説明

共焦点内視鏡装置、及び共焦点内視鏡システム

【課題】Z軸方向を高分解能で走査するために好適に構成された共焦点内視鏡装置を提供すること。
【解決手段】共焦点内視鏡装置を、点光源を二次元方向に移動自在に支持する点光源支持手段と、点光源から放射された光の集光点と共役の位置に配置された共焦点ピンホールと、点光源支持手段を共焦点ピンホールと共に二次元方向と直交する直交方向に移動自在に保持する保持手段と、点光源支持手段に設けられた第一の電極群と、保持手段に設けられた第二の電極群とを有する構成とし、第一の電極群と第二の電極群を、点光源支持手段が保持手段に対して直交方向に所定量移動する毎に互いの短絡状態が変わるように構成した。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、照射された被写体からの戻り光のうち共焦点光学系の焦点位置と共役の位置に配置されたピンホールを介した光のみを検出して画像化する共焦点内視鏡システム、及び該共焦点内視鏡システムが有する共焦点内視鏡装置に関する。
【背景技術】
【0002】
近年、体腔内の生体組織を観察するための共焦点内視鏡システムとして、共焦点光学系を備えた、いわゆる共焦点内視鏡システムが知られている。共焦点内視鏡システムは、被写体に対して照射光を照射する。共焦点内視鏡システムは、照射された被写体からの戻り光のうち共焦点光学系の焦点位置と共役の位置に配置されたピンホールを介した光のみを光検出器によって検出する。共焦点内視鏡システムは、光検出器において検出光の強度に応じて発生した信号を基に、通常の電子スコープやファイバスコープで観察される像よりも高倍率かつ高解像度の画像を生成する。この種の共焦点内視鏡システムの具体的構成例は、特許文献1に記載されている。
【0003】
特許文献1に記載の共焦点内視鏡システムは、被写体への照明光とその戻り光を伝送する光ファイバの先端近傍を二次元方向に振動させるX−Y走査機構を備えている。X−Y走査機構は、Z軸アクチュエータによって、点光源として機能する光ファイバごとZ軸方向に進退自在に構成されている。すなわち、特許文献1に記載の共焦点内視鏡システムは、光ファイバを二次元方向に振動させつつZ軸方向に進退させることによって、被写体を三次元走査するように構成されている。
【0004】
Z軸アクチュエータは、通電による加熱によってZ軸方向に収縮する形状記憶合金を有している。X−Y走査機構は、形状記憶合金への通電を行って形状記憶合金をZ軸方向に収縮させると、形状記憶合金に引っ張られてZ軸方向に後退する。X−Y走査機構は、形状記憶合金が通電の停止によって常温に戻り、形状記憶効果による形状の復元が無くなると、スプリングの付勢力によってZ軸方向に押し出されて前進する。X−Y走査機構のZ軸方向の移動量は、二本の電線を接着剤で寄り合わせてコイル状に巻いた二重線コイル容量性センサの静電容量の変化量から検出する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−321792号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
Z軸アクチュエータには、高倍率かつ高解像度の画像を生成するため、高い分解能が要求される。しかし、コイルの巻回にはばらつきが生じやすいため、二重線コイル容量性センサの個体差を抑えるのは難しい。すなわち、二重線コイル容量性センサではX−Y走査機構のZ軸方向の移動を高精度に管理するのが難しく、Z軸アクチュエータの高分解能化を達成するための位置検出センサとしては不向きであるとの指摘がある。
【0007】
本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、Z軸方向を高分解能で走査するために好適に構成された共焦点内視鏡装置、及び該共焦点内視鏡装置を有する共焦点内視鏡システムを提供することである。
【課題を解決するための手段】
【0008】
上記の課題を解決する本発明の一形態に係る共焦点内視鏡装置は、被写体の深さ方向の走査量を高精度に検出して高精細な三次元共焦点画像を得るべく、所定の点光源を二次元方向に移動自在に支持する点光源支持手段と、点光源から放射された光の集光点と共役の位置に配置された共焦点ピンホールと、点光源支持手段を共焦点ピンホールと共に二次元方向と直交する直交方向に移動自在に保持する保持手段と、点光源支持手段に設けられた第一の電極群と、保持手段に設けられた第二の電極群とを有し、第一の電極群と第二の電極群を、点光源支持手段が保持手段に対して直交方向に所定量移動する毎に互いの短絡状態が変わるように構成したことを特徴とする装置である。
【0009】
点光源支持手段は、第一の電極群を外壁面に備え、点光源を内部に収容した第一の筒状部材を有する構成としてもよい。保持手段は、第一の電極群と対向する内壁面中の位置に第二の電極群を備え、第一の筒状部材を内部に同軸で収容した第二の筒状部材を有する構成としてもよい。
【0010】
本発明に係る共焦点内視鏡装置は、第一の筒状部材と第二の筒状部材との、二次元方向を含む二次元平面内の相対的な位置ずれを防止する位置ずれ防止手段を更に有する構成としてもよい。
【0011】
