説明

制御弁

【課題】作動流体が流れる複数の流体通路の切り替える制御弁に嵩むコストをトータル的に抑制する。
【解決手段】比例弁34と比例弁37とを収容する共用のボディ104と、各比例弁の開度を電気的に調整する共用のモータユニット102と、弁作動体134と、比例弁34を開閉する第1弁体141と比例弁37を開閉する第2弁体142とを一体に含み、弁作動体134と一体変位可能に作動連結される弁駆動体132と、各比例弁の開度の制御状態において弁作動体134と弁駆動体132とを作動連結し、比例弁34および比例弁37の一方の開度の制御状態において他方を全開状態に維持可能な作動切替機構と、第1弁体141と第2弁体142の双方に作用する流体圧力の影響を同時にキャンセルする背圧キャンセル構造と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は制御弁に関し、特に作動流体が流れる複数の流体通路の切り替えに好適な制御弁に関する。
【背景技術】
【0002】
近年、内燃機関を搭載した車両においてはエンジンの燃焼効率が向上したこともあり、熱源として利用してきた冷却水が暖房に必要な温度にまで上昇し難くなっている。一方、内燃機関と電動機を併用したハイブリッド車両においては内燃機関の稼働率が低いため、そのような冷却水の利用がさらに難しい。電気自動車に至っては内燃機関による熱源そのものがない。このため、冷房のみならず暖房にも冷媒を用いたサイクル運転を行い、車室内を除湿暖房可能なヒートポンプ式の車両用冷暖房装置が提案されている(例えば特許文献1参照)。
【0003】
このような車両用冷暖房装置は、圧縮機、室外熱交換器、蒸発器、室内熱交換器等を含む冷凍サイクルを有し、暖房運転時と冷房運転時とで室外熱交換器の機能が切り替えられる。暖房運転時においては室外熱交換器が蒸発器として機能する。その際、冷凍サイクルを冷媒が循環する過程で室内熱交換器が放熱し、その熱により車室内の空気が加熱される。一方、冷房運転時においては室外熱交換器が凝縮器として機能する。その際、室外熱交換器にて凝縮された冷媒が蒸発器にて蒸発し、その蒸発潜熱により車室内の空気が冷却される。その際、除湿も行われる。そして、このように暖房運転時と冷房運転時とで装置の機能を切り替えるために、冷凍サイクルには複数の冷媒循環通路が設けられ、各冷媒循環通路の冷媒の流れを切り替えるための種々の制御弁が設けられる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平9−240266号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、このような車両用冷暖房装置において制御弁が数多く用いられると、当然にコストが嵩み、また設置スペース上の問題も生じる。このため、制御弁のトータルの数や部品コストをできる限り少なくするのが望ましい。一方、そのように制御弁の数やコストを抑えつつも、運転状態に応じた空調性能を良好に確保する必要がある。
【0006】
本発明の目的は、作動流体が流れる複数の流体通路の切り替える制御弁に嵩むコストをトータル的に抑制することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明のある態様の制御弁は、第1内部通路および第2内部通路が形成され、第1内部通路の作動流体の流れを調整するために開度が制御される第1弁と、第2内部通路の作動流体の流れを調整するために開度が制御される第2弁とを収容する共用のボディと、第1弁と第2弁の開度を電気的に調整するための共用のアクチュエータと、アクチュエータにより軸線方向に駆動される弁作動体と、第1弁を開閉する第1弁体と第2弁を開閉する第2弁体とを一体に含み、弁作動体と一体変位可能に作動連結されることにより第1弁および第2弁の開閉方向に駆動される弁駆動体と、第1弁または第2弁の開度の制御状態において弁作動体と弁駆動体とを作動連結し、第1弁および第2弁の一方の開度の制御状態において他方を全開状態に維持可能な作動切替機構と、弁駆動体とボディとの間に背圧室を形成し、第1内部通路および第2内部通路の一方の作動流体をその背圧室に導入することにより、第1弁体と第2弁体の双方に作用する流体圧力の影響を同時にキャンセルする背圧キャンセル構造と、を備える。
【0008】
この態様によると、複数の内部通路の開度をそれぞれ調整するために複数の弁が設けられるところ、その複数の弁が共用のボディに収容されて共用のアクチュエータにより開閉駆動される制御弁(複合弁)として構成される。そして、一方の弁による冷媒の流量制御がなされている状態において、他方の弁を全開させて流量飽和状態とする配置構成を有することで、その他方の弁の状態が一方の弁の流量制御に実質的に影響を及ぼさないようにしている。言い換えれば、このように第1弁と第2弁とがその弁配置によって制御上影響を及ぼさないようにすることで、一つのアクチュエータによる複数の弁の駆動が可能とされている。それにより、弁の数に対してボディやアクチュエータの数を抑えることができる。さらに、第1弁体と第2弁体とを弁駆動体に一体に形成することで、弁構造の簡素化および低コスト化を実現することも可能となる。また、第1弁体と第2弁体の双方に作用する流体圧力の影響を同時にキャンセルする背圧キャンセル構造を設けたことで、流体圧力によるアクチュエータへの負荷を抑制でき、アクチュエータのコンパクト化や省電力化も可能となる。
【発明の効果】
【0009】
本発明によれば、作動流体が流れる複数の流体通路の切り替える制御弁に嵩むコストをトータル的に抑制できる。
【図面の簡単な説明】
【0010】
【図1】第1実施形態に係る車両用冷暖房装置のシステム構成を表す図である。
【図2】車両用冷暖房装置の動作を表す説明図である。
【図3】第1制御弁の構成および動作を表す断面図である。
【図4】第1制御弁の構成および動作を表す断面図である。
【図5】第1制御弁の構成および動作を表す断面図である。
【図6】第2実施形態に係る制御弁の構成を表す断面図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態を、図面を参照して詳細に説明する。
[第1実施形態]
まず、本発明の第1実施形態について説明する。図1は、第1実施形態に係る車両用冷暖房装置のシステム構成を表す図である。本実施形態は、本発明の車両用冷暖房装置を電気自動車の冷暖房装置として具体化したものである。
