説明

内燃機関の燃焼状態判定装置

【課題】火花放電と電界とを相互作用させてプラズマを生成し、混合気に着火する火花点火式内燃機関における燃焼状態を判定する。
【解決手段】中心電極22と接地電極23との間に発生する火花放電と燃焼室6内に臨むアンテナ16を介して生成される電界とを相互作用させてプラズマを生成し、混合気に着火する火花点火式内燃機関1において、前記アンテナ16から燃焼室6内に印加された電磁波の反射波の強度を予め実験により求められた燃焼状態の閾値と比較して、内燃機関1の燃焼状態の判定を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の気筒における燃焼状態を判定する判定装置に関するものである。
【背景技術】
【0002】
気筒での燃料の燃焼状態を推測する手法の一として、燃焼の際に点火プラグの電極を流れるイオン電流を検出するものが知られている(例えば、特許文献1を参照)。オーバーリーン等の不良燃焼時には、正常燃焼時に比べて燃焼が過度に緩慢となり、イオン電流のピークが低くなり、また、イオン電流の流れている時間が長くなる。このように、イオン電流の推移を計測し、その最大値が判定閾値を上回るか否か、またはイオン電流が判定閾値(この閾値は、前記閾値とは異なる)を超えている時間が短いか長いかを判断することで、燃焼が正常であるか否かの判定を下すことが可能である。イオン電流を検出できない場合には、当該気筒にて失火が起こっていることは言うまでもない。
【0003】
ところで、火花点火式内燃機関に実装されている点火装置では、イグナイタが消弧した際に点火コイルに発生する高電圧を点火プラグの中心電極に印加することで、点火プラグの中心電極と接地電極との間で火花放電を惹起、点火する。そして、近時では、気筒の燃焼室内にある混合気に確実に着火させ、安定した火炎を得ることができるようにするために、電界発生回路、換言すれば、マグネトロンが出力するマイクロ波もしくは高周波発振器が出力する高周波を燃焼室内に放射する「アクティブ着火」法が試みられている(例えば、特許文献2を参照)。アクティブ着火法によれば、中心電極と接地電極との間の空間にマイクロ波もしくは高周波電界が形成され、この電界中で発生したプラズマが成長して、火炎伝搬燃焼の始まりとなる大きな火炎核を生成することができる。
【0004】
ところが、このようなアクティブ着火が行われる火花点火式の内燃機関においては、イオン電流を用いた精度の高い失火判定を行うことが困難であるという問題があった。これは、マイクロ波や高周波等の電磁波を用いた火花点火式内燃機関においては、電磁波の印加中にイオン電流の検知ができないことに起因するものである。したがって、マイクロ波や高周波等の電磁波を用いた火花点火式内燃機関では、電磁波の印加時間に制限が加えられており、実用化に課題を残していた。
【0005】
また、このような内燃機関において、失火検知ができなかった場合に、電磁波のエネルギーが別の形に変化せずそのまま反射し、マイクロ波もしくは高周波発振器等の電磁波発振器に返ってしまっていた。詳述すれば、電磁波発振器で発生した電磁波エネルギーは、導波管などにより照射部である燃焼室内に伝送されるが、燃焼室内に被加熱物である燃焼生成物がない、もしくは燃焼生成物があったとしても軽負荷のものである場合、燃焼生成物に電磁波エネルギーが十分吸収されずに、大部分が反射されて、電磁波発振器に戻ってくる。これが大きくなると、例えばマイクロ波発振器におけるマグネトロンのカソード(陰極)が過熱され、高温となって破損したり、電子の放出が多くなり発振が不安定になるおそれがある。
【0006】
このように、失火状態のときに電磁波発振器に大きな負荷がかかったり、また失火していない場合であっても、燃焼生成物が電磁波の高エネルギー部分に到達するまでは失火状態のときと同様に電磁波発振器に負荷がかかったりして、電磁波発振器が故障するおそれがあった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平6−34490号公報
