでの距離が互いに2m以内となると反射ピークが重なって区別できなくなる問題があった。また、この問題を回避するために第2の光線路の長さが互いに2m以上異なるように敷設しようとすると、最大2mの余長を収納するスペースを準備する必要が有り、スペースの少ない集合住宅などでは敷設が困難であるという問題があった。
【0013】
第2に、OCDR技術を監視装置に用いる場合は、測定可能距離範囲の拡大が課題であった。一般に加入者系光通信システムでは光ファイバ線路の線路長が1〜20km程度であるので、非特許文献2,3に記載された技術のように測定可能距離範囲を拡大することが必要となる。
【0014】
しかし、非特許文献2に記載されているように、光源からの出力光をパルス化するとともに参照光路の遅延ファイバを切り替える方式では、測定可能距離範囲/コヒーレンス長の比よりも大きな本数の遅延ファイバを用意する必要がある。また、遅延ファイバの長さも監視対象の光線路と同程度に長い必要がある。それ故、多数の長い遅延ファイバが必要となって測定装置が大型化、高コスト化し、実用性が低下する。
【0015】
また、非特許文献2に記載されているように、光源からの出力光をパルス化するとともに遅延線を含んだループ回路に参照光を伝搬させる方式では、ループ回路を伝搬する際の参照光の損失を補償するために光増幅器が必要となる。それ故、光源からの出力光の波長は、光増幅器による光増幅が可能な波長に制限される。一方、実際の加入者系光通信システムでは、1.26μm〜1.62μmの波長の光が通信に用いられるので、監視光はそれ以外の波長である必要がある。また、実際の光通信システムで広く用いられているITU-TG.652に準拠したシングルモード光ファイバでは、波長1.26μmより短い波長の光は高次モードの影響の故に監視に適さず、また、波長1.7μmより長い波長の光は曲げ損失の故に監視に適さない。従って、1.62μm〜1.7μmの波長の光を監視に用いるのが好ましいが、この波長帯ではEDFA(Er-DopedFiber Amplifier)などの一般的な光増幅器が利用できないので、遅延線ループ回路を実現するのは困難である。
【0016】
また、非特許文献3に記載されている手法では、光源からの出力光がパルス化されていないので、光波コヒーレンス関数のコヒーレンスピークが測定可能距離範囲内に複数存在する。従って、複数の位置からの反射光がまとめて検出されるので、反射点の位置を特定することができない。
【0017】
なお、仮に非特許文献2,3の各方法を組み合わせて光源からの出力光をパルス化したとすると、光波コヒーレンス関数のコヒーレンスピークを1つに限定することは可能であるが、コヒーレンスピークの次数(=変調周期に対する遅延時間差の比)が一定であるので、広い距離範囲を測定することができない。
【0018】
本発明は、上記問題点を解消する為になされたものであり、実用的な構成でPONシステムの光線路を監視することが可能な光線路監視システムおよび監視装置を提供することを目的とする。
【課題を解決するための手段】
【0019】
本発明に係る光線路監視システムは、2つの端を有する第1の光線路と、2つの端を有する複数の第2の光線路と、第1の光線路の第1の端を複数の第2の光線路の第1の端に結合する第1の光分岐器を含む分岐型光線路と、第1の光線路の第2の端に結合された監視装置と、を備える光線路監視システムにおいて、監視装置は、光周波数が周期的に変調されて櫛歯状の光波コヒーレンス関数を有する光を出力する光源と、光源から出力された光を監視光と参照光とに分岐して出力する第2の光分岐器と、第2の光分岐器から出力された監視光が分岐型光線路を伝搬する間に生じた反射光と第2の光分岐器から出力された参照光とが互いに干渉してなる干渉光を検出して電気信号に変換して出力する検出部と、光源における光周波数変調の周期pを変化させるとともに、その周期pと検出部から出力される電気信号とに基づいて、分岐型光線路における監視光伝搬方向に沿った反射率分布を求める制御部と、を含むことを特徴とする。
【0020】
本発明に係る光線路監視システムにおいて、複数の第2の光線路の少なくとも1つは反射部を有し、光線路監視システムは、反射部と監視装置との間の距離の情報が記録された記録装置とを含むのが好適である。監視装置は反射部で反射された監視光を9cm以下の空間分解能で検出するのが好適である。複数の反射部は監視光を波長選択的に反射する反射器であり、第1の光分岐器の分岐数をNとして反射器の反射率が−40+20×LOG10(N)[dB]より大であるのが好適である。
【0021】
本発明に係る光線路監視システムにおいて、監視装置は、第2の光分岐器から出力された監視光を入力して、一定周期Tで第1ゲート幅w1の期間の該監視光を選択的に出力する監視光ゲート部をさらに備え、検出部は、監視光ゲート部から出力された監視光が光線路を伝搬する際に生じた反射光と第1の光分岐器から出力された参照光とが互いに干渉してなる干渉光の強度を示す電気信号のうち、一定周期Tで第2ゲート幅w2の期間の該電気信号の特定周波数帯域のものを選択的に出力するのが好適である。検出部が、干渉光の強度に応じた値の電気信号を出力する光電変換部と、光電変換部から出力された電気信号を入力して、一定周期Tで第2ゲート幅w2の期間の該電気信号を選択的に出力する電気信号ゲート部と、を含むのが好適である。周期p,第1ゲート幅w1および第2ゲート幅w2が、「w1+w2<2p」なる関係を満たすのが好適である。また、検出部における特定周波数帯域が、mを任意の整数として、m/pなる周波数を含まないのが好適である。