【0012】
車両用冷暖房装置100は、圧縮機2、室内凝縮器3、室外熱交換器5、蒸発器7およびアキュムレータ8を配管にて接続した冷凍サイクル(冷媒循環回路)を備える。車両用冷暖房装置100は、冷媒としての代替フロン(HFO−1234yf)が冷凍サイクル内を状態変化しながら循環する過程で、その冷媒の熱を利用して車室内の空調を行うヒートポンプ式の冷暖房装置として構成されている。
【0013】
車両用冷暖房装置100は、また、冷房運転時と暖房運転時とで複数の冷媒循環通路を切り替えるように運転される。この冷凍サイクルは、室内凝縮器3と室外熱交換器5とが凝縮器として並列に動作可能に構成され、また、蒸発器7と室外熱交換器5とが蒸発器として並列に動作可能に構成されている。すなわち、冷房運転時に冷媒が循環する第1冷媒循環通路、暖房運転時に冷媒が循環する第2冷媒循環通路、除湿運転時に冷媒が循環する第3冷媒循環通路が形成される。
【0014】
第1冷媒循環通路は、圧縮機2→室外熱交換器5→蒸発器7→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。第2冷媒循環通路は、圧縮機2→室内凝縮器3→室外熱交換器5→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。第3冷媒循環通路は、圧縮機2→室内凝縮器3→蒸発器7→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。室外熱交換器5を流れる冷媒の流れは、第1冷媒循環通路と第2冷媒循環通路とで逆方向となっている。
【0015】
具体的には、圧縮機2の吐出室につながる通路が分岐し、その一方である第1通路21が室外熱交換器5の一方の出入口につながり、他方である第2通路22が室内凝縮器3の入口につながっている。室外熱交換器5の他方の出入口は、第3通路23を介して蒸発器7の入口につながっている。室内凝縮器3の出口につながる第4通路24は、その下流側にて第1分岐通路25と第2分岐通路26とに分岐しており、それぞれ第3通路23に接続されている。蒸発器7の出口は第5通路27(戻り通路)を介してアキュムレータ8の入口に接続されている。また、第1通路21の中間部においてバイパス通路28が分岐し、アキュムレータ8ひいては圧縮機2につながっている。
【0016】
第1通路21と第2通路22との分岐点には第1制御弁4が設けられている。第1分岐通路25と第2分岐通路26との分岐点には第2制御弁6が設けられている。さらに、第5通路27とバイパス通路28との合流点には第3制御弁9が設けられている。
【0017】
圧縮機2は、ハウジング内にモータと圧縮機構を収容する電動圧縮機として構成され、図示しないバッテリからの供給電流により駆動され、モータの回転数に応じて冷媒の吐出容量が変化する。
【0018】
室内凝縮器3は、車室内に設けられ、室外熱交換器5とは別に冷媒を放熱させる補助凝縮器として機能する。すなわち、圧縮機2から吐出された高温・高圧の冷媒が室内凝縮器3を通過する際に放熱する。車室内に導入された空気は、室内凝縮器3を通過する過程で温められる。
【0019】
室外熱交換器5は、車室外に配置され、冷房運転時に内部を通過する冷媒を放熱させる室外凝縮器として機能する一方、暖房運転時には内部を通過する冷媒を蒸発させる室外蒸発器として機能する。室外熱交換器5が蒸発器として機能する際には、膨張装置(後述する比例弁32)の通過により低温・低圧となった冷媒が、室外熱交換器5を通過する際に蒸発する。
【0020】
蒸発器7は、車室内に配置され、内部を通過する冷媒を蒸発させる室内蒸発器として機能する。すなわち、膨張装置(後述する比例弁31や比例弁33)の通過により低温・低圧となった冷媒は、蒸発器7を通過する際に蒸発する。車室内に導入された空気は、その蒸発潜熱によって冷却され、除湿される。このとき冷却・除湿された空気は、室内凝縮器3の通過過程で加熱される。
【0021】
アキュムレータ8は、蒸発器から送出された冷媒を気液分離して溜めておく装置であり、液相部と気相部とを有する。このため、仮に蒸発器7から想定以上の液冷媒が導出されたとしても、その液冷媒を液相部に溜めおくことができ、気相部の冷媒を圧縮機2に導出することができる。
【0022】
第1制御弁4は、共用のボディに比例弁34(「第4比例弁」に対応する)と比例弁37(「第7比例弁」に対応する)とを収容し、それらを1つのアクチュエータにて駆動する複合弁として構成されている。比例弁34は大口径の弁であり、第1通路21の開度を調整する。比例弁37は大口径の弁であり、第2通路22の開度を調整する。本実施形態では、第1制御弁4として、ステッピングモータの駆動により各弁の開度を調整可能な電動弁が用いられるが、ソレノイドへの通電によって各弁の開度を調整可能な電磁弁を用いるようにしてもよい。第1制御弁4の具体的構成については後述する。
【0023】
第2制御弁6は、共用のボディに比例弁31(「第1比例弁」に対応する)、比例弁32(「第2比例弁」に対応する)および比例弁33(「第3比例弁」に対応する)を収容する複合弁として構成されている。比例弁31と比例弁32は共用のアクチュエータにて駆動され、比例弁33はもう1つのアクチュエータにて駆動される。比例弁31は、第3通路23における第1分岐通路25との合流点と第2分岐通路26との合流点との間に設けられている。
【0024】
比例弁31は小口径の弁であり、第3通路23の開度を調整する。比例弁32は小口径の弁であり、第1分岐通路25の開度を調整する。比例弁33小口径の弁であり、第2分岐通路26の開度を調整する。これら比例弁31,比例弁32および比例弁33は、膨張装置としても機能する。本実施形態では、第2制御弁6として、ステッピングモータの駆動により各弁の開度を調整可能な電動弁が用いられるが、ソレノイドへの通電によって各弁の開度を調整可能な電磁弁を用いるようにしてもよい。
【0025】
第3制御弁9は、共用のボディに比例弁35(「第5比例弁」に対応する)と比例弁36(「第6比例弁」に対応する)とを収容し、それらを1つのアクチュエータにて駆動する複合弁として構成されている。比例弁35は大口径の弁であり、バイパス通路28の開度を調整する。比例弁36は大口径の弁であり、第5通路27の開度を調整する。本実施形態では、第3制御弁9として、ステッピングモータの駆動により各弁の開度を調整可能な電動弁が用いられるが、ソレノイドへの通電によって各弁の開度を調整可能な電磁弁を用いるようにしてもよい。
