説明

医療用コイル構造体と、その製造方法、並びに医療用コイル構造体を形成して成る医療用内視鏡と、医療用処置具と、超音波診断医療用カテーテルと、光干渉診断医療用カテーテル

【課題】コイル体に接合部材を用いて部分的に接合して接合部を形成する際、又は医療用処置具に用いるコイル体、又は医療用コイル構造体と接続口金とを接合部材を用いて部分的に接合して接合部を形成する際、コイル体、又は医療用コイル構造体の金属素線への熱影響による機械的強度特性を低下させることなく、これを向上させる技術課題である接合法を用いた医療用コイル構造体、又は医療用処置具等を開示するものである。
【解決手段】医療用コイル構造体の金属素線にオーステナイトステンレス鋼線の強加工の伸線加工を行った金属素線を用いて巻回成形、又は撚合構成し、強加工のオーステナイト系ステンレス鋼線の温度と引張破断強度特性に着目して、引張破断強度が向上する温度と合致した溶融温度をもつ接合部材を用いて接合部を形成し、接合部の医療用コイル構造体の金属素線の引張破断強度をより向上させた医療用コイル構造体であることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、コイル体に接合部材を用いて部分的に接合した接合部をもつ医療用コイル構造体、並びに前記コイル体、若しくは前記医療用コイル構造体の、先端部、又は手元部に接合部材を用いて部分的に接合した接合部での機械的強度特性を向上させた医療用コイル構造体、及びそれを用いて成る医療用処置具等に関する。
【背景技術】
【0002】
体内へ挿入する例えば医療用処置具等の先端部、又は手元操作部は、操作用ロープを貫挿させたコイル体を備え、手元操作を先端部へ伝達させる為、接続口金とコイル体との接合部の機械的強度特性を考慮して、病変部治療に際して人体への安全確保を満たさなければならず、この為種々の提案がなされている。
【0003】
特許文献1には、密着コイルを用いて良好な回転伝達性能を得ることを目的とした医療用処置具の記載がある。
しかし、コイル体の素線同士は「溶接」であって細線のワイヤは溶け、溶接前のコイル体の機械的強度を維持することはできない。
【0004】
特許文献2には、コイル体と接続口金とを「ロウ接」して固定強度を向上することを目的とした内視鏡の記載がある。
しかし、一般的に、例えばステンレス鋼のろう付けには融点が895℃から1030℃の金ろう(JISZ3266)等が用いられ、かかる場合にコイル体を構成する金属素線は溶けて溶接され、又かかる特許文献にはろう材の開示はなく、そして、ろう材の溶融温度とコイル体との機械的強度特性との相関性については何ら開示はなく、さらに上記いずれの特許文献も接合技術に関して「接合部材を単なる固着手段」として用いる考え方である。
【0005】
特許文献3には、中空撚線コイル体の回転伝達性を向上させる捻回加工の記載があるが、特に静荷重ウエイトと回転数との回転伝達性能との関係の解析が不十分であり、かつ接合部材の溶融熱を利用してコイル体に用いる金属素線の引張破断強度を向上させる本発明の基本技術思想については何ら明示されていない。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2010−5430号公報
【特許文献2】特開2009−153714号公報
【特許文献3】特許第4098613号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
従来、複数の金属素線を用いて巻回成形したコイル体の端部は、複数本から成る金属素線がバラバラになるのを防ぐ為、バラケ防止として溶接等しているのが一般的である。又、例えば医療用鉗子等の医療用処置具等において操作用ロープを貫挿したコイル体に、ステンレス鋼線を用いてコイル体とし、コイル体の端部に接続された接続口金とを接合する際、接合部材であるろう材等は単なる固着手段としてのみの技術思想しか存在せず、ステンレス鋼線の加工度の高い強加工の伸線加工した金属素線を巻回成形、又は撚合構成してコイル体とし、この強加工した金属素線を用いたコイル体の熱影響による機械的強度特性を考慮した、ろう付けやはんだ付けの際の接合部材である共晶合金を用いた接合に関する技術思想は存在していない。
又、後述する本発明の医療用コイル構造体を駆動シャフトとして用いた診断医療用カテーテルにおいても前記同様である。
この発明の目的は、コイル体の金属素線にオーステナイト系ステンレス鋼線を用いて強加工の伸線加工を行い、この強加工した金属素線への熱影響による引張破断強度特性向上効果を利用して、前記接合部材を単に固着手段として用いるのみではなく、コイル体の金属素線の引張破断強度を向上させながら、かつ接合強度を向上させる新たな接合に関する技術思想を開示することにより、術者が安全に操作できる医療用コイル構造体、及びこれを用いて成る医療用処置具等、並びに診断医療用カテーテルを提供することにある。
【課題を解決するための手段】
【0008】
請求項1記載の発明は、素線直径が0.014mmから0.300mmの金属素線を用いてコイル体に成形した後、接合部材を用いて部分的に接合した接合部を設けた医療用コイル構造体において、
前記コイル体の金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%の伸線加工を行い、引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とし、
前記接合部材は、180℃から495℃の溶融温度をもつ共晶合金を用い、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃の溶融温度をもつ共晶合金を用い、
前記部分的に接合した接合部が、前記コイル体の少なくとも一方の端部の長手方向に前記コイル体外径の1/20倍から30倍の幅で隣接線同士を接合したことを特徴とする医療用コイル構造体である。
この構成により、接合部材の溶融熱を利用して接合部でのコイル体の金属素線の引張破断強度を向上させた高度の耐圧縮性等の機械的強度特性を備えた医療用コイル構造体を得ることができる。
【0009】
請求項2記載の発明は、請求項1に記載の医療用コイル体構造において、
前記コイル体の金属素線は、伸線と伸線後に180℃から495℃の低温加熱処理を設けて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の低温加熱処理を設けて、前記伸線と前記低温加熱処理を1セットとして少なくとも1セット以上繰り返した後に最終伸線を設けて、前記最終伸線までの総減面率を90%から99.5%としたことを特徴とする医療用コイル構造体である。
この構成により、接合部材の溶融熱を利用して接合部でのコイル体の金属素線の引張破断強度をより向上させた、より高度の耐圧縮性等の機械的強度特性を備えた医療用コイル構造体を得ることができる。
【0010】
請求項3記載の発明は、前記医療用コイル構造体のコイル体が、前記金属素線を2本から30本用いて芯金の外周に巻回成形した後に前記芯金を抜き取って中空状の多条線から成るコイル体、又は芯材の外周にロープを撚るようにして撚合構成してロープ体とした後に前記芯材を抜き取って中空状の多条線から成るコイル体であることを特徴とする請求項1〜2のいずれか一つに記載の医療用コイル構造体である。
この構成により、金属素線の引張破断強度を向上させたコイル体を用いて接合部材の溶融熱を利用して接合部でのコイル体の金属素線の引張破断強度、及び接合部の接合強度をさらに向上させて耐圧縮性を向上させ、又特に屈曲状態での回転操作による先端側への回転伝達性能を向上させた医療用コイル構造体を得ることができる。