第一の筒状部材の外壁面と第二の筒状部材の内壁面は、位置ずれ防止手段として機能するように、各該筒状部材の軸と直交する断面形状が互いに対応するD型形状に形成され、第一の筒状部材と第二の筒状部材は、D型形状をなす平面部が互いに対向する位置関係で配置されたものであってもよい。
【0012】
第一の電極群、第二の電極群はそれぞれ、互いを接触し易くさせるため、第一の筒状部材、第二の筒状部材が有する平面部に設けられた構成としてもよい。
【0013】
第一の電極群、第二の電極群は、保持手段に対する点光源支持手段の初期位置を検出するための初期位置検出用パターンを有したものであってもよい。
【0014】
第一の電極群、第二の電極群は、例えば絶縁性を有するベースフィルム上に設けられたものとしてもよい。ベースフィルム上の第一の電極群及び第二の電極群以外の領域には、電極の剥離等を有効に避けるため、ベースフィルムに対する第一の電極群及び第二の電極群の突出を無くすための平面処理材を塗布してもよい。
【0015】
第一の電極群と第二の電極群とは、摩耗による劣化や互いの確実な電気的接触を担保すべく、該第一の電極群に埋設された導電性を有するバネ状構造体を介して接触する構成としてもよい。
【0016】
ここで、点光源支持手段は、所定の光源から供給された光を伝送する光ファイバの射出端近傍を二次元方向に移動自在に支持した構成としてもよい。射出端は、点光源かつ共焦点ピンホールとして機能するように、集光点と共役の位置に配置されていることが望ましい。
【0017】
上記の課題を解決する本発明の一形態に係る共焦点内視鏡システムは、上記の何れかに記載の共焦点内視鏡装置と、第一の電極群と第二の電極群との短絡状態を検知する短絡状態検知手段と、検知された短絡状態を基に、保持手段に対する点光源支持手段の直交方向の移動量を検出する移動量検出手段とを有することを特徴としたシステムである。
【0018】
移動量検出手段は、短絡状態が変化するポイントをカウントするカウント手段と、カウントされたポイントに応じた移動量を算出する移動量算出手段とを有する構成としてもよい。
【0019】
本発明に係る共焦点内視鏡システムは、以前の診断条件を簡単に再現できるようにするため、保持手段に対する点光源支持手段の直交方向の現在の位置情報を保存する位置情報保存手段と、保存された位置情報を指定する位置情報指定手段と、位置情報で指定された位置に点光源支持手段を移動させる指定位置移動手段とを更に有する構成としてもよい。
【0020】
本発明に係る共焦点内視鏡システムは、共焦点ピンホールを介した光を受光して画像信号を検出する画像信号検出手段と、画像信号検出手段による画像信号の検出タイミングに応じて、各該画像信号に対する二次元平面の画素配置を決定すると共に、移動量検出手段によって検出された移動量に応じて、各該画像信号に対する該二次元平面と直交する深さ方向の画素配置を決定する画素配置決定手段と、決定された画素配置に従って各画像信号によって表現される画像情報を空間的に配列して被写体画像を作成する画像作成手段とを更に有する構成としてもよい。
【発明の効果】
【0021】
本発明によれば、Z軸方向を高分解能で走査するために好適に構成された共焦点内視鏡装置、及び該共焦点内視鏡装置を有する共焦点内視鏡システムが提供される。
【図面の簡単な説明】
【0022】
【図1】本発明の実施形態の共焦点内視鏡システムの構成を概略的に示す図である。
【図2】本発明の実施形態の共焦点内視鏡システムが有する電子スコープの挿入先端部に組み込まれた共焦点光学ユニットの構成を概略的に示す図である。
【図3】本発明の実施形態の共焦点光学ユニットに実装された移動量検出機構の構成を概略的に示す図である。
【図4】本発明の実施形態の共焦点光学ユニットが有する外筒に接着されたパターンシートの構成を示す上面図、断面図である。
【図5】本発明の実施形態の共焦点光学ユニットが有する内筒に接着されたヘッドシートの構成を示す上面図、断面図である。
【図6】本発明の実施形態の共焦点光学ユニットが有する内筒がZ軸方向に移動した際のパターンシート又はヘッドシートの各パターンの接触状態を説明するための図である。
【図7】本発明の実施形態において各パターンが接触した際に検知される各入力端子の入力レベルを示す図である。
【図8】本発明の実施形態において検知される各入力レベルと内筒の移動量との関係を示す表である。
【図9】本発明の実施形態の共焦点光学系を構成する点光源のZ軸方向の移動量を検出する移動量検出処理を示すフローチャートである。
【発明を実施するための形態】
【0023】
以下、図面を参照して、本発明の実施形態の共焦点内視鏡システムについて説明する。
【0024】
図1は、本実施形態の共焦点内視鏡システム1の構成を概略的に示す図である。図1に示されるように、共焦点内視鏡システム1は、被写体を撮影するための電子スコープ100を有している。電子スコープ100は、可撓性を有するシース11aによって外装された挿入可撓管11を備えている。挿入可撓管11の先端には、硬質性を有する樹脂製筐体によって外装された挿入先端部12が連結されている。挿入可撓管11と挿入先端部12との連結箇所にある湾曲部14は、挿入可撓管11の基端に連結された手元操作部13からの遠隔操作(具体的には、湾曲操作ノブ13aの回転操作)によって屈曲自在に構成されている。この屈曲機構は、一般的な電子スコープに組み込まれている周知の機構であり、湾曲操作ノブ13aの回転操作に連動した操作ワイヤの牽引によって湾曲部14を屈曲させるように構成されている。挿入先端部12の方向が上記操作による屈曲動作に応じて変わることにより、電子スコープ100による撮影領域が移動する。