【0026】
以上のように構成された車両用冷暖房装置100は、図示しない制御部により制御される。制御部は、車両の乗員によりセットされた室温を実現するために各アクチュエータの制御量を演算し、各アクチュエータの駆動回路に制御信号を出力する。制御部は、車室内外の温度、蒸発器7の吹き出し空気温度等、各種センサにて検出された所定の外部情報に基づいて各制御弁の制御量(弁開度や開閉状態)を決定し、その制御量が実現されるようアクチュエータに電流を供給する。本実施例ではアクチュエータとしてステッピングモータを用いるため、制御部は、各制御弁の制御量が実現されるようステッピングモータに制御パルス信号を出力する。このような制御により、圧縮機2は、その吸入室を介して吸入圧力Psの冷媒を導入し、これを圧縮して吐出圧力Pdの冷媒として吐出する。なお、本実施形態ではこのような制御を実現するために、室内凝縮器3の出口、室外熱交換器5の一方の出入口と他方の出入口、蒸発器7の入口と出口のそれぞれの温度を検出するための複数の温度センサが設置されている。
【0027】
次に、本実施形態の冷凍サイクルの動作について説明する。図2は、車両用冷暖房装置の動作を表す説明図である。(A)は特殊冷房運転時の状態を示し、(B)は通常冷房運転時の状態を示し、(C)は特定暖房運転時の状態を示し、(D)は通常暖房運転時の状態を示し、(E)は特殊暖房運転時の状態を示している。なお、「特殊冷房運転」は、冷房運転において室内凝縮器3を機能させない運転状態である。「特定暖房運転」は、暖房運転において特に除湿の機能を高めた運転状態である。「特殊暖房運転」は、室外熱交換器5を機能させない運転状態である。なお、図中の太線および矢印が冷媒の流れを示し、「×」は冷媒の流れが遮断されていることを示している。
【0028】
図2(A)に示すように、特殊冷房運転時においては、第1制御弁4において比例弁34が開弁状態とされ、比例弁37が閉弁状態とされる。また、第2制御弁6において比例弁31が開弁状態とされ、比例弁32および比例弁33が閉弁状態とされる。さらに、第3制御弁9において比例弁35が閉弁状態とされ、比例弁36が開弁状態とされる。それにより第1冷媒循環通路が開放され、第2冷媒循環通路および第3冷媒循環通路は遮断される。このため、圧縮機2から吐出された冷媒は、室外熱交換器5を経て蒸発器7に導かれる。このとき、室外熱交換器5は室外凝縮器として機能する。
【0029】
すなわち、圧縮機2から吐出された高温・高圧のガス冷媒は、室外熱交換器5を経ることで凝縮される。そして、室外熱交換器5を経由した冷媒が比例弁31にて断熱膨張されて冷温・低圧の気液二相冷媒となり、蒸発器7に導入される。蒸発器7の入口に導入された冷媒は、その蒸発器7を通過する過程で蒸発し、車室内の空気を冷却する。蒸発器7から導出された冷媒は、比例弁36を経てアキュムレータ8に導入される。制御部は、室外熱交換器5の出口側の温度に基づき、その出口側の過冷却度が適正となるよう比例弁31の開度を制御する。
【0030】
図2(B)に示すように、通常冷房運転時においては、第1制御弁4において比例弁34および比例弁37がともに開弁状態とされる。また、第2制御弁6において比例弁31および比例弁33が開弁状態とされ、比例弁32が閉弁状態とされる。さらに、第3制御弁9において比例弁35が閉弁状態とされ、比例弁36が開弁状態とされる。それにより第1冷媒循環通路および第3冷媒循環通路が開放され、第2冷媒循環通路は遮断される。このため、圧縮機2から吐出された冷媒は、一方で室外熱交換器5を経て蒸発器7に導かれ、他方で室内凝縮器3を経て蒸発器7に導かれる。このとき、室外熱交換器5は室外凝縮器として機能する。
【0031】
すなわち、圧縮機2から吐出された高温・高圧のガス冷媒は、一方で室内凝縮器3を、他方で室外熱交換器5を経ることで凝縮される。そして、室内凝縮器3を経由した冷媒が比例弁33にて断熱膨張され、冷温・低圧の気液二相冷媒となって蒸発器7に導入される。また、室外熱交換器5を経由した冷媒が比例弁31にて断熱膨張され、冷温・低圧の気液二相冷媒となって蒸発器7に導入される。そして、その蒸発器7を通過する過程で蒸発し、車室内の空気を冷却する。このとき、蒸発器7から導出された冷媒は、アキュムレータ8を経て圧縮機2に導入される。制御部は、室内凝縮器3の出口側の温度に基づき、その出口側の過冷却度が適正となるよう比例弁33の開度を制御する。制御部は、また、室外熱交換器5の出口側の温度に基づき、その出口側の過冷却度が適正となるよう比例弁31の開度を制御する。
【0032】
図2(C)に示すように、特定暖房運転時においては、第1制御弁4の比例弁34が閉弁状態とされ、比例弁37が開弁状態とされる。また、第2制御弁6において比例弁31が閉弁状態とされ、比例弁32および比例弁33が開弁状態とされる。さらに、第3制御弁9において比例弁35および比例弁36がともに開弁状態とされる。それにより第1冷媒循環通路が遮断され、第2冷媒循環通路および第3冷媒循環通路が開放される。このため、圧縮機2から吐出された冷媒は、室内凝縮器3にて凝縮され、一方で室外熱交換器5に導かれ、他方で蒸発器7に導かれる。このとき、室外熱交換器5は室外蒸発器として機能する。
【0033】
すなわち、圧縮機2から吐出された高温・高圧のガス冷媒は、室内凝縮器3を経て凝縮される。室内凝縮器3から導出された冷媒は、一方で比例弁32にて断熱膨張されて冷温・低圧の気液二相冷媒となり、室外熱交換器5を通過する際に蒸発される。室外熱交換器5から導出された冷媒は、比例弁35を経てアキュムレータ8に導入される。また、室内凝縮器3から導出された冷媒は、他方で比例弁33にて断熱膨張されて冷温・低圧の気液二相冷媒となり、蒸発器7を通過する際に蒸発される。蒸発器7から導出された冷媒は、比例弁36を経てアキュムレータ8に導入される。
【0034】
このとき、制御部は、室外熱交換器5による熱吸収と蒸発器7による除湿とを適正に行うべく、室外熱交換器5における冷媒の蒸発量と蒸発器7における冷媒の蒸発量との比率を適正に調整する。このとき、室外熱交換器5および蒸発器7の両蒸発器にて蒸発される比率は、比例弁32と比例弁33の弁開度の比率により制御される。制御部は、比例弁32の開度と比例弁33の開度を調整することにより室内凝縮器3の出口側の過冷却度が設定値SCとなるように調整するとともに、その開度比率を調整することにより両蒸発器における蒸発量を調整する。その際、制御部は、蒸発器7が凍結することがないよう、蒸発器7の出口側の温度が適正範囲に保たれるように制御する。