【0011】
請求項4記載の発明は前記医療用コイル構造体のコイル体が、内層と、前記内層の外周に密着して外層を設け、前記内層の巻回方向、又は撚合方向とが異なる、前記内層と前記外層の二層構造から成るコイル体、又は中層と、前記中層の内周、及び外周に密着して内層と外層を設け、前記中層の巻回方向、又は撚合方向と前記内層及び前記外層の巻回方向、又は撚合方向とが異なる、前記内層と前記中層と前記外層の三層構造から成るコイル体であることを特徴とする請求項1〜3のいずれか一つに記載の医療用コイル構造体である。
この構成により、金属素線の引張破断強度を向上させ、かつ接合部での金属素線の引張破断強度を向上させた医療用コイル構造体を得て、特に屈曲状態での耐圧縮性、又は回転操作による先端側への回転伝達性をより向上させることができる。
【0012】
請求項5記載の発明は、前記医療用コイル構造体のコイル体が、180℃から525℃の低温加熱処理したコイル体であることを特徴とする請求項1〜4のいずれか一つに記載の医療用コイル構造体である。
この構成により、医療用コイル構造体の直線性をより向上させることができる。
【0013】
請求項6記載の発明は、前記医療用コイル構造体のコイル体が、芯材の外周に前記金属素線を撚合構成してロープ体とし、前記ロープ体に電流を導通させて電気抵抗加熱による加熱処理可能状態に設定し、前記ロープ体の一端に前記ロープ体の引張破断力の3%から40%の引張力を加えた状態で前記ロープ体の他端を、前記ロープ体の撚合方向と同一方向へ20回/mから200回/mの捻回加工をした後に、前記捻回加工の10%から30%逆方向へ逆捻回加工を行い、かつ前記捻回加工と同時、又は捻回加工中、又は捻回加工後に180℃から525℃で電気抵抗加熱による熱処理を行い、その後前記ロープ体の芯材を抜き出して中空状の多条線から成るコイル体であることを特徴とする請求項1〜4のいずれか一つに記載の医療用コイル構造体である。
この構成により、コイル体の直線性を向上させ、かつ特に屈曲状態での回転操作による先端側への回転伝達性を飛躍的に向上させる医療用コイル構造体を得ることができる。
【0014】
請求項7記載の発明は、医療用コイル構造体の金属素線の伸線工程と、金属素線を複数本用いてロープ体とする撚合工程と、加熱処理可能に設定する工程と、ロープ体に引張力を加える工程と、ロープ体の撚合方向と同一方向へ所定量捻回する捻回加工工程と、ロープ体の撚合方向と逆方向へ所定量捻回する逆捻回加工工程と、電気抵抗加熱による熱処理工程と、芯抜きコイル体工程と、接合部材を用いて部分的に接合する接合工程から成ることを特徴とする医療用コイル構造体の製造方法である。
この構成により、直線性を向上させ、かつ特に屈曲状態での回転操作による先端側への回転伝達性を飛躍的に向上させた医療用コイル構造体を製造することができる。
【0015】
請求項8記載の発明は、前記芯抜きコイル体工程において、前記芯材が、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材から成ることを特徴とし、請求項9記載の発明は、前記芯抜きコイル体工程の後に、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材を前記中空状のコイル体内へ挿入した後、前記接合部材を用いて部分的に接合する工程と、その後、前記樹脂被膜を形成した芯材を抜き出す工程から成ることを特徴とする請求項7記載の医療用コイル構造体の製造方法である。
この構成により、芯抜き作業を容易にするとともにコイル体接合部の内周面を平滑にして均等内径から成る医療用コイル構造体を製造することができる。
【0016】
請求項10記載の発明は、可とう性シース体の先端側に先端処置部と、手元側に手元操作部を備え、前記可とう性シース体内に、前記先端処置部と前記手元操作部と連結した操作用ロープを貫挿したコイル体を備え、
前記先端処置部は、湾曲駒を複数個連結し、先端側の前記湾曲駒と前記操作用ロープとの先端部を連結した湾曲部から成り、前記手元操作部を操作して前記操作用ロープの操作力の伝達作用により、前記湾曲部を湾曲変形させた医療用内視鏡において、
前記可とう性シース体内のコイル体が、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記コイル体の少なくとも一端と接合する接続口金、又は前記湾曲駒と部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成ることを特徴とする医療用内視鏡である。
この構成により、医療用コイル構造体内へ貫挿した操作用ロープの操作時の反力を支えて先端部への操作力を伝達する構造体において、医療用コイル構造体が操作反力を支えきれずにコイル体に用いる金属素線、及び金属素線の接合部での引張破断強度不足に起因する耐圧縮性低下での操作力不能による術者の手技中断を防ぎ、先端処置部の湾曲部の湾曲操作を円滑にさせ、かつ迅速な手技対応ができる医療用内視鏡の提供ができる。
【0017】
請求項11記載の発明は、コイル体から成る可とう性管体の先端側に先端処置部と、手元側に手元操作部を備え、前記コイル体内に貫挿した操作用ロープを前記先端処置部と手元操作部とに連結し、前記手元操作部を押し、引き、又は回転操作して前記操作用ロープの操作力の伝達作用により、前記先端処置部を動作させる医療用処置具において、
前記可とう性管体のコイル体が、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記コイル体の少なくとも一端と接合する接続口金と部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする医療用処置具である。
この構成により、医療用コイル構造体内へ貫挿した操作用ロープの操作力を支えきれずに、金属素線、及び金属素線接合部の引張破断強度不足に起因する耐圧縮性低下での操作不能状態での術者の手技の中断を防ぐことができ、先端処置部の円滑動作を図り、高度の操作性を維持しながら患部の切除、又は生体組織採取、及び止血等の迅速な手技対応ができる医療用鉗子、医療用クリップ装置等の医療用処置具の提供ができる。
【0018】
請求項12記載の発明は、可とう性管体の手元側は、血管内超音波診断装置の操作制御装置と信号線で連結された駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が超音波を送受信する振動子として機能する超音波振動子を収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する超音波診断医療用カテーテルにおいて、
前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタに部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする超音波診断医療用カテーテルで、
請求項13記載の発明は、可とう性管体の手元側は、光干渉断層診断装置の操作制御装置と信号線で連結された駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が低干渉光を照射、受光する光プローブとして機能するプリズム、又はミラーを収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する光干渉診断医療用カテーテルにおいて、