【0025】
共焦点内視鏡システム1には、二つの撮像システムが組み込まれている。一つは、被写体を標準的な倍率及び解像度で撮像する一般的な内視鏡撮像システムと同様の撮像システム(以下、「第一の撮像システム」と記す。)である。もう一つは、第一の撮像システムよりも高倍率かつ高解像度で被写体を撮像する撮像システム(以下、「第二の撮像システム」と記す。)である。まずは、第一の撮像システムについて説明する。
【0026】
共焦点内視鏡システム1は、第一の撮像システムを構成する第一のプロセッサ200を有している。第一のプロセッサ200は、自然光の届かない体腔内を電子スコープ100を介して照明する光源装置202と、電子スコープ100からの撮像信号を処理する信号処理装置204とを一体に備えた装置である。別の実施形態では、光源装置202と信号処理装置204とを別体で構成してもよい。電子スコープ100は、第一のユニバーサルケーブル15を介して、第一のプロセッサ200に電気的に及び光学的に接続されている。
【0027】
光源装置202から放射された照明光は、図示省略された絞り機構を介して適正な光量に制限されて、電子スコープ100が有するLCB(light carrying bundle)102の入射端に入射する。適正とされる映像の明るさの基準は、術者によるフロントパネル206の輝度調節操作に応じて設定変更される。
【0028】
LCB102は、入射端が光源装置202と結合する位置に配置され、射出端が挿入先端部12に配置されている。LCB102の入射端に入射した照明光は、LCB102の内部を全反射を繰り返すことによって伝播して、射出端から射出する。挿入先端部12には、第一の撮像システムを構成する配光レンズ104、対物レンズ106、固体撮像素子108が組み込まれている。射出端から射出した照明光は、配光レンズ104を介して被写体を照明する。被写体からの反射光は、対物レンズ106を介して固体撮像素子108の受光面上で光学像を結ぶ。
【0029】
固体撮像素子108は、例えばベイヤ型画素配置を有する単板式カラーCCD(Charge Coupled Device)であり、第一のプロセッサ200から供給されるクロックパルスに従って、映像のフレームレートに同期したタイミングで駆動する。固体撮像素子108は、受光面上の各画素で結像した光学像を光量に応じた電荷として蓄積して、R、G、Bの各色に応じた信号に変換する。変換された信号は、フォトカップラなどを使用した絶縁回路(不図示)を介して信号処理装置204に入力する。
【0030】
信号処理装置204は、固体撮像素子108の出力信号に、クランプ、ニー、γ補正、補間処理、AGC(Auto Gain Control)、AD変換等の所定の信号処理を施して、その処理信号を、図示省略されたフレームメモリにフレーム単位でバッファリングする。バッファリングされた信号は、所定のタイミングでフレームメモリから掃き出されて、NTSC(National Television System Committee)やPAL(Phase Alternating Line)等の所定の規格に準拠した映像信号に変換される。変換された映像信号がモニタ200Mに順次入力することにより、モニタ200Mに、標準的な倍率及び解像度の被写体のカラー画像が表示される。
【0031】
次に、第二の撮像システムについて説明する。第二の撮像システムは、挿入先端部12に組み込まれた共焦点光学ユニット120を有している。共焦点光学ユニット120は、共焦点顕微鏡の原理を応用して設計されたユニットであり、高倍率かつ高解像度の被写体を観察するのに好適に構成されている。第二の撮像システムを用いた共焦点観察は、共焦点光学ユニット120の前面に位置する挿入先端部12の端面12aを被写体に当て付けた状態で行う。一方、第一の撮像システムを用いて通常観察を行う場合は、ボケのない鮮明な被写体像を得るため、対物レンズ106の配置面(図1中、挿入先端部12の端面12b)を、例えば対物レンズ106の焦点距離相当分だけ被写体から離す必要がある。そこで、挿入先端部12の先端面は、端面12aが端面12bより所定量突出して位置するように形成されている。そのため、対物レンズ106は、端面12aを被写体に当て付けると、被写体を被写界深度に収める位置で安定する。
【0032】
共焦点内視鏡システム1は、第二の撮像システムを構成する第二のプロセッサ300を有している。電子スコープ100は、第二のユニバーサルケーブル16を介して、第二のプロセッサ300に電気的に及び光学的に接続されている。
【0033】
第二のプロセッサ300は、被写体に対して励起光として作用する波長のレーザ光を放射するレーザ光源302を有している。レーザ光源302から放射されたレーザ光(例えば波長:488nm)は、光ファイバ304の内部を伝播して、フォトカップラ306を介して光ファイバ122の入射端に入射する。
【0034】