【0035】
また、制御部は、第3制御弁9における比例弁35および比例弁36の一方の全開状態を維持したまま他方の開度を調整する。本実施形態では、室外熱交換器5よりも蒸発器7の温度が低い場合には比例弁36を全開状態にして比例弁35の開度を制御する。一方、蒸発器7よりも室外熱交換器5の温度が低い場合には比例弁35を全開状態にして比例弁36の開度を制御する。
【0036】
例えば、前者のように室外熱交換器5よりも蒸発器7の温度が低く、室外熱交換器5の出口側に過熱度(スーパーヒート)が発生している場合、比例弁35の開度を絞ることによりその過熱度が設定値(ゼロまたは小さな適正値)に近づくように制御する。このとき、室外熱交換器5における外部からの熱吸収量は、その比例弁35の絞り量により調整される。すなわち、比例弁36を全開状態に維持しつつ比例弁35の開度を絞ることで、室外熱交換器5の蒸発圧力Poと蒸発器7の出口の圧力Peとの差圧ΔP=Po−Peが適正となり、循環する冷媒を室外熱交換器5と蒸発器7とで蒸発させる比率を調整することができる。すなわち、差圧ΔPが大きくなると、室外熱交換器5における蒸発量が相対的に小さくなる(蒸発器7における蒸発量が相対的に大きくなる)。逆に、差圧ΔPが小さくなると、室外熱交換器5における蒸発量が相対的に大きくなる(蒸発器7における蒸発量が相対的に小さくなる)。制御部は、室外熱交換器5の出口側に過熱度に応じて比例弁35の開度を制御して差圧ΔPを適正に調整することで、特定暖房運転時における除湿機能を確保する。なお、室外熱交換器5の出口側の過熱度の有無およびその大きさは、室外熱交換器5の入口側の温度と出口側の温度を検出することで特定することができる。
【0037】
逆に、後者のように蒸発器7よりも室外熱交換器5の温度が低く、蒸発器7の出口側に過熱度が発生している場合、比例弁36の開度を絞ることによりその過熱度が設定過熱度(ゼロまたは小さな適正値)に近づくように制御する。すなわち、比例弁35を全開状態に維持しつつ比例弁36の開度を絞ることで、蒸発器7の出口の圧力Peと室外熱交換器5の蒸発圧力Poとの差圧ΔP=Pe−Poが適正となり、特定暖房運転時における除湿機能を確保することができる。なお、蒸発器7の出口側の過熱度の有無およびその大きさは、蒸発器7の入口側の温度と出口側の温度を検出することで特定することができる。
【0038】
図2(D)に示すように、通常暖房運転時においては、第1制御弁4の比例弁34が閉弁状態とされ、比例弁37が開弁状態とされる。また、第2制御弁6において比例弁31および比例弁33が閉弁状態とされ、比例弁32が開弁状態とされる。さらに、第3制御弁9において比例弁35が開弁状態とされ、比例弁36が閉弁状態とされる。それにより、第1冷媒循環通路および第3冷媒循環通路が遮断され、第2冷媒循環通路が開放される。このため、室内凝縮器3から導出された冷媒は、室外熱交換器5に導かれる。このとき、蒸発器7には冷媒が供給されないため、蒸発器7は実質的に機能しなくなり、室外熱交換器5のみが蒸発器として機能するようになる。制御部は、室内凝縮器3の出口側の温度に基づき、その出口側の過冷却度が適正となるよう比例弁32の開度を制御する。
【0039】
図2(E)に示すように、特殊暖房運転時においては、第1制御弁4の比例弁34が閉弁状態とされ、比例弁37が開弁状態とされる。また、第2制御弁6において比例弁31および比例弁32が閉弁状態とされ、比例弁33が開弁状態とされる。さらに、第3制御弁9において比例弁35が閉弁状態とされ、比例弁36が開弁状態とされる。それにより、第1冷媒循環通路および第2冷媒循環通路が遮断され、第3冷媒循環通路が開放される。このため、室内凝縮器3から導出された冷媒は、蒸発器7に導かれる。つまり、冷媒が室外熱交換器5を迂回するため室外熱交換器5が実質的に機能しなくなる。蒸発器7に導入された冷媒は、その蒸発器7を通過する過程で蒸発し、車室内の空気を除湿する。このような特殊冷暖房運転は、外部からの吸熱が困難な場合、例えば車両が極寒状況におかれた場合などに有効に機能する。
【0040】
次に、本実施形態の制御弁の具体的構成について説明する。
図3〜図5は、第1制御弁4の構成および動作を表す断面図である。図3に示すように、第1制御弁4は、ステッピングモータ駆動式の電動弁として構成され、弁本体101とモータユニット102とを組み付けて構成されている。弁本体101は、有底筒状のボディ104に大口径の比例弁34と大口径の比例弁37とを同軸状に収容して構成されている。第1制御弁4は、一方の比例弁の全開状態を維持しつつ他方の比例弁の開度が設定開度に調整される複合弁として構成されている。
【0041】
ボディ104の一方の側部には導入ポート110が設けられ、他方の側部には上下に第1導出ポート112、第2導出ポート114が設けられている。導入ポート110は圧縮機2の吐出室に連通し、第1導出ポート112は第1通路21に連通し、第2導出ポート114は第2通路22に連通する。すなわち、ボディ104には、導入ポート110と第1導出ポート112とをつなぐ第1内部通路と、導入ポート110と第2導出ポート114とをつなぐ第2内部通路が形成される。
【0042】
ボディ104の上半部には、円筒状の区画部材116が配設されている。区画部材116は、シール部材を介してボディ104に同心状に組み付けられている。区画部材116の下端部は弁孔120を形成している。また、弁孔120の下端開口端縁により弁座122が形成されている。区画部材116における第1導出ポート112との対向面には、内外を連通する連通孔が設けられている。
【0043】
ボディ104の上端部には、段付円筒状の区画部材124が配設されている。区画部材124は、弁本体101の内部とモータユニット102の内部とを区画する。区画部材124の上端部中央には、円ボス状の軸受部126が設けられている。軸受部126の内周面には雌ねじ部が設けられ、外周面は滑り軸受として機能する。区画部材124の内方にはガイド孔128が形成され、その下端部にシール部材としてのOリング130が嵌着されている。
【0044】