【特許文献2】特開2011−144773号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、火花放電と電界とを相互作用させてプラズマを生成し、混合気に着火する火花点火式内燃機関における燃焼状態を判定することを目的としている。
【課題を解決するための手段】
【0009】
本発明は、以上のような課題を解決するために、次のような構成を採用したものである。すなわち、本発明に係る内燃機関の燃焼状態判定装置は、中心電極と接地電極との間に発生する火花放電と燃焼室内に臨むアンテナを介して生成される電界とを相互作用させてプラズマを生成し、混合気に着火する火花点火式内燃機関において、前記アンテナから燃焼室内に印加された電磁波の反射波の強度を予め実験により求められた燃焼状態の閾値と比較して、内燃機関の燃焼状態の判定を行うことを特徴とする。
【0010】
このようなものであれば、燃焼室に電磁波を印加している期間においても燃焼状態把握が可能である。そのため、失火している場合に電磁波発生装置に戻ってくる有害な電磁波の反射を予測することができる。したがって、電磁波発生装置を予め保護することができ、実用化への障壁を取り除くことができる。また、従来は、電磁波の印加時間を長く設定することができなかったが、本発明によれば、イオン電流での内燃機関の燃焼状態判定を行わないため、火花点火後に電磁波を印加できない期間がなくなり、従来よりも印加時間を長く設定することができる。そのため、燃焼が促進されることによって、従来のものよりも燃費を向上させることができる。
【0011】
前記反射波の強度が、前記閾値よりも一定量大きい場合、内燃機関が失火状態であるとの判定を行うものが好適な一態様として挙げられる。
【0012】
前記閾値が、失火状態の判定基準となる燃焼不良閾値と、好適燃焼状態の判定基準となる好適燃焼閾値を備えており、前記反射波の強度が、前記燃焼不良閾値より小さく、かつ、前記好適燃焼閾値よりも大きい場合、電磁波の印加エネルギーを減少させ、反射波の強度を前記好適燃焼閾値に近づけるように制御する電磁波制御装置を備えるものが好ましい。すなわち、失火には至らないものの、燃焼が良好でない状態において、反射波の強度を前記好適燃焼閾値に近づけるように、燃料噴射量を大きくしたりEGR量を少なくしたりする等の制御を行うことで、燃焼が改善され、ひいては、電磁波発生装置の保護も可能となる。
【発明の効果】
【0013】
本発明は、以上のような構成であるから、火花放電と電界とを相互作用させてプラズマを生成し、混合気に着火する火花点火式内燃機関における燃焼状態を判定することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の一実施形態の内燃機関の構成を示す図。
【発明を実施するための形態】
【0015】
以下、本発明の一実施形態を、図面を参照して説明する。
【0016】
図1に吸気弁11及び排気弁12の取付部分を示す火花点火式の内燃機関1は、ダブルオーバーヘッドカムシャフト(DOHC)形式のもので、吸気ポート2の開口3及び排気ポート4の開口5が、燃焼室6の天井部分のほぼ中央に取り付けられる点火プラグ14を中心として対向配置されて、1気筒当たりそれぞれ2ヶ所に開口するものである。すなわち、この内燃機関1は、シリンダブロック7と、このシリンダブロック7の上方に取り付けられた燃焼室6の天井部分を形成しているシリンダヘッド8とを備えている。また、このシリンダヘッド8には、吸気側と排気側とにそれぞれカムシャフト9、10が取り付けてある。シリンダヘッド8の吸気ポート2は、カムシャフト9が回転することにより往復動作する吸気弁11により、また排気ポート4は、カムシャフト10が回転することにより往復動作する排気弁12によりそれぞれ開閉されるものである。そして、吸気ポート2には、燃料噴射弁13が取り付けられているとともに、燃焼室6の天井部分には、点火プラグ14が取り付けられている。
【0017】
点火プラグ14は、導電材料からなるハウジング21と、ハウジング21内に絶縁されて取り付けられる中心電極22と、中心電極22から離れてハウジング21の下端に設けられる接地電極23とを備える。点火プラグ14には、イグナイタが接続される。