図2は、挿入先端部12に組み込まれた共焦点光学ユニット120の構成を概略的に示す図である。以降においては、共焦点光学ユニット120の構成を説明するにあたり、便宜上、共焦点光学ユニット120の長手方向をZ方向と定義し、Z方向に直交しかつ互いに直交する二方向をX方向、Y方向と定義する。
【0035】
図2に示されるように、共焦点光学ユニット120は、当該ユニットの各種構成部品を収容する金属製の外筒124を有している。外筒124は、外筒124の内壁面形状に対応する外壁面形状を持つ内筒126を、同軸でかつZ軸方向にスライド自在に保持している。光ファイバ122の射出端122aは、外筒124、内筒126の各基端面に形成された開口を通じて内筒126の内部に支持されており、第二の撮像システムの二次的な点光源として機能する。
【0036】
外筒124は、対物光学系128を有している。対物光学系128は、図示省略されたレンズ枠に保持された複数枚構成の光学レンズを有している。レンズ枠は、外筒124の内部において、内筒126と相対的に固定され支持されている。そのため、レンズ枠に保持された光学レンズ群は、外筒124の内部を内筒126と一体となってZ軸方向にスライドすることとなる。
【0037】
光ファイバ122の射出端122aの近傍は、図示省略された圧電アクチュエータによって振動する。この圧電アクチュエータは、第二のプロセッサ300が有するコントローラ308によって駆動制御される。射出端122aは、圧電アクチュエータによる振動によって、XY平面(厳密には、XY平面に近似する曲面)上を周期的に移動する。射出端122aから射出するレーザ光は、対物光学系128を介して焦点を結びつつ射出端122aのXY平面上の移動に伴って、被写体を二次元走査する。なお、射出端122aの移動曲面の曲率半径は極めて大きい。よって、射出端122aの移動曲面をXY平面とみなしても実質的に問題はない。
【0038】
共焦点光学ユニット120は、内筒126の基端面と外筒124の内壁面との間に、圧縮コイルばね130を有している。圧縮コイルばね130は、内筒126の基端面と外筒124の内壁面とによって、自然長からZ軸方向に初期的に圧縮した状態で狭持されている。
【0039】
共焦点光学ユニット120は、Z軸方向に長尺な棒状の形状記憶合金132を有している。形状記憶合金132は、一端が内筒126の基端面に、他端が外筒124の内壁面に、それぞれ固定されている。形状記憶合金132は、常温下で外力が加わると変形して、一定温度以上に加熱されると形状記憶効果によって所定の形状に復元する性質を有している。
【0040】
形状記憶合金132は、常温下では、圧縮コイルばね130の復元力が加わることによってZ軸方向に伸びている。形状記憶合金132は、形状記憶効果による復元力が圧縮コイルばね130の復元力より大きくなるように設計されている。
【0041】
形状記憶合金132の形状は、コントローラ308から形状記憶合金132への通電による形状記憶合金132自体の加熱によってコントロールされる。具体的には、形状記憶合金132は、通電によって加熱されると、圧縮コイルばね130の復元力に抗してZ軸方向に収縮する。形状記憶合金132の一端と固定されている内筒126は、形状記憶合金132の収縮に伴い、内筒126に支持された光ファイバ122と共に外筒124の内部をZ軸方向に後退する。形状記憶合金132の収縮量は、形状記憶合金132への通電量によって精密にコントロールされる。この通電量(換言すると、光ファイバ122のZ軸方向の移動量)は、術者による手元操作部13のZ軸移動量の調節操作に応じて変動する。
【0042】
形状記憶合金132は、通電が停止して常温に戻る(又は通電量の減少によって温度が低下する)と、形状記憶効果による復元力が無くなり(又は弱くなり)、圧縮コイルばね130の復元力によってZ軸方向に伸びる。内筒126は、圧縮コイルばね130の復元力によって基端面が押されて、光ファイバ122と共に外筒124の内部をZ軸方向に前進する。
【0043】
光ファイバ122の射出端122aから射出するレーザ光は、対物光学系128を介して被写体の表面又は表層で焦点を結ぶ。この焦点位置は、点光源である射出端122aの進退に応じてZ軸方向に変位する。すなわち、共焦点光学ユニット120は、圧電アクチュエータによる射出端122aの二軸方向の移動と、圧縮コイルばね130及び形状記憶合金132による射出端122aの一軸方向の移動とを行うことによって、被写体を三次元走査する。
【0044】
光ファイバ122の射出端122aは、対物光学系128の前側焦点位置に配置されている。そのため、射出端122aは、共焦点ピンホールとして機能する。すなわち、射出端122aには、レーザ光によって照明された被写体の散乱成分(蛍光)のうち射出端122aと光学的に共役な集光点からの蛍光のみが入射する。
【0045】
光ファイバ122の射出端122aに入射した蛍光は、光ファイバ122の内部を伝播する。光ファイバ122の内部を伝播した蛍光は、フォトカップラ306によってレーザ光源302からのレーザ光と分離された後、光ファイバ312を介して光検出器314によって検出される。この検出信号は、画像生成回路316に入力する。画像生成回路316は、順次入力する検出信号の検出タイミングに応じて、各検出信号によって表現される点像への画素アドレスの割当てを行う。画像生成回路316は、割り当てた画素アドレスに従って、各点像の空間的配列によって構成される画像の信号をフレームメモリにフレーム単位でバッファリングする。バッファリングされた信号は、所定のタイミングでフレームメモリから掃き出されて、NTSCやPAL等の所定の規格に準拠した映像信号に変換される。変換された映像信号がモニタ300Mに順次入力することにより、モニタ300Mに、高倍率かつ高解像度の被写体の三次元共焦点画像が表示される。