ボディ104の内方には、弁駆動体132、弁作動体134、伝達部材136が同軸状に配設されている。弁駆動体132は段付円筒状をなし、その軸線方向中央の縮径部が弁孔120を貫通するように配設されている。縮径部は第1内部通路を横断する。弁駆動体132の下端部には共用弁体138が設けられ、上端部には区画部140が設けられている。すなわち、共用弁体138は、弁孔120の上流側にて導入ポート110に連通する圧力室に配置されている。一方、区画部140は、第1内部通路においてモータユニット102に近接した位置、つまり弁孔120の下流側にて第1導出ポート112に連通する圧力室に配置され、区画部材124に摺動可能に支持されている。
【0045】
共用弁体138は段付円柱状をなし、その上端部に第1弁体141が嵌着され、下端部に第2弁体142が嵌着されている。第1弁体141および第2弁体142は、ともに環状の弾性体(本実施形態ではゴム)からなる。導入ポート110と第2導出ポート114とをつなぐ通路には弁孔144が設けられ、その上端開口端縁に弁座146が形成されている。つまり、共用弁体138は、弁孔120と弁孔144との間に配置されている。第1弁体141は、弁座122に接離して比例弁34の開度を調整する。一方、第2弁体142は、弁座146に接離して比例弁37の開度を調整する。
【0046】
共用弁体138の下端部には弁孔144に摺動しつつ支持される複数の脚部(同図にはその1つのみ表示)が延設されている。すなわち、弁駆動体132は、その下端部の複数の脚部が弁孔144に沿って摺動し、上端部の区画部140がガイド孔128に沿って摺動することにより、軸線方向に安定に動作することができる。区画部140と区画部材124との間には背圧室148が形成される。また、共用弁体138を軸線方向に貫通する連通路150が形成されている。この共用弁体138における連通路150を形成する部分と弁駆動体132の縮径部とが管路部を構成し、第2導出ポート114と背圧室148とを連通させる。このため、背圧室148には常に、第2導出ポート114から導出される下流側圧力Pout2が満たされる。
【0047】
本実施形態においては、弁孔120の有効径Aと、弁孔144の有効径Bと、ガイド孔128の有効径C(正確にはOリング130の内径)とが等しく設定されている。このため、共用弁体138に作用する冷媒圧力の影響はキャンセルされる。特にOリング130を設けたことにより、区画部140の摺動部のシール性が確保されるとともに、その摺動部にゴミなどが挟み込まれることが防止されている。
【0048】
弁駆動体132の区画部140の内方には、ばね受け152と伝達部材136が同軸状に挿通されている。ばね受け152は円板状をなし、その中央部を伝達部材136が貫通している。区画部140の上端開口部とばね受け152との間には、スプリング154(「付勢部材」として機能する)が介装されている。一方、弁駆動体132の縮径部の内方には、円板状のばね受け156が挿通されている。共用弁体138とばね受け156との間には、スプリング158(「付勢部材」として機能する)が介装されている。
【0049】
そして、弁作動体134と弁駆動体132とが伝達部材136を介して作動連結可能に構成されている。すなわち、伝達部材136の上端部は弁作動体134の底部を貫通し、その先端部が外方に加締められて連結されている。伝達部材136の側部には半径方向外向きに突出した係止部160が設けられ、その係止部160がばね受け152に係止されることで、弁作動体134と弁駆動体132とが上方に一体動作可能となるように構成されている。また、伝達部材136の下端がばね受け156に係止されることで、弁作動体134と弁駆動体132とが下方に一体動作可能となるように構成されている。弁駆動体132と弁作動体134とは、比例弁34と比例弁37がともに開弁状態であるときはスプリング154,158の付勢力により突っ張った状態で一体変位するが(図4参照)、いずれか一方が閉弁状態になれば軸線方向に相対変位可能となる(図3,図5参照)。
【0050】
なお、スプリング154,158は、いずれもその荷重が弁駆動体132とOリング130との間の摺動抵抗(弁駆動体132の摺動力)よりも大きくなるように設定されている。それにより、弁作動体134と弁駆動体132とが一体動作しているときにスプリング154,158が縮むことなく、比例弁34および比例弁37の弁開度を正確に制御できるようになっている。
【0051】
弁作動体134は、段付円筒状をなし、その外周部に雄ねじ部が形成されている。雄ねじ部は、軸受部126の雌ねじ部に螺合する。弁作動体134の上端部には半径方向外向きに延出する複数(本実施形態では4つ)の脚部153が設けられており、モータユニット102のロータに嵌合している。弁作動体134は、モータユニット102の回転駆動力を受けて回転し、その回転力を並進力に変換する。すなわち、弁作動体134が回転すると、ねじ機構(「作動変換機構」として機能する)によって弁作動体134が軸線方向に変位し、共用弁体138を軸線方向(比例弁34、比例弁37の開閉方向)に駆動する。
【0052】
一方、モータユニット102は、ロータ172とステータ173とを含むステッピングモータとして構成されている。モータユニット102は、有底円筒状のスリーブ170の内方にロータ172を回転自在に支持するようにして構成されている。スリーブ170の外周には、励磁コイル171を収容したステータ173が設けられている。スリーブ170は、その下端開口部がボディ104に組み付けられており、ボディ104とともに第1制御弁4のボディを構成する。
【0053】
ロータ172は、円筒状に形成された回転軸174と、その回転軸174の外周に配設されたマグネット176を備える。本実施形態では、マグネット176は24極に磁化されている。回転軸174の内方にはモータユニット102のほぼ全長にわたる内部空間が形成されている。回転軸174の内周面の特定箇所には、軸線に平行に延びるガイド部178が設けられている。ガイド部178は、後述する回転ストッパと係合するための突部を形成するものであり、軸線に平行に延びる一つの突条により構成されている。
【0054】