【0022】
本発明に係る光線路監視装置は、光周波数が周期的に変調されて櫛歯状の光波コヒーレンス関数を有する光を出力する光源と、光源から出力された光を監視光と参照光とに分岐して出力する光結合器と、光結合器から出力された監視光を入力して、一定周期Tで第1ゲート幅w1の期間の該監視光を選択的に出力する監視光ゲート部と、監視光ゲート部から出力された監視光が光線路を伝搬する際に生じた反射光と光結合器から出力された参照光とが互いに干渉してなる干渉光の強度を示す電気信号のうち、一定周期Tで第2ゲート幅w2の期間の該電気信号の特定周波数帯域のものを選択的に出力する検出部と、光源における光周波数変調の周期pを変化させるとともに、その周期pと検出部から出力される電気信号とに基づいて、光線路における監視光伝搬方向に沿った反射率分布を求める制御部と、を備えることを特徴とする。
【0023】
本発明に係る光線路監視装置において、検出部が、干渉光の強度に応じた値の電気信号を出力する光電変換部と、光電変換部から出力された電気信号を入力して、一定周期Tで第2ゲート幅w2の期間の該電気信号を選択的に出力する電気信号ゲート部と、を含むのが好適である。周期p,第1ゲート幅w1および第2ゲート幅w2が、「w1+w2<2p」なる関係を満たすのが好適である。また、検出部における特定周波数帯域が、mを任意の整数として、m/pなる周波数を含まないのが好適である。
【発明の効果】
【0024】
本発明に係る光線路監視システム置および光線路監視装置は、実用的な構成で広い測定可能距離範囲に亘って高い空間分解能でPONシステムの光線路を監視することが可能である。
【発明を実施するための最良の形態】
【0025】
以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0026】
(第1実施形態)
【0027】
図1は、第1実施形態に係る光線路監視装置13Aを備える光線路監視システム1Aの構成を示す図である。この図に示される光線路監視システム1Aは、局舎10Aに設けられた局側端末11とN個の加入者端末21〜21とが光分岐器20を介して互いに光ファイバ線路により光学的に接続されていて、局側端末11と各加入者端末21との間で光通信を行うものである。ここで、Nは2以上の整数であり、nは1以上N以下の各整数である。このような光線路監視システム1Aの形態は、PON(Passive OpticalNetwork)と呼ばれる。分岐数Nは4〜32が典型的である。
【0028】
局舎10Aには、局側端末11の他に光結合器12および光線路監視装置13Aが設けられている。局側端末11と光結合器12とは光ファイバ線路31により光学的に接続されている。光結合器12と光分岐器20とは第1の光線路32により光学的に接続されている。光分岐器20と各加入者端末21とは第2の光線路33により光学的に接続されている。第1の光線路および第2の光線路は光ファイバで構成される線路であり、好ましくはITU−T G.652準拠のシングルモード光ファイバで構成される。各第2の光線路33上であって加入者端末21近くには、通信光を透過させ監視光を反射させる光フィルタ22が配置されているのが好ましい。一般的には通信光として1.26μm〜1.62μmの波長の光が用いられるため監視光としては1.65μm帯(1.64〜1.66μm)の光を用いることが好ましく、従って光フィルタも1.65μm帯の光を選択的に反射するフィルタであることが好ましい。このような光フィルタはファイバグレーティングなどにより実現することができる。また、光結合器12には光線路監視装置13Aも光学的に接続されている。
【0029】
光線路監視装置13Aは、OCDR測定を行って測定対象物(第1の光線路32,光分岐器20,第2の光線路33,光フィルタ22,加入者端末21)を監視する。光線路監視装置13Aは、光源41、強度変調器42、光結合器43、監視光ゲート部44、光サーキュレータ45、偏波変調器46、遅延光ファイバ47、光結合器51、バランス検波器52、第1フィルタ53、電気信号ゲート部54、第2フィルタ55、RF検波器56、AD変換器57、制御部61Aおよび信号発生器62〜65を備える。
【0030】
光源41は、出力光の光周波数を変調することができるものであって、例えば半導体DFBレーザ光源や外部共振器付き半導体レーザ光源等である。光源41は、信号発生器62から出力される周期的な直接変調信号Aを入力して、この直接変調信号Aに基づいて光周波数が周期的に変調された光を出力する。この光源41からの出力光は櫛歯状の光波コヒーレンス関数を有する。
【0031】
強度変調器42は、信号発生器63から出力される周期的な外部変調信号Bを入力して、この外部変調信号Bに基づいて光源41からの出力光を強度変調して出力する。外部変調信号Bは直接変調信号Aに同期した周期的な信号である。この強度変調器42からの出力光は、強度変調によって光スペクトルが整形されたものとなり、光波コヒーレンス関数に含まれるノイズが低減されたものとなる。