【0046】
ここで、三次元共焦点画像の倍率又は解像度を向上させるためには、共焦点光学系の構成要素である点光源をZ軸方向に微細に移動させることが不可欠である。これは、形状記憶合金132への精細な通電量制御を行い、光ファイバ122の射出端122aを微細に移動させることによって達成される。ところが、三次元共焦点画像の倍率又は解像度を向上させるためには、移動機構の分解能を高くするだけでは足りず、実際の移動量(又は位置)を検出して移動機構を高精度にフィードバック制御するため、移動量検出機構の分解能も向上させる必要がある。本出願人は、この点に着眼して、共焦点光学ユニット120に適した移動量検出機構を想起した。
【0047】
図3(a)〜図3(c)は、共焦点光学ユニット120に組み込まれた移動量検出機構の構成を概略的に示す図である。図3(a)、図3(b)は、互いに直交する別の角度(X軸方向又はY軸方向)から共焦点光学ユニット120を臨む図となっている。図3(c)は、外筒124及び内筒126をXY平面で切断した切断面図である。
【0048】
図3(a)は、説明の便宜上、外筒124から内筒126を外した状態を示している。図3(a)に示されるように、外筒124の内壁面、内筒126の外壁面にはそれぞれ、互いに異なるパターンがプリントされたパターンシートP、ヘッドシートHが接着されている。
【0049】
図3(b)は、説明の便宜上、一部の構成(パターンシートP及びヘッドシートHの周辺)を拡大して示している。図3(b)の拡大図に示されるように、パターンシートPとヘッドシートHは、対向する近接位置に配置されている。パターンシートP及びヘッドシートHの接着位置は、例えば治具等によって精密に決められている。
【0050】
図3(c)に示されるように、外筒124及び内筒126は、XY平面内における互いの相対位置のずれが規制されるように、断面がD型のパイプ形状を有している。パターンシートPは外筒124内壁の平面部分に、ヘッドシートHは内筒126外壁の平面部分に、それぞれ位置している。パターンシートPとヘッドシートHとの相対的な最大位置ずれ量は、各筒をD型に形成することによる相対移動量の規制によって、許容公差内に抑えられている。
【0051】
図4(a)、図4(b)はそれぞれ、パターンシートPの構成を示す上面図、断面図である。図4(a)又は図4(b)に示されるように、パターンシートPは、絶縁性を有するベースフィルムを有している。ベースフィルム上には、銅箔のパターンP0〜P2がプリントされている。ベースフィルム上のパターンP0〜P2以外の領域には、ベースフィルムに対するパターンP0〜P2の突出を無くすための平面処理材として、パターンP0〜P2と同じ厚みのレジスト層(ベークライト材等)が塗布されている。
【0052】
パターンP0は、角丸四角状に形成されたパターンであり、パターンP0〜P2がプリントされている領域のほぼ中央に位置する。パターンP1とP2は、櫛歯状に形成されたパターンであり、パターンP0を挟んでほぼ対称に位置する。より正確には、パターンP1とP2は、互いの櫛歯(幅5μm)がパターンの長手方向に半ピッチ(2.5μm)ずらされて千鳥状に配置されている。
【0053】
図5(a)、図5(b)はそれぞれ、ヘッドシートHの構成を示す上面図、断面図である。図5(a)又は図5(b)に示されるように、ヘッドシートHは、絶縁性を有するベースフィルムを有している。ベースフィルム上には、幅2.5μm未満の銅箔のパターンH0〜H5がプリントされている。ベースフィルム上のパターンH0〜H5以外の領域には、ベースフィルムに対するパターンH0〜H5の突出を無くすための平面処理材として、パターンH0〜H5と同じ厚みのレジスト層(ベークライト材等)が塗布されている。
【0054】
図5(b)は、説明の便宜上、一部の構成(パターンH5の周辺)を拡大して示している。図5(b)の拡大図に示されるように、パターンH5には、微細加工によって形成された導電性を有するバネ状構造体Sが埋設されている。バネ状構造体Sは、パターンH5とパターンシートPとのクリアランスを高精度に保つと共に、パターンH5とパターンシートPとの摩擦力を低減しつつ両者の摩耗を防止する効果を奏する。バネ状構造体Sにはバネ性があるため、ヘッドシートH又はパターンシートPに反り等がある場合にも、バネ状構造体Sを介したパターンH5とパターンシートPとの確実な電気的接触が担保される。なお、同様のバネ状構造体Sは、パターンH0〜H4にも埋設されている。すなわち、各パターンH0〜H5は、バネ状構造体Sを介して各パターンP0〜P2に電気的に接触する。
【0055】