【0018】
本実施形態では、気筒の内壁15、より具体的には燃焼室6の内壁において、その吸気弁11側の部位に、プラズマを生成するためのアンテナ16を設けている。アンテナ16は、モノポール型アンテナで、燃焼室6の天井の点火プラグ14の近傍位置に取り付けられている。このアンテナ16は、先端16aが気筒内に面した状態で露出しているとともに、その他の部位は、図示は省略するが絶縁体により被覆されている。詳述すれば、アンテナの先端16a面は、燃焼室6の内面と面一である。このアンテナ16には、電磁波であるマイクロ波を出力するマイクロ波発生装置17が接続される。
【0019】
電磁波発生装置であるマイクロ波発生装置17は、マイクロ波発生源であるマグネトロン18とマグネトロン18を制御する制御回路19とを備えてなる。マグネトロン18が出力するマイクロ波は、導波管を含むマイクロ波伝送回路24を経てアンテナ16に印加される。制御回路19は、後述する電子制御装置20から出力されるマイクロ波発生信号pが入力され、このマイクロ波発生信号pに基づいてマグネトロン18が出力するマイクロ波の出力時期及び出力電力を制御するものである。
【0020】
マイクロ波伝送回路24は、前記導波管と、アイソレータ25と、パワーメータ26とを備えている。
【0021】
アイソレータ25は、アンテナ16からの反射波を吸収しマイクロ波発生装置17を安定して動作させるための保護機器であり、マグネトロン18と照射部であるアンテナ16との間に装着されている。アイソレータ25は、サーキュレータとダミーロードとからなるものである。サーキュレータは、マイクロ波発生装置17から発振される入射電力とアンテナ16から反射される反射電力とを、導波管のT字部に設けられているフェライトと磁界の作用により分離する。そして、サーキュレータは、入射電力はほとんど損失なしにアンテナ16へと電送し、反射電力をダミーロード側へ分離・導入するものである。なお、反射電力は水冷式のダミーロードの水等に吸収され、熱となって排気される。ダミーロードは、導波管の終端に接続して余剰マイクロ波エネルギーを効率よく吸収するものである。
【0022】
パワーメータ26は、マイクロ波発生装置17からアンテナ16に伝送されるマイクロ波エネルギー(入射電力)と、アンテナ16から反射されてくる電力(反射電力)を分離・検出し、表示するものである。パワーメータ26は、前記導波管の一部に挿入されている。詳述すれば、パワーメータ26は、方向性結合器、同軸無反射終端器、マイクロ波用ダイオードであるクリスタルマウント、電流計、同軸ケーブル等により構成されている。なお、このパワーメータ26は、指示計及び検出部が1式の場合は、クリスタルマウントと同軸無反射終端器を入れ替えて接続することにより入射電力と反射電力をそれぞれ読み取ることが可能であるが、本実施形態においては、方向性結合器の検出部を導波管の両側に設け、それぞれにクリスタルマウント、同軸無反射終端器、及び指示計を接続することにより入射電力と反射電力を同時に読み取ることを可能にしたものを用いている。
【0023】
電子制御装置20は、中央演算処理装置27と、記憶装置28と、入力インターフェース29と、出力インターフェース30とを具備してなるマイクロコンピュータシステムを主体に構成されている。
【0024】
中央演算処理装置27は、記憶装置28に格納された後述のプログラムを実行して、内燃機関1の運転制御を行うものである。そして、内燃機関1の運転制御を行うために必要な情報が入力インターフェース29を介して中央演算処理装置27に入力されるとともに、中央演算処理装置27は出力インターフェース30を介して制御のための信号を、燃料噴射弁13、点火プラグ14、制御回路19等に出力する。
【0025】
具体的には、入力インターフェース29には、吸気ポート2に流入する空気流量を検出するためのエアフローメータ91から出力される空気流量信号a、エンジン回転数を検出するための回転数センサ92から出力される回転数信号b、内燃機関1の冷却水温を検出するための水温センサ93から出力される水温信号c、O2センサ94から出力される電圧信号d、パワーメータ26から出力される反射波信号eなどが入力される。一方、出力インターフェース30からは、燃料噴射弁13に対して燃料噴射信号m、点火プラグ14に対して点火信号n、マグネトロン18の制御回路19に対してマイクロ波発生指令信号p等が出力されるようになっている。