回転軸174の下端部はやや縮径され、その内周面に軸線に平行に延びる4つのガイド部180が設けられている。ガイド部180は、軸線に平行に延びる一対の突条により構成され、回転軸174の内周面に90度おきに設けられている。この4つのガイド部180には、上述した弁作動体134の4つの脚部153が嵌合し、ロータ172と弁作動体134とが一体に回転できるようになっている。ただし、弁作動体134は、ロータ172に対する回転方向の相対変位は規制されるものの、そのガイド部180にそった軸線方向の変位は許容される。すなわち、弁作動体134は、ロータ172とともに回転しつつ共用弁体138の開閉方向に駆動される。
【0055】
ロータ172の内方には、その軸線に沿って長尺状のシャフト182が配設されている。シャフト182は、その上端部がスリーブ170の底部中央に圧入されることにより片持ち状に固定され、ガイド部178に平行に内部空間に延在している。シャフト182は、弁作動体134と同一軸線上に配置されている。シャフト182には、そのほぼ全長にわたって延在する螺旋状のガイド部184が設けられている。ガイド部184は、コイル状の部材からなり、シャフト182の外面に嵌着されている。ガイド部184の上端部は折り返されて係止部186となっている。
【0056】
ガイド部184には、螺旋状の回転ストッパ188が回転可能に係合している。回転ストッパ188は、ガイド部184に係合する螺旋状の係合部190と、回転軸174に支持される動力伝達部192とを有する。係合部190は一巻きコイルの形状をなし、その下端部に半径方向外向きに延出する動力伝達部192が連設されている。動力伝達部192の先端部がガイド部178に係合している。すなわち、動力伝達部192は、ガイド部178の一つの突条に当接して係止される。このため、回転ストッパ188は、回転軸174により回転方向の相対変位は規制されるが、ガイド部178に摺動しつつその軸線方向の変位が許容される。
【0057】
すなわち、回転ストッパ188は、ロータ172と一体に回転し、その係合部190がガイド部184にそってガイドされることで、軸線方向に駆動される。ただし、回転ストッパ188の軸線方向の駆動範囲はガイド部178の両端に形成された係止部により規制される。同図には、回転ストッパ188が下死点にて係止された状態が示されている。回転ストッパ188が上方へ変位して係止部186に係止されると、その位置が上死点となる。
【0058】
ロータ172は、その上端部がシャフト182に回転自在に支持され、下端部が軸受部126に回転自在に支持されている。具体的には、回転軸174の上端開口部を封止するように有底円筒状の端部部材194が設けられ、その端部部材194の中央に設けられた円筒軸196の部分がシャフト182に支持されている。すなわち、軸受部126が一端側の軸受部となり、シャフト182における円筒軸196との摺動部が他端側の軸受部となっている。
【0059】
以上のように構成された第1制御弁4は、モータユニット102の駆動制御によってその弁開度を調整可能なステッピングモータ作動式の制御弁として機能する。以下、その動作について詳細に説明する。
第1制御弁4の流量制御において、車両用冷暖房装置の図示しない制御部は、設定開度に応じたステッピングモータの駆動ステップ数を演算し、励磁コイル171に駆動電流(駆動パルス)を供給する。それによりロータ172が回転し、一方で弁作動体134が回転駆動されて比例弁34および比例弁37の開度が設定開度に調整され、他方で回転ストッパ188がガイド部184にそって駆動されることにより、各弁体の動作範囲が規制される。
【0060】
図3は、比例弁34が全開状態となり、比例弁37が閉弁状態となる場合を示している。第1制御弁4は、例えば特殊冷房運転時においてこのような状態をとる。したがって、特殊冷房運転時においては、圧縮機2から吐出された高温のガス冷媒が室内凝縮器3へ漏洩することが防止される。
【0061】
図4は、比例弁34および比例弁37がともに開弁状態となる場合を示している。第1制御弁4は、例えば通常冷房運転時において状況に応じてこのような状態をとり得る。すなわち、図3の状態からロータ172が一方向に回転駆動(正転)されることにより弁駆動体132が比例弁37の開弁方向に変位し、図4に示すように比例弁34と比例弁37がともに開弁した状態となる。すなわち、ロータ172とともに回転する弁作動体134がねじ機構によって上昇し、伝達部材136がその係止部160にてばね受け152に係止された状態で、弁作動体134が弁駆動体132を吊り上げるようにして変位させる。なお、図4は比例弁34および比例弁37がともに全開となった状態を示している。比例弁37の弁開度は、共用弁体138が図3に示す位置と図4に示す位置との間の範囲で駆動されることで調整される。そのように比例弁37の弁開度が調整される状態においては、比例弁34の全開状態が維持される。なお、ここでいう「全開状態」とは、弁開度が大きくなって冷媒の流量が飽和状態となることを意味する。
【0062】
図5は、比例弁34が閉弁状態となり、比例弁37が全開状態となる場合を示している。第1制御弁4は、例えば暖房運転時においてこのような状態をとる。図4の状態からロータ172がさらに同方向に回転駆動されることにより弁駆動体132が比例弁34の閉弁方向に変位し、図5の状態となる。したがって、暖房運転時においては、圧縮機2から吐出された高温のガス冷媒が室外熱交換器5へ漏洩することが防止される。なお、図5の状態からロータ172を逆方向に回転駆動することにより、比例弁34を開弁させることができることは言うまでもない。比例弁34の弁開度は、共用弁体138が図5に示す位置と図4に示す位置との間の範囲で駆動されることで調整される。
【0063】
なお、図5には、比例弁34が閉弁した後にロータ172が所定量回転した状態が示されている。すなわち、比例弁34の閉弁と同時にロータ172が停止しなくとも、図示のように伝達部材136がばね受け156から離間することで弁座122に過度な面圧がかかるのを防止する遊び機構が設けられている。同様に、図3には比例弁37が閉弁した後にロータ172が所定量回転した状態が示されている。すなわち、比例弁37の閉弁と同時にロータ172が停止しなくとも、図示のように伝達部材136がばね受け152から離間することで弁座146に過度な面圧がかかるのを防止する遊び機構が設けられている。
【0064】
このように、比例弁34と比例弁37は共用のモータユニット102により駆動され、一方の開度の制御状態において他方は全開状態に維持される。それにより、複合弁でありながら、その一方の比例弁の開度を正確に制御することが可能となっている。