前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタに部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする光干渉診断医療用カテーテルである。
この構成により、高強度の引張破断強度特性と、先端部へ回転伝達性の高い医療用コイル構造体から成る駆動シャフトを備えた診断医療用カテーテルを用いることにより、又接合部材を用いてハウジング等と接合して接合部を有して成る医療用コイル構造体の駆動シャフトを備えた診断医療用カテーテルを用いることにより、屈曲度合に応じた回転変動による血管断層画像ムラを解消して良好な血管断層画像を得て、動脈硬化の診断、又はバルーンカテーテル等の血管治療時の術前診断、又は術後の治療確認を術者が正確に判断できる。かかる場合に用いられる超音波診断医療用カテーテル、及び光干渉診断医療用カテーテルの提供ができる。
【図面の簡単な説明】
【0019】
【図1】本発明の医療用コイル構造体の構成図。
【図2】総減面率と引張破断強度特性図。
【図3】本発明の医療用コイル構造体の金属素線の温度と引張破断強度特性図。
【図4】本発明の医療用コイル構造体を用いて成る医療用ガイドワイヤの構成図。
【図5】本発明の医療用コイル構造体を用いて成る医療用内視鏡の構成図。
【図6】本発明の医療用コイル構造体を用いて成る医療用鉗子である医療用処置具の構成図。
【図7】本発明の医療用コイル構造体を用いて成る医療用クリップ装置である医療用処置具の構成図。
【図8】診断装置の全体図。
【図9】本発明の医療用コイル構造体を駆動シャフトとして用いて成る診断医療用カテーテルの構成図。
【図10】本発明の医療用コイル構造体のコイル体の捻回装置。
【図11】本発明の医療用コイル構造体のコイル体の一次から三次成形体の工程図。
【図12】本発明の医療用コイル構造体の回転性能試験とその取り回し状態の説明図。
【発明を実施するための形態】
【0020】
この発明の実施形態を図に示すとともに説明する。
【実施例】
【0021】
図1は本発明の医療コイル構造体の実施例を示し、図示(イ)は金属素線を1本用いて巻回成形したコイル体5に接合部材7を用いて部分的に接合部6を有する実施例1Aから1Eの医療用コイル構造体1である。
コイル平均径(D0)は、0.194mmから0.377mm(実施例1Aでは0.275mm)で、金属素線の素線直径が0.050mmから0.090mm(本実施例1Aでは0.065mm)のオーステナイト系ステンレス鋼線を用い、又後述する接合部材7を用いて部分的に接合する符号61、62の接合部6を設け、接合部6の外径D01は概ねコイル体5の外径D01と同一とし、接合部6の長手方向の長さ(L1、L2)は概ねコイル体外径の1/20倍から30倍(本実施例では0.2mmから5mm)とする。好適な実施例としては、後述する医療用ガイドワイヤ100である。
尚、医療用コイル構造体1で、前記実施例1Aよりもコイル体外径が径小の実施例としては、コイル平均径(D0)が、0.124mmから0.292mm(実施例1Bでは0.160mm、実施例1Cで0.220mm)で、金属素線の素線直径が0.014mmから0.040mm(本実施例1Bでは0.030mm、実施例1Cで0.040mm)のオーステナイト系ステンレス鋼線を用いている。
そして好適な用途例としては、後述する細径の医療用ガイドワイヤ100、又は外側のコイルスプリング体3a内へ同心状に外径が径小の内側コイル体56を設けた二重コイル形態の医療用ガイドワイヤである。(図4)
そして、前記実施例1A〜1Cよりもコイル線の金属素線の線径が太い実施例1Dの医療用コイル構造体1としては、コイル平均径(D0)が、0.40mmから1.75mm(実施例1Dでは0.74mm、実施例1Eで1.72mm)で、金属素線の素線直径が0.15mmから0.30mm(本実施例1D、1Eでは0.26mm)のオーステナイト系ステンレス鋼線を用い、接合部材7、及び接合部6の外径(D01)と長手方向の長さ(L1、L2)は概ね前記実施例1A〜1Cと同様である。好適な用途例としては、操作用ロープをコイル体内へ貫挿させ、高耐圧縮性が要求される医療用コイル構造体1をもつ、後述する医療用内視鏡101、及び医療用鉗子等の医療用処置具(102A、102B)である。
【0022】
次に図1(ロ)は、金属素線を2本から30本用いてコイル状に巻回成形、又は撚合構成した多条線から成る実施例2A〜2Cの医療用コイル構造体2である。そしてコイル平均径、金属素線の素線直径、接合部6(符号61)の形状、及び接合部材7は前記実施例1A〜1Eと概ね同様である。
実施例2Aとしては、素線直径が0.030mmの金属素線を6本用いて巻回成形、又は撚合構成し、コイル平均径が0.160mmの医療用コイル構造体2で、好適用途例としては前記実施例1A〜1Cと同様に、外側のコイルスプリング体3a内へ同心状に外径が径小の内側コイル体5bを設けた二重コイル形態の医療用ガイドワイヤである。
又、実施例2Bとして素線直径が0.26mmの金属素線を26本巻回成形、又は撚合構成してコイル平均径が0.74mmの医療用コイル構造体2で、好適用途例としては後述する耐圧縮性が要求されるとともに、手元側の回転を先端側へ伝える回転伝達性能も併せて要求される医療用鉗子、医療用クリップ装置、医療用高周波ナイフ等の医療用処置具102A、102Bである。
【0023】
又実施例2Cとして素線直径が0.26mmの金属素線を18本巻回成形、又は撚合構成してコイル平均径が1.72mmのコイル体5で、前記実施例2Bと同様に耐圧縮性、及び回転伝達性が要求される前記医療用処置具の他、後述する血管内超音波診断装置、又は光干渉断層診断装置等に用いられる診断医療用カテーテルの駆動シャフトである。
尚、ここでいう「巻回成形のコイル体」とは、芯金(マンドレル)に複数の金属素線を巻き付けてコイル状にし、その後芯金を抜き出してコイル体にすることをいう。又「撚合構成のコイル体」とは、複数の金属素線を用いて芯材の外周に側材を撚り合わせてロープ状に撚合構成し、その後芯材を抜き出してコイル体にすることをいう。
そしてこの巻回成形の場合には、巻回成形する金属素線の総本数毎(例えば金属素線の本数が4本であれば4本毎)に隣接線間に隙間が開き易い。これに対して、撚合構成の場合には、ロープを撚るように撚りあわせる為、前記隣接線間に金属素線の総本数毎の隙間は発生しないという差がある。この隙間発生の有無の差は、回転伝達性に影響する。
【0024】
次に図1(ハ)は、前記医療用コイル構造体2を用いて外層コイル体51の内側に内層コイル体52を密着状に設けた二層構造の医療用コイル構造体3を示し、又図示(二)は、前記医療用コイル構造体3に対して外層コイル体51と内層コイル体52との間に中層コイル体53を密着状に設けた三層構造から成る医療用コイル構造体4を示す。
そして前記医療用コイル構造体3、4は、いずれも外層コイル体51のコイル平均径(D1)は、0.901 mmから1.28mmで、金属素線の素線直径が0.10mmから0.30mmのオーステナイト系ステンレス鋼線を2本から30本用いてコイル状に巻回成形、又は撚合構成した外層コイル体51を設け、使用する金属素線の素線直径にそれぞれ対応したコイル平均径の内層コイル体52をもつ二層構造の医療用コイル構造体3、及び外層コイル体51と内層コイル体52との間に中層コイル体53をもつ三層構造の医療用コイル構造体4で、そして又接合部61の形状、及び接合部材7は前記医療用コイル構造体1〜2と概ね同様である。
そして又、各層のコイル体の巻回方向、又は撚合方向は全て同一方向でも良いが均質な柔軟性と先端側への高回転伝達性を得る為には、各層それぞれが逆方向が望ましく、例えば外層コイル体51の巻回方向、又は撚合方向がZ巻き方向(右ねじ)であれば、中層コイル体53は逆方向のS巻き方向(左ねじ)とし、内層コイル体53は外層コイル体51と同方向のZ巻き方向(右ねじ)の組合せ等である。