【0032】
光結合器43は、光源41から出力され必要に応じて強度変調器42により強度変調された光を入力し、この入力光を監視光と参照光とに2分岐して、そのうち監視光を監視光ゲート部44へ出力し、参照光を偏波変調器46へ出力する。
【0033】
監視光ゲート部44は、光結合器43から出力された監視光を入力し、また、信号発生器64から出力された監視光ゲート信号Cをも入力する。監視光ゲート信号Cは、一定周期Tでゲート幅w1のパルスを有する周期的な信号である。監視光ゲート信号Cのゲート幅w1は、直接変調信号Aおよび外部変調信号Bそれぞれの変調周期にほぼ等しい。監視光ゲート部44は、このような監視光ゲート信号Cのゲート幅w1のパルスの期間のみ、光分岐器43から出力された監視光を光サーキュレータ45へ出力する。
【0034】
光サーキュレータ45は、監視光ゲート部44からパルス化されて出力された監視光を入力し、その監視光を光結合器12へ出力する。また、光サーキュレータ45は、光結合器12から到達した光を入力し、その光を光結合器51へ出力する。
【0035】
光サーキュレータ45から出力された監視光は、光結合器12を経て第1の光線路32へ送出され、さらに、第1の光線路32,光分岐器20,第2の光線路33を経て光フィルタ22に達する。この監視光の伝搬の際に生じる反射光(フレネル反射光やレイリー散乱光)は、監視光の伝搬経路と逆方向の経路を辿って、光結合器12および光サーキュレータ45を経て光結合器51に入力される。このとき、各第2の光線路33上であって加入者端末21近くに光フィルタ22が配置されていることにより、反射光のパワーが大きくなって、OCDR測定のSN比が改善され、測定時間が短縮されるので好ましい。
【0036】
特に、光フィルタの反射率Rは、光分岐器の分岐数をNとして、
R > R0 + 20LOG10(N) [dB]
を満たすことが好ましい。ここでR0は、光サーキュレータ、光結合器12、第1の光線路および光分岐器における内部反射率であり、典型的には−40dBである。上式を満たすことにより、光フィルタで反射されて監視装置に到達する反射光のパワーは、光分岐器の上流(監視装置側)での意図しない反射により生じた反射光のパワーに比べて大きくなるため、光分岐器上流での意図しない反射による雑音の影響が相対的に低減され、測定時間が短縮される。
【0037】
光分岐器43と光結合器51との間の参照光の光路に遅延光ファイバ47が設けられているのが好ましい。遅延光ファイバ47は、光サーキュレータ45から光結合器51に入力される反射光(監視光の戻り光)と、光分岐器43から光結合器51に入力される参照光と、の間の遅延時間を設定する。測定する距離範囲内の任意の位置で監視光が反射されて生じた反射光と参照光との間の遅延時間が、光源41の出力光のコヒーレンス時間より長くなるように、遅延光ファイバ47の長さを設定するのが好ましい。遅延時間がコヒーレンス時間より短い範囲では空間分解能は遅延時間と共に増大し、遅延時間がコヒーレンス時間より長い範囲では空間分解能は略一定値となるので、遅延時間を上記のように設定することにより、測定範囲内での空間分解能のバラツキを低減することができる。
【0038】
光分岐器43と光結合器51との間の参照光の光路に偏波変調器46が設けられているのも好ましい。偏波変調器46は、光分岐器43から出力された参照光を入力し、その参照光の偏波状態を変えて出力する。反射光(監視光の戻り光)と参照光とを互いに干渉させて検出する際、その検出効率は2つの光の偏波状態の相対関係に依存するので、反射光および参照光の少なくとも一方の偏波状態を変えながら測定を行い、複数の偏波状態で測定した結果に対して平均化などの演算処理を施して、偏波状態に依存しない測定結果を得ることが好ましい。
【0039】
光結合器51は、光サーキュレータ45から出力された反射光(監視光の戻り光)を入力するとともに、光分岐器43から出力されて偏波変調器46および遅延光ファイバ47を経た参照光を入力し、これら入力した反射光と参照光とを合波してバランス検波器52へ出力する。光結合器51として例えば3dBカプラが用いられる。
【0040】
バランス検波器52は、光結合器51により合波された反射光および参照光を入力して、これら反射光と参照光とが互いに干渉してなる干渉光の強度を示す電気信号を第1フィルタ53へ出力する。すなわち、バランス検波器52は、干渉光の強度に応じた値の電気信号を出力する光電変換部として作用する。
【0041】
第1フィルタ53は、バランス検波器52から出力される電気信号を入力し、この電気信号に含まれる不要雑音を除去して、その除去後の電気信号を電気信号ゲート部54へ出力する。第1フィルタ53は、入力した電気信号の直流成分を除去するフィルタであることが好ましい。直流成分の雑音は、光結合器51およびバランス検波器におけるバランスの誤差によって生じるが、これを第1フィルタ53により除去することにより、後段の電気信号ゲート部54における雑音発生量を低減することができる。
【0042】