【0065】
[第2実施形態]
次に、本発明の第2実施形態について説明する。本実施形態に係る車両用冷暖房装置は、制御弁の構成が第1実施形態と異なる。以下、第1実施形態との相違点を中心に説明し、第1実施形態とほぼ同様の構成部分については同一の符号を付す等して適宜その説明を省略する。図6は、第2実施形態に係る制御弁の構成を表す断面図である。
【0066】
本変形例の第1制御弁204は、弁本体201の構成が第1実施形態の弁本体101とは異なる。すなわち、ボディ205における弁駆動体232の配置が、図3に示したボディ104における弁駆動体132と上下逆となるような構成を有する。背圧室148は、ボディ205の上端部側(モータユニット102側)ではなく、底部側に形成される。
【0067】
すなわち、ボディ205の底部には、円穴状のガイド孔128が弁孔144と同軸状に形成されている。ボディ205の内方には、弁駆動体232、弁作動体134、伝達部材136が同軸状に配設されている。弁駆動体232は、その縮径部が弁孔144を貫通するように配設され、その上端部に共用弁体138が設けられ、下端部に区画部240が設けられている。
【0068】
区画部240は、弁孔144の下流側にて第2導出ポート114に連通する圧力室に配置され、ガイド孔128に摺動可能に支持されている。区画部240の外周面にシール部材としてのOリング130が嵌着されている。ボディ104の底部と区画部240との間にスプリング158(「付勢部材」として機能する)が介装されている。
【0069】
共用弁体138の上端部には、複数の脚部(同図にはその1つのみ表示)が延設されている。すなわち、弁駆動体232は、その上端部の複数の脚部が弁孔120に沿って摺動し、下端部の区画部240がガイド孔128に沿って摺動することにより、軸線方向に安定に動作することができる。
【0070】
また、共用弁体138を貫通するように有底円筒状の管路部材250が設けられている。管路部材250は、その底部の上端面が伝達部材136の下端面と当接可能に構成されている。管路部材250の内方には、共用弁体138を貫通する連通路150が形成される。管路部材250は、弁駆動体132の縮径部とともに管路部を構成し、第1導出ポート112と背圧室148とを連通させる。このため、背圧室148には常に、第1導出ポート112から導出される下流側圧力Pout1が満たされる。
【0071】
本変形例においては、弁孔120の有効径Aと、弁孔144の有効径Bと、ガイド孔128の有効径Cとが等しく設定されている。このため、共用弁体138に作用する冷媒圧力の影響はキャンセルされる。特にOリング130を設けたことにより、区画部240の摺動部のシール性が確保されるとともに、その摺動部にゴミなどが挟み込まれることが防止されている。
【0072】
一方、伝達部材136は、弁作動体134の底部に挿通されている。伝達部材136の係止部160は、弁作動体134の内方に配置されている。伝達部材136は、係止部160が弁作動体134の底部に係止されることにより、弁作動体134に対する下方への相対変位(弁作動体134の底面からの突出量)が規制される。弁作動体134の上端部と伝達部材136の係止部160との間には、伝達部材136を下方、つまり係止部160を弁作動体134の底部に当接させる方向に付勢するスプリング154(「付勢部材」として機能する)が介装されている。
【0073】
そして、弁作動体134と弁駆動体232とが伝達部材136を介して作動連結可能に構成されている。すなわち、弁作動体134が下降して伝達部材136が管路部材250に係止されることにより、弁作動体134と弁駆動体132とが下方に一体動作可能となるように構成されている。弁駆動体232と弁作動体134とは、比例弁34と比例弁37がともに開弁状態であるときはスプリング154,158の付勢力により突っ張った状態で一体変位するが、いずれか一方が閉弁状態になれば軸線方向に相対変位可能となる。すなわち、図示のように、比例弁34の閉弁時においては伝達部材136が管路部材250から離間可能となり、弁作動体134と弁駆動体232との作動連結が解除される。また、比例弁37の閉弁時においては、伝達部材136が管路部材250からの反力によりスプリング154を縮めるようになるため、弁作動体134と弁駆動体232との作動連結が解除される。
【0074】
なお、スプリング154とスプリング158との合力が、弁駆動体232とOリング130との間の摺動抵抗(弁駆動体232の摺動力)よりも大きくなるように設定されている。また、スプリング154の荷重がスプリング158の荷重よりも相当大きく設定されている。それにより、弁作動体134と弁駆動体232とが一体動作しているときにスプリング154が縮むことなく、比例弁34および比例弁37の弁開度を正確に制御できるようになっている。
【0075】
以上、本発明の好適な実施形態について説明したが、本発明はその特定の実施形態に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。
【0076】
上記実施形態では、ポート110を冷媒が導入される共用の導入ポートとし、ポート112,114を冷媒が導出される個別の導出ポートとする例を示した。変形例においては、ポート112,114をそれぞれ冷媒が導入される個別の導入ポートとし、ポート110を冷媒が導出される共用の導出ポートとしてもよい。すなわち、複合弁を上記実施形態において冷媒の流れを逆方向とする制御弁として構成してもよい。そして、複合弁の出口側ではなく入口側の冷媒を背圧室に導入して背圧キャンセルを行う構成としてもよい。
【0077】
上記実施形態では、モータユニット102におけるシャフト182のガイド部184や回転ストッパ188の係合部190をいずれもコイル状の部材により螺旋状に形成する例を示した。変形例においては、例えばシャフト182のガイド部184を雄ねじ部とし、回転ストッパ188の係合部190を雌ねじ部とするねじ機構としてもよい。すなわち、両者により回転を並進に変換する機構が構成されればよい。
【0078】