【0025】
この二層構造から成る医療用コイル構造体3の実施例3Aとして、素線直径(d1)が0.16mmの金属素線を16本巻回成形、又は撚合構成してコイル平均径(D1)が0.96mmの外層コイル体51と、同一の素線直径(d2)の金属素線を11本巻回成形、又は撚合構成してコイル平均径(D2)が0.64mmの内層コイル体52から成る医療用コイル構造体3、又三層構造から成る医療用コイル構造体4の実施例4Aとして素線直径(d1)が0.14mmの金属素線を22本巻回成形、又は撚合構成してコイル平均径(D1)が1.18mmの外層コイル体51と、同一の素線直径(d3)の金属素線を17本巻回成形、又は撚合構成してコイル平均径(D3)が0.90mmの中層コイル体53と、同一の素線直径(d2)の金属素線を12本巻回成形、又は撚合構成してコイル平均径(D2)が0.62mmの内層コイル体52から成る医療用コイル構造体4である。
【0026】
そしてこれらの好適用途例としては、先端部への回転伝達性を重視される医療用クリップ装置、医療用高周波ナイフ等の医療用処置具102A、102Bのシースに用いられるコイル体の他、特に好適用途例は後述する血管内超音波診断装置、又は光干渉断層診断装置等に用いられる診断医療用カテーテル103、104の駆動シャフト5eである。
【0027】
そして前記実施例1D、1E、2B、2Cに用いる金属素線の素線直径0.26mm、及び実施例1Aに用いる金属素線の素線直径0.065mmの製造工程をそれぞれ表1、2に示す。又前記実施例1D、1E、2B、2Cに用いる金属素線の材質はオーステナイト系ステンレス鋼線のSUS304材を用い、前記実施例1Aに用いる金属素線はMoを含むSUS316材を用いた。尚、表中の金属素線の符号は、同一線径の線材を伸線加工工程の減面率の差、又は低温加熱処理工程の有無の差がある為、それぞれ区分表記したものである。
尚、ここでいう総減面率とは、固溶化処理した線材を用いて線材(例えば1050℃の熱処理により引張破断強度が60kgf/mm2 から80kgf/mm2 の性質をもつ線材)の伸線前の線径と、複数のダイスを用いた伸線工程を経て最終伸線の仕上がりの線径との間の断面積差を減少率で表したものをいい、ここでは一伸線工程を経た場合を減面率とし、全伸線工程を経た減面率を総減面率として説明上区分する。又、引張破断強度とは、線材に引張力を加えて破断した時の値を線材の断面積で除した値のことをいい、引張破断力とは、線材に引張力を加えて破断した時の値のことをいう。
又、ここでいう「低温加熱処理」は、引張破断強度の低下、及び硬度を低下させて鋼線を軟化させる焼きなまし、又は低温焼きなまし、並びに変態点以上(例Ac3 約730℃以上)で加熱する焼きならしとは異なり、引張破断強度が増大して機械的性質を向上させる熱処理、と位置づけて「低温加熱処理」と呼称し区別する。
【0028】
【表1】

【0029】
【表2】

【0030】
表1によれば、金属素線aは、伸線工程の減面率が79.9%とすることにより、引張破断強度は70kgf/mm2 から206kgf/mm2 に向上し、そして金属素線aよりも伸線工程の減面率を89.9%向上させた金属素線bの引張破断強度は、70kgf/mm2 から224kgf/mm2 となって金属素線aよりも増大する。
そして金属素線cは、一次伸線後に温度範囲が180℃〜495℃で10分から180分で熱処理炉を用いた炉内での雰囲気加熱による一次低温加熱処理(本実施例では450℃、30分)を行ない、その後二次伸線(本実施例では最終伸線)を行い、総減面率を89.9%としたもので、一次伸線後に低温加熱処理を加えることにより、金属素線bと同一の総減面率であっても引張破断強度が238kgf/mm2 となって金属素線bよりもさらに14kgf/mm2 引張破断強度を増大させることができる。
そして又、表2によれば、金属素線d、eに対しても前記同様の傾向を示し、同一の総減面率である金属素線dに対して、一次伸線後に前記同様の低温加熱処理(本実施例では450℃、30分)を加えることにより金属素線eは引張破断強度が264kgf/mm2 となって金属素線dよりも38kgf/mm2 引張破断強度を増大させることができる。
【0031】
そして表1、2より、総減面率が80%以上で引張破断強度は200kgf/mm2 以上を確保することができ、又総減面率90%以上で引張破断強度は少なくとも210kgf/mm2 以上を確保することができる。又、表1、2によれば、伸線工程における減面率の増加と共に金属素線の引張破断強度は増大し、そして一定の温度範囲の低温加熱処理を加えることにより金属素線の引張破断強度は増大する。
そして金属素線cは、減面率80.7%の伸線加工後に低温加熱処理を加えたときの金属素線の引張破断強度の増加率は5.8%であるのに対して、金属素線eは、減面率91%の伸線加工後に低温加熱処理を加えたときの引張破断強度の増加率は16%となって約2.7倍以上増大し、減面率が高い伸線工程後に低温加熱処理を加えるほど引張破断強度は急傾斜増大する傾向にある。この傾向は、総減面率が80%を境にして総減面率90%、そして総減面率95%を境にして顕著に表れ、図2を用いて後述する。
【0032】
そして次に、前記実施例3A、4Aに用いる金属素線の素線直径が0.16mm(金属素線f)、0.14mm(金属素線g)の製造工程を前記同様表3に示す。
【0033】
【表3】

【0034】
表3によれば、素線直径が0.14mmの金属素線fは、固溶化処理したオーステナイト系ステンレス鋼線(Moを2重量%から3重量%含むSUS316)の引張破断強度が79kgf/mm2 の線材(母線)の線径1.10mmを用いて、一次伸線後180℃から525℃で10分から180分の熱処理炉を用いた炉内での雰囲気加熱による一次低温加熱処理(本実施例では450℃で30分)を行い、その後二次伸線を行い、さらに前記一次低温加熱処理と同条件で二次低温加熱処理を行い、その後三次伸線(本実施例では最終伸線)を行い、総減面率を98.4%として引張破断強度を400kgf/mm2 としたものである。又素線直径が0.16mmの金属素線gについても同様の工程を経て、総減面率99.5%で引張破断強度が402kgf/mm2 として、各実施例の金属素線の中で最も高い値を示す。従って、総減面率が99.5%で引張破断強度は400kgf/mm2 を確保することができる。
そして又、各実施例に用いる金属素線の引張破断強度をより向上させる為には、伸線工程と低温加熱処理工程を1セットとして少なくとも1セット以上の繰り返しが望ましく、又、5セット以上繰り返してもよいが生産性等の観点から3セット以下が望ましい。
【0035】
そして次に、前記金属素線f、gを用いて短時間低温加熱処理を施したものをそれぞれ金属素線h、iとし、短時間低温加熱処理と引張破断強度との関係を表4に示す。尚、温度と時間は後述する接合部材7を用いて接合する際の溶融加熱時間、及び組付時間等を考慮したもので、時間の2秒は、接合部材7を用いて接合固着するときに、接合部材7が溶けてコイル体5が180℃以上で加熱される平均時間を示し、又60秒は、再度接合固着作業(やり直し作業)によりコイル体5が180℃以上で再加熱されるのを含む時間を示したものである。
【0036】
【表4】

【0037】
表4によれば、総減面率が98.4%で素線直径0.14mmの金属素線hは、450℃で60秒間の低温加熱処理であっても引張破断強度は6.7%上昇し、又2秒間の短時間低温加熱処理であっても引張破断強度は3.5%上昇する。そして又、総減面率が99.5%で素線直径が0.16mmの金属素線iは、前記実施例hよりもいずれも条件においても高い増加率の引張破断強度を示す。