【0026】
すなわち、制御装置20は、内燃機関1の運転制御に必要な各種情報a、b、c、d、eを入力インターフェース29を介して取得し、それらに基づいて吸気量や要求燃料噴射量、点火時期等を演算する。そして、演算結果に対応した各種制御信号m、n、pを出力インターフェース30を介して印加する。
【0027】
ここで、制御装置20には、前記アンテナ16から燃焼室6内に印加されたマイクロ波の反射波の強度を予め実験により求められた燃焼状態の閾値と比較して、内燃機関1の燃焼状態の判定を行う燃焼状態判定プログラムを内蔵している。より具体的には、この燃焼状態判定プログラムでは、前記反射波信号eが示す反射波の強度を取得する処理と、この反射波の強度をパラメータとしてマップを参照することによりアンテナ16に印加する電圧を決定する処理と、及び前記処理により決定した印加電圧をアンテナ16に印加すべく制御回路19に対応するマイクロ波発生信号pを出力する処理とを順次行う。ここで、前記マップは、代表的な反射波の強度をパラメータとし、予め実験により決定したアンテナ16に対する印加電圧を記憶装置28の所定領域に記憶したものである。
【0028】
しかして、本実施形態では、電子制御装置20の記憶装置28に、車両の走行中において燃料を供給している間は燃焼室6内に生成される電界と点火プラグ14による火花放電とを反応させてプラズマを生成して混合気に着火し、車両の走行中に内燃機関1が失火していると判断される場合には、プラズマの生成を中止する制御を行うためのプログラムをさらに内蔵している。
【0029】
この内燃機関1にあっては、マイクロ波発生装置17が発生するマイクロ波を制御回路19により制御された出力時期に合わせてアンテナ16から燃焼室6内に放射し、それにより生成される電界と点火プラグ8による火花放電とを相互作用させてプラズマを生成し、混合気に着火するように構成されている。プラズマを生成する場合、マイクロ波がアンテナ16に印加されることにより、燃焼室6内には、点火プラグ14による火花放電に対して直交する方向に電界が形成される。したがって、アンテナ16及びマイクロ波発生装置17は、電界生成手段を構成するものである。
【0030】
このように、点火に際しては、点火プラグ14に点火コイルにより火花放電を発生させて、火花放電開始とほぼ同時あるいは火花放電開始直後あるいは火花放電開始直前にマイクロ波により電界を発生させ、火花放電と電界とを相互作用させてプラズマを生成させることにより、燃焼室6内の混合気を急速に燃焼させる機構である。なお、火花放電開始直後とは、遅くとも火花放電を構成する誘導放電の開始時が好ましい。
【0031】
具体的には、点火プラグ14による火花放電が電界中でプラズマになり、当該プラズマにて混合気に着火を行うことで火炎伝播燃焼の始まりとなる火炎核が火花放電のみの点火に比べて大きくなるとともに、燃焼室6内に大量のラジカルが発生することで燃焼が促進される。
【0032】
これは、火花放電による電子の流れ及び火花放電によって生じたイオンやラジカルが、電界の影響を受け振動、蛇行することで行路長が長くなり、周囲の水分子や窒素分子と衝突する回数が飛躍的に増加することによるものである。イオンやラジカルの衝突を受けた水分子や窒素分子は、OHラジカルやNラジカルになるとともに、イオンやラジカルの衝突を受けた周囲の気体も電離した状態、即ちプラズマ状態となることで、飛躍的に混合気への着火領域が大きくなり、火炎核も大きくなるのである。この結果、火花放電のみによる二次元的な着火から三次元的な着火に増幅され、燃焼が燃焼室6内に急速に伝播し、高い燃焼速度で拡大することとなる。
【0033】
以下、この内燃機関1の燃焼状態判定装置における燃焼状態の判定及び制御の概略手順を説明する。
【0034】