電気信号ゲート部54は、バランス検波器52から出力されて第1フィルタ53を経た電気信号を入力し、また、信号発生器65から出力された電気信号ゲート信号Dをも入力する。電気信号ゲート信号Dは、一定周期Tでゲート幅w2のパルスを有する周期的な信号である。電気信号ゲート信号Dの周期Tは監視光ゲート信号Cの周期Tとほぼ等しい。電気信号ゲート信号Dのパルス中心は、監視光ゲート信号Cのパルス中心に対してゲート遅延時間dだけ遅れている。
【0043】
電気信号ゲート部54は、このような電気信号ゲート信号Dのゲート幅w2のパルスの期間のみ、第1フィルタ53から出力された電気信号を第2フィルタ55へ出力する。電気信号ゲート部54から第2フィルタ55へ出力される電気信号はパルス信号となる。電気信号ゲート部54としては、電気信号ゲート信号Dのレベルに応じてON/OFF動作するオペアンプ回路が用いられる。
【0044】
第2フィルタ55は、電気信号ゲート部54から出力されたパルス状の電気信号を入力し、その入力した電気信号の特定周波数帯域のものを選択的にRF検波器56へ出力する。第2フィルタ55における上記特定周波数帯域は、電気信号ゲート信号Dの繰り返し周波数f(=1/T)の整数倍の周波数nf(ただしnは自然数)を含まないことが好ましい。特に、上記特定周波数帯域はf(=1/T)の半奇数倍の周波数を含みf/2以下の帯域幅を持つことが好ましい。電気信号ゲート部に入力される信号は、直流および1/pの整数倍の周波数に雑音を持っており、この雑音が電気信号ゲート部を通過することにより、fの整数倍の周波数に雑音が拡散する。しかし、上記のように周波数帯域を設定することにより、電気信号ゲート部54において生じる雑音の影響を低減することができ、測定のSN比を改善することができて、測定時間を短縮することができる。
【0045】
RF検波器56は、第2フィルタ55から出力される電気信号を入力し、干渉成分の大きさに相当する電気信号に変換してAD変換器57へ出力する。AD変換器57は、RF検波器56から出力される電気信号を入力し、この電気信号(アナログ信号)をデジタル信号に変換して、このデジタル信号を制御部61Aへ出力する。このデジタル信号の値は、光源41における光周波数変調の周期pおよびゲート遅延時間dにより決定される光線路上の位置zにおいて生じた反射光のパワーを表す。
【0046】
制御部61Aは、AD変換器57から出力されたデジタル値を入力して、このデジタル値と位置zとを互いに関連付けて記憶する。制御部61Aは、信号発生器62〜65それぞれを制御して、信号発生器62から出力される直接変調信号Aの変調周期p、信号発生器63から出力される外部変調信号Bの変調周期p、信号発生器64から出力される監視光ゲート信号Cの周期Tおよびゲート幅w1、信号発生器65から出力される電気信号ゲート信号Dの周期Tおよびゲート幅w2、ならびに、ゲート遅延時間dを指定する。これにより、制御部61Aは、測定対象である光線路上の測定位置zを指定して、その位置zにおいて生じた反射光のパワーを表すデジタル値をAD変換器57から取得する。そして、制御部61Aは、光線路における監視光伝搬方向に沿った反射率分布を求める。
【0047】
また、制御部61Aは記録装置71に接続されており、記録装置71には、監視装置から光フィルタ22の各々までの距離や、光フィルタおよび加入者端末の設置位置(建物の名称や建物内での位置など)などの情報が格納される。制御部61Aは、反射率分布の中から光フィルタ22に由来する反射率のピークを検出し、事前に準備された光フィルタ22までの距離の情報と反射率ピークの距離とを照合して、各光フィルタ22からの反射光が検出されたか否かを判定する。そして、制御部61Aは、反射光が検出される加入者端末と反射光が検出されない加入者端末とが混在する場合は、後者の加入者端末が所属する加入者側光ファイバに断線などの異常があると判定し、異常を表示する。さらに、制御部61Aでは光フィルタまでの距離情報に基づいて、光フィルタの近傍に限定してOCDR測定を行い、光フィルタからの反射光の有無や反射率の大きさを知ることにより、その光フィルタが属する第2の光線路の異常の有無を迅速に調べることができる。
【0048】
次に、図2〜図5を用いて、直接変調信号A、外部変調信号B、監視光ゲート信号C、電気信号ゲート信号D、および、RF検波器56から出力される電気信号、等について説明する。
【0049】
図2は、直接変調信号A、外部変調信号B、監視光ゲート信号Cおよび電気信号ゲート信号Dそれぞれの波形を示す図である。同図(a)は、信号発生器62から光源41に与えられる直接変調信号Aの波形を示す。同図(b)は、信号発生器63から強度変調器42に与えられる外部変調信号Bの波形を示す。同図(c)は、信号発生器64から監視光ゲート部44に与えられる監視光ゲート信号Cの波形を示す。また、同図(d)は、信号発生器65から電気信号ゲート部54に与えられる電気信号ゲート信号Dの波形を示す。
【0050】
図3は、反射光(戻り監視光)と参照光との相関強度、監視光ゲート信号Cと電気信号ゲート信号Dとの重なり(パルスウィンドウ)、および、反射光の検出感度それぞれを、光線路上の位置zとの関係において示す図である。同図(a)は、反射光(戻り監視光)と参照光との相関強度分布を示す。同図(b)は、監視光ゲート信号Cと電気信号ゲート信号Dとの重なり(パルスウィンドウ)を示す。また、同図(c)は、反射光の検出感度分布を示す。