このように短時間の低温加熱処理であっても引張破断強度が向上する理由は、総減面率の高い伸線加工の伸線時に局部的に発生した集中応力を一定温度範囲の低温加熱処理により集中応力を平均化させることによると考えることができ、総減面率の高いほどこの傾向が著しい。
【0038】
そして、前記各実施例に用いる金属素線の引張破断強度をより向上させる為には、低温加熱処理の温度範囲は、後述する金属素線の温度と引張破断強度特性(図3)における引張破断強度が増大する温度範囲とし、180℃から525℃が望ましく、より望ましくは300℃から495℃の範囲である。
そして又、2秒から180秒(本実施例では2秒、60秒)の短時間低温加熱処理であっても引張破断力を向上させることができ、このことから、接合部材7を用いて溶融接合する短時間であっても、前記短時間低温加熱処理と同様な効果を示すと考えられる。
この理由は、前記金属素線が強加工の伸線加工であると同時に、素線直径が0.300mm以下の細線、極細線で熱容量が極めて小さいことによると考えられる。
そしてその結果、接合部材7を用いた接合部での引張破断強度向上効果に伴う耐屈曲疲労特性を向上させた医療用コイル構造体を得ることができる。
【0039】
そしてさらに、表3、4によれば、金属素線f、gの最終伸線後(本実施例f、gでは三次伸線後)に短時間の加熱であっても金属素線の引張破断強度は向上し、前記各実施例にみられるように最終伸線前の伸線後の「低温加熱処理」と最終伸線後の「短時間(2秒から180秒)低温加熱処理」とを併用することにより、金属素線の引張破断強度をより向上させることができる。
【0040】
そして次に、医療用コイル構造体1〜4に用いる金属素線の総減面率と引張破断強度との関係、並びに温度と引張破断強度との関係について説明する。
図2は、前記金属素線の総減面率と引張破断強度特性との関係を示したものである。図2によれば、引張破断強度は総減面率が80%以降急傾斜増大する傾向を示している。
前記各実施例の金属素線の総減面率を80%以上としたのは、80%を境にして引張破断応力が増大する変曲ポイントとなるからである。(図6、及び、ばね第3版丸善株式会社63頁、図2.82参照)そして、総減面率90%を境にして、さらに急激に引張破断強度が急傾斜増大し、総減面率が95%に至っては、より飛躍的に増大する変曲ポイントとなることを見出した。
これは、総減面率80%以上という強加工による伸線加工により加工度の増大に伴い繊維状組織が現れ、そしてさらに総減面率90%以上においてはこの繊維状組織が著しく発達したことによると考えられる。
そして総減面率が99.5%以下としたのは、これを超える伸線加工の強い加工度では、金属組織内に空隙が生じはじめて脆化が著しく、これが特に0.06以下mmの極細線の伸線加工の限界と考えるからである。
従って、総減面率が80%から99.5%が好ましく、より好ましくは90%から99.5%で、最も好ましくは90%から99%である。そして99%以下とした理由は、例えば医療用コイル構造体1〜4のように前記金属素線を撚合構成する場合、前記金属素線の伸びが不足して、撚合構成時、特に金属素線の断線が発生し易くなるからである。
【0041】
そして前記金属素線を「固溶化処理したオーステナイト系ステンレス鋼線の伸線加工」としたのは、加工性のよいオーステナイト組織を得る為であり、オーステナイト系ステンレス鋼線は変態点を利用した熱処理による結晶粒の微細化ができず、冷間加工によってのみ結晶粒の微細化が可能で、伸線加工により顕著な加工硬化性を示して引張強度を向上させることができるからである。又オーステナイト系ステンレス鋼線を用いる理由は、マルテンサイト系ステンレス鋼線では熱処理による焼入硬化性を示して熱影響を受け易く、析出硬化系ステンレス鋼線(SUS630等)では靭性が不足して撚合構成時に断線が発生して前記実施例のような細線・極細線の撚合構成はできず、又フェライト系ステンレス鋼線では温度脆性(シグマ脆性)の問題があるからである。
【0042】
次に図3は、一般に金属素線の母線にオーステナイト系ステンレス鋼線を用いて総減面率が90%以上の最終伸線加工後の金属素線を熱影響下(各温度30分)での引張破断強度特性を示した図で、SUS304材のときは図示イを、SUS316材のときは図示ロを示す。
これによるとSUS304材は180℃の熱影響により引張破断強度が上昇し始めて急傾斜し、概ね450℃近傍で最高の引張破断強度特性を示し、495℃まで引張破断強度特性向上効果が顕著にみられ、そして520℃を超えると常温(20℃)よりも急激に引張破断強度が低下する。又、Moを含むSUS316材は、低温側でSUS304材と同様な傾向を示すが高温側では概ね480℃近傍で最高の引張破断強度特性を示し、525℃まで引張破断強度特性向上効果が顕著にみられ、そして540℃を超えると常温(20℃)よりも急激に引張破断強度が低下する。
この引張破断強度特性が急激に低下する理由は、この固溶化処理したオーステナイト系ステンレス鋼線は、前記520℃、540℃を超える温度から800℃に加熱されると、カーボンの析出、クロムの移動の為のエネルギーを必要とし、鋭敏化現象を生じて、特にカーボンが0.08%以下の通常のSUS304のオーステナイト系ステンレス鋼線では、700℃4分から5分程度で、この鋭敏化現象が現れ、引張破断強度が極端に低下するからである。
【0043】
このような引張破断強度特性を有する為、引張破断強度を向上させる為には、例えばSUS304材のときの低温加熱処理の温度範囲は、引張破断強度が急傾斜増大する温度域である180℃から495℃が望ましく、又Moを含む例えばSUS316材(Moが2重量%〜3重量%)の低温加熱処理の温度範囲は、180℃から525℃が望ましい。
【0044】
そしてさらに前記金属素線を接合する接合部材7は、溶融温度が前記金属素線の引張破断強度が急傾斜増大する温度範囲と合致する温度範囲(180℃から525℃)が望ましく、この温度範囲で溶融する共晶合金を用いることにより、接合部の前記金属素線の引張破断強度を向上させながら、かつ強固接合することのできる新たな技術思想を提供するものである。
このように本発明は、強加工の伸線加工して総減面率の高いオーステナイト系ステンレス鋼線の温度による引張破断強度特性、並びに前記金属素線が細線・極細線で熱影響を受け易いことに着目して、はんだ材、ろう材等の接合部材を単なる固着手段として用いるのではなく、前記金属素線の引張破断強度を向上させながら、かつ強固接合させる、新たな考え方である。
【0045】
そして接合部材7は、溶融温度が180℃から495℃の共晶合金、又は金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の共晶合金を用いる。ここでいう共晶合金とは、合金の成分比を変更することにより得られる最低融点(溶融温度)を有する特殊な合金のことをいい、具体的には、金又は銀を含む合金材で金錫系合金材として金80重量%、残部が錫で溶融温度が280℃、又銀錫系合金として銀3.5重量%、残部が錫で溶融温度が221℃、そして、金88重量%、残部がゲルマニウムで溶融温度が356℃、又銀と錫とインジウムから成り、溶融温度が450℃から472℃の共晶合金であり、その代表例を表5に示す。
【0046】
【表5】

【0047】