図6は、内筒126がZ軸方向に移動した際のパターンP0〜P2、H0〜H5の各パターンの接触状態を説明するための図である。図6中Z軸方向に伸びた双方向矢印は、符号U側が共焦点光学ユニット120の基端(後退側)であり、符号D側が共焦点光学ユニット120の先端(前進側)である。図6においては、説明の便宜上、パターンH0〜H5が移動する移動可能範囲を区間a〜lに区切ると共に、各区間の境界位置に符号m〜xを付す。各区間a〜lの幅及び各境界位置の間隔は、パターンP1又はP2の櫛歯幅の半分(2.5μm)である。なお、パターンH0〜H5の位置検出は、ハードウェア的にはパターンP1及びP2の一端から他端に至る全範囲内で可能である。しかし、本実施形態では、パターンH0〜H5の移動可能範囲は、各種部品の加工誤差や組立誤差を考慮して、区間a〜lの範囲内にソフトウェア的に抑えられている。
【0056】
各パターンP0〜P2、H0〜H5は、コントローラ308が有する各入力端子IN1〜IN5に接続されている。具体的には、図6に示されるように、入力端子IN1にはパターンP1及びH1が、入力端子IN2にはパターンP2及びH4が、入力端子IN3にはパターンH2及びH3が、入力端子IN4にはパターンP1及びH0が、入力端子IN5にはパターンP2及びH5が、それぞれ接続されている。
【0057】
図7(a)〜図7(d)は、パターンP0〜P2、H0〜H5の各パターンが接触した際に検知される各入力端子IN1〜IN5の入力レベルを示す図である。具体的には、図7(a)は入力端子IN1の入力レベルを、図7(b)は入力端子IN2の入力レベルを、図7(c)は入力端子IN3の入力レベルを、図7(d)は入力端子IN4、5の入力レベルを、それぞれ示す。
【0058】
図8(a)は、区間a〜lにおける、入力端子IN1及びIN2の各入力レベルを示す表である。図8(b)は、境界位置m〜xにおける、所定の基準位置(境界位置r)に対するパターンH0〜H5の位置(内筒126の移動量)を示す表である。
【0059】
図7(a)〜図7(d)、図8(a)の各図に示されるように、各入力端子IN1〜IN5は、自身に接続されたパターン同士が短絡した時に入力レベル「1」を、当該パターン同士が短絡していない時に入力レベル「0」を、それぞれ検知する。図7(a)、図7(b)、図8(a)、図8(b)から明らかなように、入力端子IN1とIN2の入力レベルの組合せは、内筒126が2.5μm移動する毎に変わる。この入力レベルの組合せの変化(パルス)は、コントローラ308によってカウントされる。すなわち、コントローラ308は、2.5μmという高い分解能で内筒126の移動量を検出する。なお、2.5μmという数値は、あくまで一例に過ぎない。この分解能は、基板上にプリント可能な最小パターン幅に応じて更に細かく設定することもできる。
【0060】
図9は、共焦点光学系を構成する点光源(光ファイバ122の射出端122a)のZ軸方向の移動量を検出する移動量検出処理を示すフローチャートである。図9の移動量検出処理は、共焦点内視鏡システム1の起動によって実行が開始されて、共焦点内視鏡システム1の電源が切断された時点で、又は共焦点内視鏡システム1が停止した時点で終了する。なお、以降の本明細書中の説明並びに図面において、処理ステップは「S」と省略して記す。
【0061】
コントローラ308は、図9の移動量検出処理の初期的な処理として、イニシャルポイント(ここでは境界位置r)の検出を行う(S1)。具体的には、形状記憶合金132への通電を行い、内筒126を所定方向(ここではU方向)に移動させる。内筒126が移動して、パターンH2及びH3とパターンP0とが短絡すると、入力端子IN3の入力レベル「1」が検知される(図7(c)参照)。コントローラ308は、入力端子IN3の入力レベル「1」を検知した時に、内筒126がイニシャルポイントに到達したと判定する。なお、入力端子IN3の入力レベル「1」が検知されることなく、入力端子IN4又はIN5の入力レベル「0」が検知された場合、コントローラ308は、内筒126を逆方向(ここではD方向)に移動させて、イニシャルポイントの検出処理を続行する。
【0062】
コントローラ308は、次いで、内筒126のホームポジションへの移動を行う(S2)。ホームポジションは、製品出荷時に、例えばイニシャルポイントと同じ境界位置rに設定されている。但し、ホームポジションは、術者によるフロントパネル310又は手元操作部13の操作によって任意に設定変更することができる。ホームポジションの設定値は、例えば±2.5μm単位で変更することができ、第二のプロセッサ300が有するメモリ318に保存される。このとき、ホームポジションの設定値は、電子スコープ100のIDに関連付けられて保存され、電源切断後も保持される。なお、ここで参照されるIDは、システム起動時にコントローラ308によって電子スコープ100が有するメモリ(不図示)から予め読み出された型番等の識別情報である。
【0063】
S2の処理では、コントローラ308は、ホームポジションの設定値に対応するパルス数をカウントするまで内筒126を移動させる。内筒126は、ホームポジションへの移動後、術者によるマニュアル操作に応じて、又はメモリ318に保存されている設定(後述のユーザ設定位置)に従って移動する。S3以降の処理における内筒126の移動は、第二の撮像システムによる三次元共焦点画像の撮像を想定した移動である。
【0064】