【0051】
図4は、図3(a)中に示された光線路における位置z,zそれぞれからの反射光による干渉信号のスペクトルを示す図である。同図(a)は、図3(a)中に示された相関が高い位置zからの反射光による干渉信号のスペクトルを示す。また、同図(b)は、図3(a)中に示された相関が低い位置zからの反射光による干渉信号のスペクトルを示す。
【0052】
図5は、図4(a)の一部を拡大して示す図である。同図(a)は、電気信号ゲート信号Dおよび監視光ゲート信号Cそれぞれの周期Tが直接変調信号Aの周期pの整数倍である場合を示す。また、同図(b)は、電気信号ゲート信号Dおよび監視光ゲート信号Cそれぞれの周期Tが直接変調信号Aの周期pの整数倍でない場合を示す。
【0053】
図2(a)に示されるように、直接変調信号Aは、周期pを有する周期的な信号であって、光源41からの出力光を光周波数変調するための信号である。周期pは、光線路における測定位置zを規定する。測定対象である光線路の位置zで反射・散乱されて生じた反射光(戻り監視光)の参照光に対する遅延時間差τが下記(1)式の条件を満たすときに、その位置(図3(a)中の位置z)からの反射光と参照光との変調の位相が同期して反射光と参照光との相関が高まる。一方、下記(1)式の条件を満たさない位置(図3(a)中の位置z)で反射・散乱されて生じた反射光(戻り監視光)は参照光との相関が低い。
【0054】
τ/p=整数 …(1)
【0055】
反射光(戻り監視光)と参照光との相関が高い場合(図3(a)中の位置zの場合)、には両光による干渉信号のスペクトルは監視光の線幅と同程度の周波数帯域に局在する(図4(a)参照)。一方、相関が低い場合(図3(a)中の位置zの場合)には、干渉信号のスペクトルは監視光の光周波数変調の振幅と同程度の周波数帯域にわたって拡散される(図4(b)参照)。したがって、監視光の線幅より大きな振幅で光周波数変調を施すことにより、特定の測定位置からの反射光を選択的に検出することができる。空間分解能は光周波数変調の振幅にほぼ逆比例するので、周波数変調の振幅は大きいほうが好ましい。一方、光源41としてのレーザダイオードに注入することができる電流の上限値は損傷閾値で規定され、下限値はゼロであるので、それによって振幅の上限が規定される。なお、直接変調信号Aの波形は、本実施形態では正弦波であるが、矩形波や三角波などの様々な周期的波形であってもよい。
【0056】
より好ましくは、空間分解能は9cm以下とすることが好ましい。それにより、異なる第2の光線路に属する光フィルタの反射ピークの重なりを避けるためには、第2の光線路の長さを互いに9cm以上異ならせれば十分であり、各第2の光線路には9cmの余長を確保すれば良い。一方、第2の光線路として用いられる光ファイバとしては一般的にはITU−T G.652準拠のシングルモード光ファイバのうち、曲げ特性を強化して許容曲げ半径を15mmとした光ファイバが普及している。この許容曲げ半径15mmで1周巻くことにより、9cmの余長を収納することができるので、空間分解能を9cm以下とすることにより、余長収納のスペースを最小化することができる。
【0057】
図2(b)に示されるように、外部変調信号Bは、直接変調信号Aに同期した周期的な信号であって、光源41からの出力光を強度変調器42により直接変調信号Aに同期して強度変調するための信号である。これによって、強度変調器42から出力される光のスペクトルを整形することができる。OCDRにおける反射光検出感度は距離の関数として表され、この距離の関数は光波コヒーレンス関数として知られる。特定の測定位置からの反射光を選択的に検出するためには、光波コヒーレンス関数はデルタ関数列に近いことが好ましい。一方、光波コヒーレンス関数は光のパワースペクトルのフーリエ変換で与えられるので、強度変調によってスペクトルを整形することにより、OCDRによる反射光測定の位置選択性を高めることができる。
【0058】
図2(c)に示されるように、監視光ゲート信号Cは、一定周期Tでゲート幅w1のパルスを有する周期的な信号であって、監視光ゲート部44から出力される監視光をゲート幅w1のパルスの期間のみに選択するための信号である。また、図2(d)に示されるように、電気信号ゲート信号Dは、一定周期Tでゲート幅w2のパルスを有する周期的な信号であって、電気信号ゲート部54から出力される電気信号をゲート幅w2のパルスの期間のみに選択するための信号である。
【0059】
電気信号ゲート信号Dの周期Tは監視光ゲート信号Cの周期Tと等しい。電気信号ゲート信号Dのパルス中心は、監視光ゲート信号Cのパルス中心に対してゲート遅延時間dだけ遅れている。このようにすることにより、光線路における特定の測定距離範囲(パルスウィンドウ)からの反射光が選択的に検出される(図3(b),(c)参照)。
【0060】
直接変調信号Aの周期p、監視光ゲート信号Cのゲート幅w1および電気信号ゲート信号Dのゲート幅w2が、下記(2)式の関係を満たすことが好ましい。このようにすることにより、パルスウィンドウの中心において反射光(戻り監視光)と参照光との相関がピークとなるようにゲート遅延時間dを定めれば、パルスウィンドウの中に存在し得る相関ピークは1つに制限される。