ここで接合部材7として金を用いる理由は、放射線透視下における視認性向上、及び耐食性、展延性向上の為であり、銀を用いる理由は、融点調整等の為であり、錫を用いる理由は、融点を低下させて芯線2、又はコイル体5との濡れ性を向上させる為であり、又インジウム、銅を用いる理由も濡れ性向上の為であり、そしてゲルマニウムを用いる理由は、金属間化合物の結晶粒粗大化を抑止して、接合強度の低下防止を図る為である。
【0048】
そして接合部材7の溶融温度が180℃から495℃、又は180℃から525℃としたのは、180℃を下回ると加工硬化させた各金属素線の引張破断強度を接合部材7の溶融温度を利用して向上させる効果は低く、そして495℃を超えると前記金属素線のオーステナイト系ステンレス鋼線の特質から、又は525℃を超えるとMoを含むオーステナイト系ステンレス鋼線の特質から、前記各オーステナイト系ステンレス鋼線を520℃、又は540℃を超える800℃に加熱すると鋭敏化現象を生じて、前述のように極端に引張破断強度特性等を低下させることとなり、この現象を防ぎ、各金属素線、及び金属素線を巻回成形、又は撚合構成したコイル体5の機械的強度特性を最大限に発揮させる為である。
そして、接合部材7の溶融熱により各接合部の金属素線の引張破断強度は増大し、この引張破断強度増大に伴い引張応力は増大し、その結果接合部での金属素線、及び医療用コイル構造体1〜4の耐曲げ疲労特性は向上する。
【0049】
尚、補足すれば、溶融温度が605℃から800℃の銀ろう、溶融温度が895℃から1030℃金ろうを用いた場合には、前述したように金属素線の鋭敏化現象による脆化、又は、なまし状態となって大幅に引張破断強度が低下し、そして引張破断強度及び曲げ応力の低下に伴い、コイル体5は座屈現象を生じ易くなる。
そして、溶融温度が約880℃の金74.5重量%から75.5重量%、銀12重量%から13重量%、その他亜鉛、鉄、鉛等0.15重量%以下の金ろうを用いた場合、又溶融温度が780℃の銀72重量%、銅28重量%の銀ろうを用いた場合にも、前記同様の問題が発生する。
【0050】
そして医療用コイル構造体を用いた用途例として後述する医療用ガイドワイヤ、医療用内視鏡、医療用処置具等は手技前に生理食塩水に浸漬、又は手技後の生理食塩水を用いて洗浄する為、例えば接合部材7が銀系共晶合金を用いた場合には、浸漬約1時間以内で硫化銀等の形成により黒色化が始まり、時間の経過とともに黒色化がさらに進んで腐食が増大して接合強度が低下する。この為、腐食進行による接合強度の低下防止、及び黒色化の防止の為には金系共晶合金の接合部材7を用いることが望ましい。
そしてコイル体5と接合する相手部材が後述する接続口金、又はハウジング等が金、又は金成分を含む材料、並びに金めっきした材料であれば、接合部材7との濡れ性が向上し、より望ましい接合形態である。
【0051】
そして、本発明の各実施例に用いる金属素線のオーステナイト系ステンレス鋼線の化学成分は、重量%でC:0.15%以下、Si:1%以下、Mn:2%以下、Ni:6%〜16%、Cr:16%〜20%、P:0.045%以下、S:0.030%以下、Mo:3%以下、残部が鉄及び不可避的不純物から成る。このように高珪素ステンレス鋼(Si:3.0%〜5.0%)、又析出硬化系ステンレス鋼線(SUS630等)を用いなくても前記工法を用いることにより、高強度のオーステナイト系ステンレス鋼線の金属素線を得ることができる。尚、Cは引張破断強度向上の為には、0.005%以上が望ましく、粒界腐食抑制の観点から0.15%以下が望ましい。
【0052】
本発明の各実施例に用いる金属素線は、素線直径が0.014mmから0.300mmのオーステナイト系ステンレス鋼線で、特に金属素線の素線直径が0.100mm以下の細線・極細線で総減面率94%以上の伸線加工をより高い生産性をより高めながら伸線可能とする為には、再溶解材を用いたSUS304材、又はSUS316材が望ましい。
この理由は、ステンレス鋼線の伸線時の断線原因は、表面疵もさることながら酸化物系介在物であることが最も多く、細線・極細線化するほどこの傾向が著しい。
そしてその化学成分は、介在物生成元素であるAl,Ti,Ca,Oの成分は低く、又硫化物の作用で伸線低下を引き起こすSも低く抑える。具体的なオーステナイト系ステンレス鋼線の化学成分は、重量%で、C:0.08%以下、Si:0.10%以下、Mn:2%以下、P:0.045%以下、S:0.010%以下、Ni:8%〜12%、Cr:16%〜20%、Mo:3%以下、Al:0.0020%以下、Ti:0.10%以下、Ca:0.005%以下、O:0.0020%以下、で残部がFeと不可避的不純物から成る。そして再溶解材の製造方法としては、ステンレス鋼の溶製後のインゴットにフラックスを用いたエレクトロスラグ再溶解の製造方法等である。トリプル溶解材を用いても前記同様の効果が得られる。
【0053】
次に、前記金属素線a〜iと接合部材7から成る医療用コイル構造体を用いた用途例の医療用ガイドワイヤ、医療用内視鏡、医療用鉗子等の医療用処置具、及び診断医療用カテーテルについて以下順に説明する。
【0054】
図4は、医療用コイル構造体1を備えた用途例の医療用ガイドワイヤ100を示し、芯線1aの芯線先端部11aは、手元側から先端側へ徐変縮径形状で、同軸的に外嵌めされたコイルスプリング体3aを形成し、先端側は金、白金、タングステン等の放射線不透過材コイル4aと、後端側が放射線透過材コイル体5aから成り、放射線不透過材コイル4aの先端端部には接合部材7を用いて部分的に接合した、先端が先丸形状の先導栓63が形成され、又コイルスプリング体3aの外周部と芯線手元部12aの外周部には、ふっ素樹脂、又はポリウレタン樹脂等の樹脂被膜8aが形成され、その外周部には湿潤時には潤滑特性を示す親水性被膜9aが被膜形成されている。
【0055】
そしてコイル体5aのコイル平均径(D0)が0.275mmで線径(直径)が0.065mmで芯線先端部11aの手元側から先端側へ、後端接合部65と、2箇所の中間接合部64は、いずれも接合部材7を用いて芯線先端部11aとコイル体5aとを部分的に接合している。
そして後端接合部65は長手方向に幅(L6)がコイル体外径の1/20倍から30倍(本実施例では2mm)で手元側へ向かって先細りの略円錐形状で、又中間接合部64は長手方向に幅(L5)がコイル体外径の1/20倍から30倍(本実施例では0.5mmから1.5mm)の円環形状の接合部6から成る前記実施例1Aの医療用コイル構造体1を備えた医療用ガイドワイヤ100である。
この構成により、高強度の引張破断強度を有するコイル体5aの金属素線を用いて接合部材7の溶融熱を利用してさらに接合部での金属素線の引張破断強度を向上させることにより、医療用ガイドワイヤ100の回転操作によるコイル体5aの耐ねじれ特性、及び押込み操作によるコイル体5a耐繰り返し曲げ疲労特性を向上させることができる。
この理由は、耐繰り返し曲げ疲労特性等は、曲げ応力と引張応力との合成応力が高いほど向上し、コイル体に用いる金属素線は引張破断強度が高く、引張応力が向上しているからである。
【0056】
そしてさらに、接合部材7を用いてコイル体5aの中間接合部64を設けることにより、前記引張破断強度を向上させることと併せて、手元側回転操作による先端側への回転伝達性能を飛躍的に向上させることができる。
この理由は、コイル体5をねじりばねとして考えると、ねじり力(ねじりモーメントM)は、コイル平均径(D0)とコイルの巻き数(N)に反比例(M∝1/D0×1/N)する為、例えば前記中間接合部64がコイル体5の長手方向に対して中央位置に1個存在すれば、コイル体5の巻き数Nは1/2となってねじりモーメントMは2倍となり、巻き数が少なくなった分、それに対する応分のねじりモーメントは増大する。