内筒126は、術者による手元操作部13の操作に応じて、ソフトウェア的に制限された所定の移動可能範囲(パターンH0〜H5が区間a〜lに収まる範囲内)をU方向又はD方向に微細に移動する(S3:マニュアル操作、S4)。コントローラ308は、このときカウントしたパルス数を画像生成回路316に逐次出力する。画像生成回路316は、各点像に対する被写体深さ方向の画素アドレスをカウントパルス数に応じて決定する。これにより、内筒126(点光源)の微細な移動量に対応する高精細な共焦点画像が生成されて、モニタ300Mに表示される。
【0065】
ところで、入力端子IN1又はIN2の入力レベルの検出エラーが生じた場合に、内筒126の移動が停止しないという不具合の発生が懸念される。コントローラ308は、この種の不具合の発生を防止するため、入力端子IN4、IN5の入力レベルが共に「0」になると、内筒126の移動を強制的に停止する。停止後は、例えば内筒126を停止前と逆方向に移動させてイニシャルポイントの検出を行う。
【0066】
術者は、フロントパネル310又は手元操作部13の操作を行い、内筒126のZ軸方向の現在位置(以下、「ユーザ設定位置」と記す。)を登録することができる。具体的には、コントローラ308は、ユーザ設定位置の登録操作を受け付けると(S5:YES)、イニシャルポイントに対する現在位置のカウントパルス数をユーザ設定位置としてメモリ318に保存する(S6)。このとき、ユーザ設定位置は、電子スコープ100のIDに関連付けられて保存され、電源切断後も保持される。ユーザ設定位置は、一台の電子スコープ100に対して複数ポイント登録することができる。
【0067】
ユーザ設定位置の登録操作がない場合(S5:NO)や、S6のユーザ設定位置の登録処理後は、S3の処理に戻る。術者は、フロントパネル310又は手元操作部13の操作を行い、内筒126をユーザ設定位置に移動させることができる。具体的には、コントローラ308は、ユーザ設定位置への移動操作を受け付けると(S3:ユーザ設定位置の指定操作)、S7の移動処理を行う。S7の移動処理では、指定されたユーザ設定位置に対応するカウントパルス数がメモリ318から読み出される。読み出されたカウントパルス数と現在のカウントパルス数とが比較され、その差分パルス数が算出される。コントローラ308は、差分パルス数に応じた分だけ内筒126を移動させる。術者は、このような簡易な操作によって、被写体を例えば前回の診断時と同じ深さで共焦点観察することができる。
【0068】
ユーザ設定位置は、前述の通り、電子スコープ毎に登録され管理される。しかし、別機を使用する際に、被写体を他機の使用時と同じ深さで共焦点観察したいという場面も想定される。この場合は、他機のIDに関連付けられたユーザ設定位置を別機で利用して、被写体を他機の使用時と同じ深さで共焦点観察できるようにしてもよい。
【0069】
以上が本発明の実施形態の説明である。本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。例えばパターンシートPとヘッドシートHとの相対的な位置精度を向上させるため、XY平面内の相対的な位置ずれを更に規制する位置ずれ規制手段を設けてもよい。
【0070】
この種の位置ずれ規制手段の具体的構成例としては、外筒124の外壁面のうちパターンシートPの接着領域の裏側に当たる領域全体を覆う磁石と、内筒126の内壁面のうちヘッドシートHの接着領域の裏側に当たる領域全体を覆う磁石とを有する構成が想定される。この構成によれば、パターンシートPとヘッドシートHとのXY平面内の相対的な位置ずれが磁石間の引力によって好適に抑制される。
【0071】
外筒124及び内筒126は、本実施形態では一面の平面形状が側面に形成されているが、別の実施形態では複数面の平面形状が側面に形成されてもよい。XY平面内の相対移動量を規制する形状が追加されることによって、パターンシートPとヘッドシートHとの位置ずれが更に抑制される。一例として、図3(c)中、上側面だけでなく筒軸を挟んだ下側面も平面形状に形成する構成が考えられる。
【0072】
更に別の実施形態では、下側面を平面形状に形成する代わりに、下側面の一部を板バネ形状に形成してもよい。板バネ形状によるパターンシートP側への付勢力が内筒126に加わることによって、パターンシートPとヘッドシートHとのXY平面内の相対的な位置ずれが好適に抑制される。
【0073】
本実施形態では、外筒124側の部品と内筒126側の部品と物理的接触は、設計上、パターンシートPとバネ状構造体Sとの点接触に限られる。そのため、外筒124と内筒126は、厳密には同軸ではなく、互いの軸が僅かに傾いた状態で配置されている。そこで、内筒126の外壁面に、外筒124の内壁面と点接触する絶縁性部材を少なくとも一つ形成する。すなわち、内筒126が外筒124に多点で支持されるように構成する。この構成を採用することによって、外筒124と内筒126との軸ずれが軽減される。軸ずれの軽減により、パターンシートPとヘッドシートHとのXY平面内の相対的な位置ずれが軽減するだけでなく、外筒124に対する内筒126のZ軸方向の移動がより一層円滑化する効果が得られる。
【符号の説明】
【0074】
1 共焦点内視鏡システム
12 挿入先端部
100 電子スコープ
120 共焦点光学ユニット
124 外筒
126 内筒
130 圧縮コイルばね
132 形状記憶合金
308 コントローラ
P パターンシート
H ヘッドシート