【0061】
w1+w2<2p …(2)
【0062】
ただし、前式では、監視光ゲート信号Cのレベル変化に対する監視光ゲート部44のON/OFF動作の遅延、電気信号ゲート信号Dのレベル変化に対する電気信号ゲート部54のON/OFF動作の遅延、装置内における監視光ゲート信号Cや電気信号ゲート信号Dなど信号の伝搬遅延や光の伝搬遅延、等が無視され得るものとされている。しかし、これらの遅延が無視され得ない場合は、それに応じてゲート遅延時間dが増減されればよい。
【0063】
一方、下記(4)式が満たされる場合パルスウィンドウ内に、反射光(戻り監視光)と参照光との相関がピークをとる位置が2つ以上存在するので、これらの位置の間で反射光測定のクロストークが生じてしまうので好ましくない。また、下記(5)式が満たされる場合、パルスエネルギーの低下によって測定のSN比が低下するので好ましくない。したがって、下記(6)式が満たされることが好ましい。
【0064】
w1+w2>2p …(4)
【0065】
w1+w2<0.5p …(5)
【0066】
0.5p<w1+w2<2p …(6)
【0067】
監視光ゲート信号Cおよび電気信号ゲート信号Dそれぞれの周期Tは直接変調信号Aの周期pの整数倍であることが好ましい。第2フィルタ55の透過帯域は、監視光ゲート信号Cおよび電気信号ゲート信号Dそれぞれの繰り返し周波数f(=1/T)の整数倍の周波数を含まないことが好ましい。例えば、nを整数として、下記(7)式が満たされることが好ましい。
【0068】
(n+0.1)/T < 透過帯域下限< 透過帯域上限 < (n+0.9)/T …(7)
【0069】
これは以下の理由による。バランス検波器52に入力される反射光(戻り監視光)の電界の複素振幅をE1とし、バランス検波器52に入力される参照光の電界の複素振幅をE2とすると、バランス検波器52から出力される電気信号(電流I1)は、比例係数を省略すると、下記(8)式で表される。この式の第1項は非干渉性の雑音である。εはバランス検出による同相成分の減衰係数を示す。εは、ゼロであることが理想的であるが、実際には10−5またはそれ以上の値をとることが多く、雑音の原因となる。第2項は干渉信号である。
【0070】
I1 = ε(|E1|+|E2|)+ 2Re[E1・E2*] …(8)
【0071】
非干渉雑音は、光強度に比例し、スペクトル成分としては、平均パワーに相当する直流成分と、光源41での寄生強度変調および外部強度変調による変調成分(周期p)とを有する。非干渉雑音は、第1フィルタ53によって直流成分が減衰された後、電気信号ゲート部54において電気信号ゲート信号Dによってパルスが切り出される。
【0072】
電気信号ゲート部54から出力される電気信号(電流I2)は下記(9)式で表される。ここで、Fは、電気信号ゲート信号Dであり、周期Tを有する。この式の第1項は非干渉性雑音であり、第2項は干渉信号である。
【0073】
I2 = εF(|E1|+|E2|)+ 2F・Re[E1・E2] …(9)
【0074】
この(9)式の第1項の非干渉性雑音は、周波数(1/p)の関数と周波数(1/T)の関数との積であるから、i,jを整数として、周波数(i/p+j/T)に出現する雑音となる(図5(b)参照)。ここで、監視光ゲート信号Cおよび電気信号ゲート信号Dそれぞれのパルス繰返し周期Tが直接変調信号Aの変調周期pの整数倍に等しくなるようにパルス周期を設定すると、非干渉性の雑音が生じる周波数は、iを整数として、i/Tに限定される(図5(a)参照)。
【0075】
したがって、周波数(i/T)を含まない周波数帯域の成分を第2フィルタ55により切り出して検出帯域とすることにより、雑音の少ない測定結果を得ることができる。そこで、第2光フィルタ55の透過帯域は上記(7)式を満たすことが好ましい。また、周波数(m+0.5)/Tは特に雑音のピークから遠いことから雑音が低いので、第2光フィルタ55の透過帯域は、パルス繰返しの半奇数倍の周波数(m+0.5)/Tを含むことが好ましい。
【0076】
(第2実施形態)
【0077】
図6は、第2実施形態に係る光線路監視装置13Bを備える光線路監視システム1Bの構成を示す図である。図1に示された第1実施形態に係る光線路監視システム1Aの構成と比較すると、この図6に示される第2実施形態に係る光線路監視システム1Bは、光線路監視装置13Aが設けられる局舎10Aに替えて、光線路監視装置13Bが設けられる局舎10Bを備える点で相違する。
【0078】
第1実施形態における光線路監視装置13Aの構成と比較すると、第2実施形態における光線路監視装置13Bは、第1フィルタ53,電気信号ゲート部54および信号発生器65を備えていない点で相違し、参照光ゲート部48および信号発生器66を備えている点で相違し、制御部61Aに替えて制御部61Bを備える点で相違する。
【0079】
第2実施形態では、バランス検波器52は、光結合器51により合波された反射光および参照光を入力して、これら反射光と参照光とが互いに干渉してなる干渉光の強度を示す電気信号を第2フィルタ55へ出力する。第2フィルタ55は、バランス検波器52から出力されたパルス状の電気信号を入力し、その入力した電気信号の特定周波数帯域のものを選択的にRF検波器56へ出力する。AD変換器57は、RF検波器56から出力される電気信号を入力し、この電気信号(アナログ信号)をデジタル信号に変換して、このデジタル信号を制御部61Bへ出力する。