そして中間接合部64の増加に伴い接合部材7の溶融熱を利用する金属素線部分が増加して、その結果引張破断強度が向上したコイル体5と成り、この相乗効果により先端側への回転伝達性能を飛躍的に向上させることができるからである。
【0057】
そして補足すれば、医療用ガイドワイヤ100は使用前に生理食塩水で満たした容器内へ浸漬される為、例えば接合部材7に銀系共晶合金を用いた場合には、前記したように硫化銀等の形成により黒色化が進行して腐食が増大し、時間の経過とともに接合強度が低下する。これを防ぐ為には、金系共晶合金の接合部材7を用いることが望ましい。
【0058】
そしてさらに補足すれば、前記医療用ガイドワイヤは、可とう性細長体から成る芯線と、前記芯線に先端部に前記芯線を貫挿した、先端側が放射線不透過材のコイル体と後端側が放射線透過材のコイル体を装着し、前記芯線と前記後端側のコイル体とは接合部材を用いて部分的に接合した接合部を形成した医療用ガイドワイヤにおいて、
前記後端側の放射線透過材のコイル体の金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%の伸線加工を行い、引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とし、
前記接合部材は、180℃から495℃の溶融温度をもつ共晶合金を用い、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃の溶融温度をもつ共晶合金を用い、前記部分的に接合した接合部が、長手方向に前記後端側のコイル体外径の1/20倍から30倍の幅で隣接線同士を接合、又は隣接線同士と前記芯線とを接合したことを特徴とする医療用ガイドワイヤである。
【0059】
図5は、医療用コイル構造体1、又は2を備えた用途例の医療用内視鏡101を示す。図示(イ)は、医療用内視鏡101の全体図を示し、先端側より湾曲部1bと、可とう性シース体2bと、手元操作部3bで構成される。又図示(ロ)は、湾曲部1bの内部構造を示し、第1操作用ロープ9bが貫挿された第1コイル体5は、手元側の接続口金8、又は湾曲駒11bと接合部材7を用いて部分的に接合して接合部6を形成し、前記第1操作用ロープ9bの先端は、先端の湾曲駒11bと接合されている。
そして第2操作用ロープ10bが貫挿された第2コイル体51は、前記同様に接合部材7を用いて接続口金8、又は湾曲部1bの中間位置の湾曲駒11bと接合部材7を用いて部分的に接合して接合部6を形成し、前記第2操作用ロープ10bの先端は、先端の湾曲駒11bと接合され、第1、又は第2操作用ロープ9b、10bを手元部で牽引操作することにより、第1、又は第2コイル体5、51が操作反力を受けてこの力を支えることにより、湾曲部1bを所望の位置へ湾曲変形させた構成となっている。
【0060】
そして第1コイル体5、及び第2コイル体51は、コイル平均径が0.74mmでコイル平均径(D0)が0.74mmで線径(直径)が0.26mmの1本の線材を巻回成形し長手方向の接合部6に幅は、コイル体外径の1/20倍から30倍(本実施例では5mm)の前記実施例1Dの構成、又はコイル平均径(D0)が0.74mmで線径(直径)が0.26mmで26本の線材を巻回成形、又は撚合構成し、接合部6の長手方向の幅は前記同様とし、前記実施例2Bの構成から成る医療用コイル構造体1、又は2を用いて成り、又は接合部材7を用いて接合する医療用コイル構造体1、又は2を形成して成る医療用内視鏡101である。
【0061】
この構成により、高強度の引張破断強度を有する金属素線から成るコイル体5、51の金属素線を用いて接合部材7の溶融熱を利用して、さらに接合部6での金属素線の引張破断強度を向上させることにより、操作用ロープの操作力を受けて圧縮力を受ける第1、第2コイル体5、51の圧縮による縮み量を少なくさせて操作量のロスを低減し、その結果少しの操作量で湾曲部1bの湾曲変形を容易にさせ、手元操作部の湾曲部への応答性を向上させることができる。
この理由は、第1、第2コイル体5、51を構成する金属素線の引張破断強度が向上している為に耐圧縮荷重特性が向上しているからである。
そしてさらに、前記実施例2Bの多条線から成る医療用コイル構造体2とすることにより、さらに手元操作による湾曲部への応答性をより向上させることができる。
この理由は、前記実施例1Dのような単条線から成るコイル体は、体内へ挿入して屈曲変形させたとき、屈曲変形の曲率半径の小なる側(コイル体の内側)のコイル体の隣接線間が密着しているのに対して、曲率半径の大なる側(コイル体の外側)のコイル体の隣接線間は隙間が開いている。これに対して、前記実施例2Bの多条線から成るコイル体を用いれば、屈曲変形させたとき多数本(本実施例では26本)から成るコイル体の各金属素線はそれぞれ隣接線間で微小に滑り移動し、前記曲率半径の大なる側(コイル体の外側)のコイル体の隣接線間は前記単条線のような大きな隙間は開かない。このことにより操作用ロープの操作力による圧縮力を受けても、前記隣接線間の隙間の存在による操作量のロスを少なくして手元操作部の湾曲部への応答性をより向上させることができるからである。
【0062】
そして補足すれば、医療用内視鏡101は、使用後に可とう性シース体内へ生理食塩水を用いて洗浄する為、例えば接合部材7に銀系共晶合金を用いた場合には、前記したように硫化銀等の生成により黒色化が進行して腐食が増大し、時間の経過とともに接合強度が低下する。これを防止する為には、金系共晶合金の接合部材7を用いることが望ましい。 そして接続口金8、又は湾曲部11bがコイル体5と同一、又は同種材料であれば接合時に接合部材間で熱膨張による差を生じなく、濡れ性を接合部材間で均一にさせ、その結果、強固固着接合が可能となり、より望ましい形態である。ここでいう同種材料とは、JIS表示でいう鋼種記号のいずれかを問わず(SUS304かSUS403のいずれかを問わず)、前置記号が同一材料であれば同種材料のことをいう。
【0063】
次に図6、7は医療用コイル構造体1〜3のいずれか一つを備えた用途例の医療用処置具102を示す。
図6は、医療用処置具102である医療用鉗子102Aを示し、又図示(イ)は、先端処置部1cを示し、手元操作部3cと連結している操作用ロープ9cの先端部には一対の鉗子カップをパンタグラフ機構から成る生検鉗子2cと連結する略円筒状の連結部材である接続口金8が前記操作用ロープ9cを貫挿したコイル体5の一方の端部と接合部材7を用いて長手方向に一定の幅(L1)で接合されて接合部6を形成している。
又図示(ロ)は、手元操作部3cを示し、手元操作部3cはガイド溝と指かけリング(図示せず)を備えた操作部本体4cと、操作用ロープ9cの手元部と連結する略円筒状の連結部材10cを備えたスライダー11cから構成され、操作部本体4cの先端側には、接続口金8を設け、操作用ロープ9cを貫挿したコイル体5の他方の端部と前記接続口金8とが接合部材7を用いて長手方向に一定の幅(L1)で接合され接合部6を形成している。
【0064】
そしてスライダー11cをガイド溝に沿って前後方向(図示左右方向)へ移動させることにより、スライダー11cに連結されている操作用ロープ9cに操作力が加わり、この操作力を受けてコイル体5が操作反力として支えることにより生検鉗子2cの鉗子カップを開(スライダー11cを図示左側へ移動)閉(スライダー11cを図示右側へ移動)させ、患部を補足し、切除等の処置を図っている。尚、医療用鉗子と、高周波通電による医療用処置具である医療用ホットバイオプシー鉗子との差は、主に高周波装置に接合する端子の有無、及び絶縁性の有無等で本発明の構成要件は同じであり、本発明の医療用処置具には前記医療用ホットバイオプシー鉗子も含まれる。