まず、アンテナ16から燃焼室6内に印加されたマイクロ波の反射波の強度をパワーメータ26で検知する。すなわち、マイクロ波を放射したのと同じアンテナ16によって反射波をひろい、このアンテナ16を通った反射波の強度をマイクロ波発生装置17より前で検知する。
【0035】
次に、燃焼状態判定装置である電子制御装置20において、前記マップを参照して検知された反射波の強度前記マップの燃焼状態の閾値と比較し、後述する判定を行う。ここで、反射波の強度と閾値とを比較するのは、本実施形態のような燃焼室6内に臨むアンテナ16から発振されるマイクロ波が、燃焼生成物が存在する燃焼状態であるとアンテナ16からの反射波が小さくなり、逆に、燃焼生成物が存在しない失火状態であるとアンテナ16からの反射波が大きくなる特性を有していることによる。したがって、反射波の強度が、失火状態の判定基準となる燃焼不良閾値よりも一定量大きい場合、内燃機関1が失火状態であるとの判定を行う。反射波の強度が、前記燃焼不良閾値より小さく、かつ、好適燃焼状態の判定基準となる好適燃焼閾値よりも大きい場合、内燃機関1が燃焼状態であるが、好適な燃焼状態ではないとの判定を行う。また、反射波の強度が、前記閾値よりも小さい場合、内燃機関1が好適な燃焼状態であるとの判定を行う。
【0036】
内燃機関1が失火状態であるとの判定を行った場合には、電磁波制御装置である電子制御装置20は、アンテナ16へのマイクロ波の印加を停止し、プラズマの生成を中止する制御を行う。具体的には、出力インターフェース29からマイクロ波発生信号pが出力されてマグネトロン18からマイクロ波が発振されないように制御する。
【0037】
内燃機関1が燃焼状態であるが、好適な燃焼状態ではないとの判定を行った場合には、電磁波制御装置である電子制御装置20は、マイクロ波の印加エネルギーを減少させ、反射波の強度を前記好適燃焼閾値に近づけるように制御する。また、燃焼状態を改善させるために、例えば、燃料噴射量を増加させる。
【0038】
内燃機関1が好適な燃焼状態であるとの判定を行った場合には、電磁波制御装置である電子制御装置20は、マイクロ波の印加エネルギーを大きくするように制御する。本実施形態では、仮に内燃機関1が失火状態である場合の無駄な印加をなくすために、初めは入力エネルギーを小さく設定しておき、反射波が前記好適燃焼閾値よりも小さく、好適な燃焼状態であることが検知された場合に、印加エネルギーを大きくする制御を行う。換言すれば、燃焼毎のマイクロ波の初期印加エネルギーは、好適な燃焼状態の閾値のピークエネルギー量よりも小さな値を印加しておき、内燃機関1が失火していないことの検知後に、同じ膨張行程中に印加エネルギーを増量させるようにしている。
【0039】
以上説明したように、マイクロ波発生装置17のマグネトロン18及び制御回路19、マイクロ波伝送回路24のパワーメータ26、並びに、電子制御装置20が協働して、本発明の燃焼状態判定装置として機能する。
【0040】
このように、本実施形態の火花点火式内燃機関1の燃焼状態判定装置は、中心電極22と接地電極23との間に発生する火花放電と燃焼室6内に臨むアンテナ16を介して生成される電界とを相互作用させてプラズマを生成し、混合気に着火する火花点火式内燃機関1において、前記アンテナ16から燃焼室6内に印加されたマイクロ波の反射波の強度を予め実験により求められた燃焼状態の閾値と比較して、内燃機関1の燃焼状態の判定を行うものである。このように、燃焼室6内に燃焼生成物が存在すると反射が小さくなる特性をもつマイクロ波の出力を監視し、反射波の強度を検知することで、内燃機関1が燃焼状態であるか非燃焼(失火)状態であるかを判断することができる。すなわち、従来不可能であった燃焼室6にマイクロ波を印加している期間においても、失火検知が可能となる。
【0041】
そして、反射波の強度が、前記燃焼不良閾値よりも一定量大きい場合、内燃機関が失火状態であるとの判定を行うので、失火状態である場合に電磁波発生装置に戻ってくる有害な電磁波の反射を予測することができる。したがって、印加エネルギーを適切に制御することで、マイクロ波発生装置17への負荷を小さくすることができる。また、従来は、電磁波の印加時間を長く設定することができなかったが、本実施形態のものでは、イオン電流での内燃機関の燃焼状態判定を行わないため、火花点火後に電磁波を印加できない期間がなくなり、従来よりも印加時間を長く設定することができる。そのため、燃焼が促進されることによって、従来のものよりも燃費を向上させることができるという効果が得られる。