【0080】
制御部61Bは、AD変換器57から出力されたデジタル値を入力して、このデジタル値と位置zとを互いに関連付けて記憶する。制御部61Bは、信号発生器62,63,64,66それぞれを制御して、信号発生器62から出力される直接変調信号Aの変調周期p、信号発生器63から出力される外部変調信号Bの変調周期p、信号発生器64から出力される監視光ゲート信号Cの周期Tおよびゲート幅w1、信号発生器66から出力される参照光ゲート信号Eの周期Tおよびゲート幅w2、ならびに、ゲート遅延時間dを指定する。これにより、制御部61Bは、測定対象である光線路上の測定位置zを指定して、その位置zにおいて生じた反射光のパワーを表すデジタル値をAD変換器57から取得する。そして、制御部61Bは、光線路における監視光伝搬方向に沿った反射率分布を求める。
【0081】
参照光ゲート部48は、光結合器43と光結合器51との間の参照光の光路に設けられている。参照光ゲート部48は、光結合器43から出力された参照光を入力し、また、信号発生器66から出力された参照光ゲート信号Eをも入力する。参照光ゲート信号Eは、第1実施形態における電気信号ゲート信号Dと同様のものであって、一定周期Tでゲート幅w2のパルスを有する周期的な信号である。参照光ゲート信号Eの周期Tは監視光ゲート信号Cの周期Tとほぼ等しい。参照光ゲート信号Eのパルス中心は、監視光ゲート信号Cのパルス中心に対してゲート遅延時間dだけ遅れている。参照光ゲート部48は、このような参照光ゲート信号Eのゲート幅w2のパルスの期間のみ、光分岐器43から光結合器51へ参照光を通過させる。
【0082】
光電変換部であるバランス検波器52は、このような参照光ゲート部48から出力された参照光を入力するとともに、光サーキュレータ45から出力された反射光(戻り監視光)をも入力して、これら反射光と参照光とが互いに干渉してなる干渉光の強度に応じた値の電気信号を第2フィルタ55へ出力する。
【0083】
前に説明した第1実施形態に係る光線路監視装置13Aでは、連続光である参照光と反射光(戻り監視光)とを互いに干渉させてバランス検波器52により検出した後、電気的なスイッチである電気信号ゲート部54によって干渉信号(バランス検波器52からの出力電圧信号)をパルスに切り出すことによって、測定対象である光線路における被測定位置をパルスウィンドウ内に限定してクロストークの無い測定が実現される。
【0084】
これに対して、第2実施形態に係る光線路監視装置13Bでは、参照光の光路上に設けた参照光ゲート部48を参照光ゲート信号Eによって動作させて参照光をパルスに切り出して、同じように被測定位置をパルスウィンドウ内に制限してクロストークの無い測定を実現することができる。
【0085】
第1実施形態に係る光線路監視装置13Aと比較すると、第2実施形態に係る光線路監視装置13Bは、電気回路が簡略化される利点がある。一方、第2実施形態に係る光線路監視装置13Bと比較すると、第1実施形態に係る光線路監視装置13Aは、非干渉雑音の直流成分を第1フィルタ53により減衰させることが可能となるので、この直流成分と電気信号ゲート信号Dとの積によって生じる非干渉性雑音が小さく、それ故、非干渉性雑音のピークを避けて設定した検出帯域に雑音ピークの裾がかかって雑音が生じる可能性が低く、測定の安定性が高い。また、第2実施形態に係る光線路監視装置13Bと比較すると、第1実施形態に係る光線路監視装置13Aは、一般に電気式スイッチよりも高コストな光ゲートの使用を減らすことができるので、低コストで実現することができる。
【図面の簡単な説明】
【0086】
【図1】第1実施形態に係る光線路監視装置13Aを備える光線路監視システム1Aの構成を示す図である。
【図2】直接変調信号A、外部変調信号B、監視光ゲート信号Cおよび電気信号ゲート信号Dそれぞれの波形を示す図である。
【図3】反射光(戻り監視光)と参照光との相関強度、監視光ゲート信号Cと電気信号ゲート信号Dとの重なり(パルスウィンドウ)、および、反射光の検出感度それぞれを、光線路上の位置zとの関係において示す図である。
【図4】光線路における位置z,zそれぞれからの反射光による干渉信号のスペクトルを示す図である。
【図5】図4(a)の一部を拡大して示す図である。
【図6】第2実施形態に係る光線路監視装置13Bを備える光線路監視システム1Bの構成を示す図である。
【符号の説明】
【0087】
1A,1B…光線路監視システム、10A,10B…局舎、11…局側端末、12…光結合器、13A,13B…光線路監視装置、20…光分岐器、21〜21…加入者端末、22〜22…光フィルタ、31…光ファイバ線路,32…第1の光線路,33〜33…第2の光線路、41…光源、42…強度変調器、43…光結合器、44…監視光ゲート部、45…光サーキュレータ、46…偏波変調器、47…遅延光ファイバ、48…参照光ゲート部、51…光結合器、52…バランス検波器、53…第1フィルタ、54…電気信号ゲート部、55…第2フィルタ、56…RF検波器、57…AD変換器、61A,61B…制御部、62〜66…信号発生器、71…記録装置。