上記実施形態では、上記制御弁を電気自動車の冷暖房装置に適用する例を示したが、内燃機関を搭載した自動車や、内燃機関と電動機を搭載したハイブリッド式の自動車の冷暖房装置に適用することが可能であることは言うまでもない。また、上記制御弁を作動流体としての冷媒の流れを制御する電気駆動弁として構成する例を示したが、冷媒以外の作動流体の流れを制御する電気駆動弁として構成することもできる。さらに、上記実施形態では、制御弁のアクチュエータとしてステッピングモータを用いる例を示したが、他の形式のモータあるいはソレノイドをアクチュエータとすることもできる。
【符号の説明】
【0079】
2 圧縮機、 3 室内凝縮器、 4 第1制御弁、 5 室外熱交換器、 6 第2制御弁、 7 蒸発器、 8 アキュムレータ、 9 第3制御弁、 31,32,33,34,35,36,37 比例弁、 100 車両用冷暖房装置、 101 弁本体、 102 モータユニット、 104 ボディ、 110 導入ポート、 112 第1導出ポート、 114 第2導出ポート、 120 弁孔、 122 弁座、 128 ガイド孔、 132 弁駆動体、 134 弁作動体、 136 伝達部材、 138 共用弁体、 140 区画部、 141 第1弁体、 142 第2弁体、 144 弁孔、 146 弁座、 148 背圧室、 154,158 スプリング、 172 ロータ、 173 ステータ、 201 弁本体、 204 第1制御弁、 205 ボディ、 232 弁駆動体、 240 区画部、 250 管路部材。

【特許請求の範囲】
【請求項1】
第1内部通路および第2内部通路が形成され、前記第1内部通路の作動流体の流れを調整するために開度が制御される第1弁と、前記第2内部通路の作動流体の流れを調整するために開度が制御される第2弁とを収容する共用のボディと、
前記第1弁と前記第2弁の開度を電気的に調整するための共用のアクチュエータと、
前記アクチュエータにより軸線方向に駆動される弁作動体と、
前記第1弁を開閉する第1弁体と前記第2弁を開閉する第2弁体とを一体に含み、前記弁作動体と一体変位可能に作動連結されることにより前記第1弁および前記第2弁の開閉方向に駆動される弁駆動体と、
前記第1弁または前記第2弁の開度の制御状態において前記弁作動体と前記弁駆動体とを作動連結し、前記第1弁および前記第2弁の一方の開度の制御状態において他方を全開状態に維持可能な作動切替機構と、
前記弁駆動体と前記ボディとの間に背圧室を形成し、前記第1内部通路および前記第2内部通路の一方の作動流体をその背圧室に導入することにより、前記第1弁体と前記第2弁体の双方に作用する流体圧力の影響を同時にキャンセルする背圧キャンセル構造と、
を備えることを特徴とする制御弁。
【請求項2】
前記ボディに第1ポート、第2ポートおよび第3ポートが設けられ、
前記第1ポートと前記第2ポートとをつなぐ通路により前記第1内部通路が形成され、
前記第1ポートと前記第3ポートとをつなぐ通路により前記第2内部通路が形成され、
前記第1内部通路の中間部に第1弁孔が設けられ、
前記第2内部通路の中間部に第2弁孔が設けられ、
前記第1弁孔、前記第2弁孔および前記弁作動体が同一軸線上に設けられ、
前記弁駆動体は、
前記第1弁孔と前記第2弁孔との間に配置され、前記第1弁孔に接離して前記第1弁の開度を調整する前記第1弁体と、前記第2弁孔に接離して前記第2弁の開度を調整する前記第2弁体とが一体に設けられた弁体部と、
前記弁体部を貫通するように連設され、軸線方向の一方の側に延出する管路部と、
前記管路部の前記弁体部と反対側端部に連設され、前記ボディとの間に前記背圧室を形成する区画部と、
を備えることを特徴とする請求項1に記載の制御弁。
【請求項3】
前記第1ポートが、前記第1内部通路と前記第2内部通路との共用通路に連通する共用ポートとして形成され、
前記第2ポートが、前記第3ポートよりも前記アクチュエータに近接して設けられ、
前記第3ポートが、前記第2ポートよりも前記アクチュエータから離間して設けられ、
前記管路部は、前記第1内部通路および前記第2内部通路の一方を横断するように前記弁体部の一方の側に延出し、他端部が前記第1内部通路および前記第2内部通路の他方に開口していることを特徴とする請求項2に記載の制御弁。
【請求項4】
前記第1ポートが、作動流体を導入する導入ポートとして形成され、
前記第2ポートが、前記第1弁孔を通過した作動流体を導出する第1導出ポートとして構成され、
前記第3ポートが、前記第2弁孔を通過した作動流体を導出する第2導出ポートとして構成されていることを特徴とする請求項3に記載の制御弁。
【請求項5】
前記管路部は、一端側が前記第1内部通路を横断するように延出し、他端側に前記第3ポートに連通する連通口を有し、
前記区画部が前記アクチュエータとの間に前記背圧室を形成することを特徴とする請求項3または4に記載の制御弁。
【請求項6】
前記背圧キャンセル構造は、前記第1弁孔の有効径と、前記第2弁孔の有効径と、前記区画部の有効受圧径とをほぼ等しくすることにより実現されていることを特徴とする請求項2〜5のいずれかに記載の制御弁。
【請求項7】
前記区画部と前記ボディとの摺動部に設けられたシール部材をさらに備え、
前記作動切替機構は、
前記弁駆動体と前記弁作動体とを作動連結させる方向に付勢する付勢部材を含み、
前記付勢部材の付勢力が前記シール部材の摺動力よりも大きく設定されることにより、前記第1弁および前記第2弁の一方の開度の制御状態においては前記弁駆動体と前記弁作動体とが互いに係止されつつ一体変位可能に作動連結する状態を維持し、
前記第1弁および前記第2弁の少なくとも一方の閉弁状態において前記付勢部材が前記弁駆動体からの反力により変形することにより、前記弁駆動体と前記弁作動体とが相対変位可能に連結解除されるように構成されていることを特徴とする請求項2〜6のいずれかに記載の制御弁。
【請求項8】
前記アクチュエータとして、回転駆動されるロータを含むステッピングモータと、
前記ロータとともに回転し、その軸線周りの回転運動を前記弁作動体の軸線方向の並進運動に変換する作動変換機構と、
を備えることを特徴とする請求項1〜7のいずれかに記載の制御弁。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−184831(P2012−184831A)
【公開日】平成24年9月27日(2012.9.27)
【国際特許分類】
【出願番号】特願2011−50100(P2011−50100)
【出願日】平成23年3月8日(2011.3.8)
【出願人】(000133652)株式会社テージーケー (280)
【Fターム(参考)】