【特許請求の範囲】
【請求項1】
所定の点光源を二次元方向に移動自在に支持する点光源支持手段と、
前記点光源から放射された光の集光点と共役の位置に配置された共焦点ピンホールと、
前記点光源支持手段を前記共焦点ピンホールと共に前記二次元方向と直交する直交方向に移動自在に保持する保持手段と、
前記点光源支持手段に設けられた第一の電極群と、
前記保持手段に設けられた第二の電極群と、
を有し、
前記第一の電極群と前記第二の電極群は、前記点光源支持手段が前記保持手段に対して前記直交方向に所定量移動する毎に互いの短絡状態が変わるように構成されていることを特徴とする共焦点内視鏡装置。
【請求項2】
前記点光源支持手段は、
前記第一の電極群を外壁面に備え、前記点光源を内部に収容した第一の筒状部材、
を有し、
前記保持手段は、
前記第一の電極群と対向する内壁面中の位置に前記第二の電極群を備え、前記第一の筒状部材を内部に同軸で収容した第二の筒状部材、
を有することを特徴とする、請求項1に記載の共焦点内視鏡装置。
【請求項3】
前記第一の筒状部材と前記第二の筒状部材との、前記二次元方向を含む二次元平面内の相対的な位置ずれを防止する位置ずれ防止手段、
を更に有することを特徴とする、請求項2に記載の共焦点内視鏡装置。
【請求項4】
前記第一の筒状部材の外壁面と前記第二の筒状部材の内壁面は、各該筒状部材の軸と直交する断面形状が互いに対応するD型形状に形成され、
前記第一の筒状部材と前記第二の筒状部材は、前記D型形状をなす平面部が互いに対向する位置関係で配置されていることを特徴とする、請求項3に記載の共焦点内視鏡装置。
【請求項5】
前記第一の電極群、前記第二の電極群はそれぞれ、前記第一の筒状部材、前記第二の筒状部材が有する前記平面部に設けられていることを特徴とする、請求項4に記載の共焦点内視鏡装置。
【請求項6】
前記第一の電極群、前記第二の電極群は、前記保持手段に対する前記点光源支持手段の初期位置を検出するための初期位置検出用パターンを有することを特徴とする、請求項1から請求項5の何れか一項に記載の共焦点内視鏡装置。
【請求項7】
前記第一の電極群、前記第二の電極群は、絶縁性を有するベースフィルム上に設けられており、
前記ベースフィルムに対する前記第一の電極群及び前記第二の電極群の突出を無くすための平面処理材が、該ベースフィルム上の該第一の電極群及び該第二の電極群以外の領域に塗布されていることを特徴とする、請求項1から請求項6の何れか一項に記載の共焦点内視鏡装置。
【請求項8】
前記第一の電極群と前記第二の電極群とは、該第一の電極群に埋設された導電性を有するバネ状構造体を介して接触することを特徴とする、請求項1から請求項7の何れか一項に記載の共焦点内視鏡装置。
【請求項9】
前記点光源支持手段は、所定の光源から供給された光を伝送する光ファイバの射出端近傍を前記二次元方向に移動自在に支持し、
前記射出端は、前記点光源かつ前記共焦点ピンホールとして機能するように、前記集光点と共役の位置に配置されていることを特徴とする、請求項1から請求項8の何れか一項に記載の共焦点内視鏡装置。
【請求項10】
請求項1から請求項9の何れか一項に記載の共焦点内視鏡装置と、
前記第一の電極群と前記第二の電極群との短絡状態を検知する短絡状態検知手段と、
検知された前記短絡状態を基に、前記保持手段に対する前記点光源支持手段の前記直交方向の移動量を検出する移動量検出手段と、
を有することを特徴とする共焦点内視鏡システム。
【請求項11】
前記移動量検出手段は、
前記短絡状態が変化するポイントをカウントするカウント手段と、
カウントされた前記ポイントに応じた前記移動量を算出する移動量算出手段と、
を有することを特徴とする、請求項10に記載の共焦点内視鏡システム。
【請求項12】
前記保持手段に対する前記点光源支持手段の前記直交方向の現在の位置情報を保存する位置情報保存手段と、
保存された前記位置情報を指定する位置情報指定手段と、
前記位置情報で指定された位置に前記点光源支持手段を移動させる指定位置移動手段と、
を更に有することを特徴とする、請求項1から請求項11の何れか一項に記載の共焦点内視鏡システム。
【請求項13】
前記共焦点ピンホールを介した光を受光して画像信号を検出する画像信号検出手段と、
前記画像信号検出手段による前記画像信号の検出タイミングに応じて、各該画像信号に対する二次元平面の画素配置を決定すると共に、前記移動量検出手段によって検出された前記移動量に応じて、各該画像信号に対する該二次元平面と直交する深さ方向の画素配置を決定する画素配置決定手段と、
前記決定された画素配置に従って各前記画像信号によって表現される画像情報を空間的に配列して被写体画像を作成する画像作成手段と、
を更に有することを特徴とする、請求項1から請求項12の何れか一項に記載の共焦点内視鏡システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−98168(P2011−98168A)
【公開日】平成23年5月19日(2011.5.19)
【国際特許分類】
【出願番号】特願2009−256496(P2009−256496)
【出願日】平成21年11月9日(2009.11.9)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】