【特許請求の範囲】
【請求項1】
2つの端を有する第1の光線路と、
2つの端を有する複数の第2の光線路と、
前記第1の光線路の第1の端を前記複数の第2の光線路の第1の端に結合する第1の光分岐器を含む分岐型光線路と、
前記第1の光線路の第2の端に結合された監視装置と、
を備える光線路監視システムにおいて、
前記監視装置は、
光周波数が周期的に変調されて櫛歯状の光波コヒーレンス関数を有する光を出力する光源と、
前記光源から出力された光を監視光と参照光とに分岐して出力する第2の光分岐器と、
前記第2の光分岐器から出力された監視光が前記分岐型光線路を伝搬する間に生じた反射光と前記第2の光分岐器から出力された参照光とが互いに干渉してなる干渉光を検出して電気信号に変換して出力する検出部と、
前記光源における光周波数変調の周期pを変化させるとともに、その周期pと前記検出部から出力される電気信号とに基づいて、前記分岐型光線路における監視光伝搬方向に沿った反射率分布を求める制御部と、
を含む、
ことを特徴とする光線路監視システム。
【請求項2】
前記複数の第2の光線路の少なくとも1つは反射部を有し、
前記光線路監視システムは、前記反射部と前記監視装置との間の距離の情報が記録された記録装置とを含む、
ことを特徴とする請求項1に記載の光線路監視システム。
【請求項3】
前記監視装置は前記反射部で反射された監視光を9cm以下の空間分解能で検出する
ことを特徴とする請求項1に記載の光線路監視システム。
【請求項4】
前記複数の反射部は監視光を波長選択的に反射する反射器であり、
前記第1の光分岐器の分岐数をNとして前記反射器の反射率が−40+20×LOG10(N)[dB]より大である、
ことを特徴とする請求項1に記載の光線路監視システム。
【請求項5】
前記監視装置は、前記第2の光分岐器から出力された監視光を入力して、一定周期Tで第1ゲート幅w1の期間の該監視光を選択的に出力する監視光ゲート部をさらに備え、
前記検出部は、前記監視光ゲート部から出力された監視光が光線路を伝搬する際に生じた反射光と前記第1の光分岐器から出力された参照光とが互いに干渉してなる干渉光の強度を示す電気信号のうち、前記一定周期Tで第2ゲート幅w2の期間の該電気信号の特定周波数帯域のものを選択的に出力する、
ことを特徴とする請求項1に記載の光線路監視システム。
【請求項6】
前記検出部が、
前記干渉光の強度に応じた値の電気信号を出力する光電変換部と、
前記光電変換部から出力された電気信号を入力して、前記一定周期Tで前記第2ゲート幅w2の期間の該電気信号を選択的に出力する電気信号ゲート部と、
を含むことを特徴とする請求項5に記載の光線路監視システム。
【請求項7】
前記周期p,前記第1ゲート幅w1および前記第2ゲート幅w2が、「w1+w2<2p」なる関係を満たす、ことを特徴とする請求項5に記載の光線路監視システム。
【請求項8】
前記検出部における前記特定周波数帯域が、mを任意の整数として、m/pなる周波数を含まない、ことを特徴とする請求項5に記載の光線路監視システム。
【請求項9】
光周波数が周期的に変調されて櫛歯状の光波コヒーレンス関数を有する光を出力する光源と、
前記光源から出力された光を監視光と参照光とに分岐して出力する光結合器と、
前記光結合器から出力された監視光を入力して、一定周期Tで第1ゲート幅w1の期間の該監視光を選択的に出力する監視光ゲート部と、
前記監視光ゲート部から出力された監視光が光線路を伝搬する際に生じた反射光と前記光結合器から出力された参照光とが互いに干渉してなる干渉光の強度を示す電気信号のうち、前記一定周期Tで第2ゲート幅w2の期間の該電気信号の特定周波数帯域のものを選択的に出力する検出部と、
前記光源における光周波数変調の周期pを変化させるとともに、その周期pと前記検出部から出力される電気信号とに基づいて、前記光線路における監視光伝搬方向に沿った反射率分布を求める制御部と、
を備えることを特徴とする光線路監視装置。
【請求項10】
前記検出部が、
前記干渉光の強度に応じた値の電気信号を出力する光電変換部と、
前記光電変換部から出力された電気信号を入力して、前記一定周期Tで前記第2ゲート幅w2の期間の該電気信号を選択的に出力する電気信号ゲート部と、
を含むことを特徴とする請求項9に記載の光線路監視装置。
【請求項11】
前記周期p,前記第1ゲート幅w1および前記第2ゲート幅w2が、「w1+w2<2p」なる関係を満たす、ことを特徴とする請求項9に記載の光線路監視装置。
【請求項12】
前記検出部における前記特定周波数帯域が、mを任意の整数として、m/pなる周波数を含まない、ことを特徴とする請求項9に記載の光線路監視装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−139253(P2010−139253A)
【公開日】平成22年6月24日(2010.6.24)
【国際特許分類】
【出願番号】特願2008−313209(P2008−313209)
【出願日】平成20年12月9日(2008.12.9)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】