【0042】
また、失火状態の判定基準となる燃焼不良閾値より小さく、かつ、好適燃焼状態の判定基準となる好適燃焼閾値よりも大きい場合、電磁波の印加エネルギーを減少させ、反射波の強度を前記好適燃焼閾値に近づけるように制御する電磁波制御装置を備えているので、上述した効果に加えて、失火には至らないものの燃焼が良好でない状態において、燃焼を改善することができる。
【0043】
特に、本実施形態のアンテナ16は、マイクロ波を燃焼室6に印加する際にも、燃焼室6から反射したマイクロ波を燃焼状態判定装置へと反射させる際にも用いられるので、内燃機関1をコンパクトな構成にすることができる。
【0044】
なお、本発明は、上記実施形態に限定されるものではない。
【0045】
燃焼室内でプラズマを生成する目的で燃焼室内に電界を発生させる電磁波発生装置もまた、マイクロ波発生装置には限定されない。マイクロ波発生装置以外の電磁波発生装置として、高周波の交流電圧を印加する交流電圧発生回路や、高周波の脈流電圧を印加する脈流電圧発生回路等を挙げることができる。脈流電圧発生回路を採用する場合、周期的に電圧が変化する直流電圧を発生させるものであればよく、その波形も任意であってよい。脈流電圧は、基準電圧(0Vであることがある)から一定周期で一定電圧まで変動するパルス電圧、交流電圧を半波整流した電圧、交流電圧に直流バイアスを加味した電圧等をおしなべて含む。電界発生装置が発振する高周波電圧は、周波数が200kHz〜1000kHz程度、振幅が3kVp−p〜10kVp−p程度であることが好ましい。
【0046】
マイクロ波は、上述のように、専用のアンテナを設けるようにしていたが、点火プラグを使用して燃焼室に放射するようにしたものであってもよい。また、点火プラグを別体のアンテナから放射されたマイクロ波の反射波の受信アンテナとして用いることも考えられる。加えて、アンテナとしては、モノポール型以外のもの、例えば、ホーン型のアンテナであってもよい。
【0047】
その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
【産業上の利用可能性】
【0048】
本発明は、車両等に搭載される火花点火式内燃機関に適用することができる。
【符号の説明】
【0049】
1…内燃機関
6…燃焼室
16…アンテナ
22…中心電極
23…接地電極

【特許請求の範囲】
【請求項1】
中心電極と接地電極との間に発生する火花放電と燃焼室内に臨むアンテナを介して生成される電界とを相互作用させてプラズマを生成し、混合気に着火する火花点火式内燃機関において、前記アンテナから燃焼室内に印加された電磁波の反射波の強度を予め実験により求められた燃焼状態の閾値と比較して、内燃機関の燃焼状態の判定を行うことを特徴とする内燃機関の燃焼状態判定装置。
【請求項2】
前記反射波の強度が、前記閾値よりも一定量大きい場合、内燃機関が失火状態であるとの判定を行う請求項1記載の内燃機関の燃焼状態判定装置。
【請求項3】
前記閾値が、失火状態の判定基準となる燃焼不良閾値と、好適燃焼状態の判定基準となる好適燃焼閾値を備えており、
前記反射波の強度が、前記燃焼不良閾値より小さく、かつ、前記好適燃焼閾値よりも大きい場合、電磁波の印加エネルギーを減少させ、反射波の強度を前記好適燃焼閾値に近づけるように制御する電磁波制御装置を備える請求項1記載の内燃機関の燃焼状態判定装置。

【図1】
image rotate


【公開番号】特開2013−113184(P2013−113184A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−258821(P2011−258821)
【出願日】平成23年11月28日(2011.11.28)
【出願人】(000002967)ダイハツ工業株式会社 (2,560)
【Fターム(参考)】