【0065】
次に図7は、医療用処置具102である医療用クリップ装置102Bを示し、図示(イ)は先端処置部1dを示し、手元操作部3dと連結している操作用ロープ9dの先端部にはクリップ2dを収納して進退可能な接続口金8が設けられ、前記接続口金8は前記操作用ロープ9dを貫挿したコイル体5の一方の端部と接合部材7を用いて長手方向に一定の幅で接合されて接合部6を形成している。図示(ロ)は、手元操作部3dを示し、前記医療用鉗子102Aと同様で、コイル体5の他の端部は手元操作部3dの先端側に設けられた接続口金8(図示せず、図6(ロ)と同様)と接合部材7を用いて長手方向に一定の幅で接合され接合部6を形成している。
【0066】
そして先端処置部1dのクリップ2dを導入管10d内へ収納させた状態で体内へ挿入し、その後手元操作部3dのスライダー部11dをガイド溝に沿って図示右方向へ移動させることにより、スライダー11d内の連結部材13dと接合されている操作用ロープ9dに操作力が加わり、この操作力を受けてコイル体5が操作反力を支えることにより操作用ロープ9dの先端部に連結されているフック状の連結部材12dへ力が伝わり、フック状の連結部材12dからクリップ2dが外れて離脱し、患部を補足して血管を閉じて止血処置を図っている。尚、図(ハ)は、クリップ2dによる血管14dのクリップ状態を示す縦断面図である。
【0067】
そしてコイル体5は、前記医療用内視鏡101と同様の医療用コイル構造体1の実施例1Dの構成、又は医療用コイル構造体2の実施例2Bの構成とする。そして又、操作力が大きい場合には、コイル体が受ける操作反力の横断面積の面圧を低下させる為、コイル平均径を大きくして、コイル平均径が1.72mmで線径が0.26mmの1本の線材を巻回成形した構成の実施例1Eの医療用コイル構造体1、そして又コイル平均径が1.72mmで線径が0.26mmで18本の線材を巻回成形、又は撚合構成し、接合部材6の長手方向の幅は前記各実施例と同様の前記実施例2Cの医療用コイル構造体2の構成とする。
【0068】
この構成により、高強度の引張破断強度を有する金属素線から成るコイル体5は、接合部材7の溶融熱を利用して、さらに接合部6での金属素線の引張破断強度を向上させることとなり、操作用ロープの操作力を受けて、圧縮力を受けるコイル体5の圧縮による縮み量を少なくさせて操作量のロスを低減し、その結果少しの操作量で先端処置部1dの手元操作による応答性を高めることができる。そしてさらに、多条線から成る医療用コイル構造体2を用いることにより、手元操作の先端処置部1dへの回転応答性をより向上させることができる。
この理由は、前記したとおりである。特に所望の位置へ導入して回転操作を必要とする生体組織採取の為の医療用鉗子、及び止血の為の医療用クリップ装置においては医療用コイル構造体2は好ましい態様である。
【0069】
図8、9は、医療用コイル構造体1〜4のいずれか一つを備えた用途例の超音波診断医療用カテーテル103、及び光干渉診断医療用カテーテル104を示す。
図8は、診断装置1fの全体図を示し、診断医療用カテーテル103、104と、スキャナー・プルバック部3fと、LCDモニター、操作パネル、本体制御部等から成る操作制御装置2fを備え、スキャナー・プルバック部3fと操作制御装置2fとは信号線4fにより接続されている。
【0070】
図9は、診断医療用カテーテル103、104を示し、図示(イ)は、診断医療用カテーテル103、104の全体図で、先端側よりガイドワイヤルーメンを備えた先端部1eと、カテーテルシース2eと、手元側はカテーテルシース2eと一体化されたシースコネクタ31eと、駆動シャフト5eを回転可能に保持する駆動シャフトコネクタ32eから成るコネクタ部3eで構成されている。
図示(ロ)は、超音波診断医療用カテーテル103のカテーテルシース2eの管体内の先端側の縦断面図を示し、先端部は超音波を送受信する超音波振動子ユニットとして機能する超音波振動子81eが収納、保持されたハウジング8eから成り、前記ハウジング8eは超音波振動子81eを回転する為の駆動力を伝達する駆動シャフト5eの端部で接合部材7を用いて部分的に接合する接合部6を形成し、駆動シャフト5e内には信号線9eが配設され、超音波振動子81eからコネクタ部3eまで延びている構成となっている。
【0071】
そして駆動シャフト5eは、本発明の医療用コイル構造体1〜4のいずれかの構造体から成っている。そして又、前記各実施例1A〜1E等のコイル体5を接合部材7を用いてハウジング5eの端部と部分的に接合して接合部6を設けて医療用コイル構造体1〜4のいずれかの構造体と成して用いてもよい。
そして医療用コイル構造体1としては、コイル平均径が1.72mmで線径が0.26mmの単条線を巻回成形した前記実施例1Eである。そして又、先端部への回転伝達性を向上させる為には、コイル平均径が1.72mmで線径が0.26mmで18本の多条線から成る医療用コイル構造体2の実施例2Cである。
そして左右の回転ムラを生じない均一な回転性能を得る為には、外層コイル体51が、コイル平均径が0.96mmで線径が0.16mmで16本の巻回成形、又は撚合構成して成り、内層コイル体52が、コイル平均径が0.64mmで線径が0.16mmで11本の外層コイル体51とは逆方向に巻回成形、又は撚合構成した二層構造の医療用コイル構造体3の実施例3Aである。
そしてさらに左右の回転が均一でより高度な回転性能を得る為には、三層構造から成る医療用コイル構造体4の実施例4Aである。
【0072】
そして超音波診断医療用カテーテルと光干渉診断医療用カテーテルとの差は、図示(ロ)において、超音波診断医療用カテーテルの先端部が、超音波を送受信する超音波振動子ユニットとして機能する超音波振動子81eが収納、保持されたハウジング8eの構成であるのに対して、光干渉診断医療用カテーテルの先端部は、低干渉光を照射、受光する光プローブとして機能するプリズム、又はミラー(図示せず)を収納、保持されたハウジングとの差であり、他の構成は超音波診断医療用カテーテルと同様である。
つまり、可とう性管体の手元側は、診断装置の操作制御装置と信号線で連結されて駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が断層画像を描出する機器を収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する診断医療用カテーテルにおいて、前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタ部に部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする診断医療用カテーテルであって、断層画像を描出する機器を収納、保持したハウジングが超音波を送受信するユニットとして機能する超音波振動子が収納、保持されたハウジングから成る場合は、超音波診断医療用カテーテルであり、又低干渉光を照射、受光する光プローブとして機能するプリズム、又はミラーを収納、保持されたハウジングから成る場合は、光干渉診断医療用カテーテルである。
【0073】
そして次に、前記医療用コイル構造体1〜4において、前記診断医療用カテーテル103、104を、屈曲状態においても手元側から先端側への回転伝達性の高い、回転ムラの発生しない医療用コイル構造体について説明する。
図10は、本発明の医療用コイル構造体の捻回装置10を示し、又図11は、前記各実施例のコイル体5を製造する為の1次から3次成形体の工程図を示し、芯線17の外周部に前記金属線を複数本用いてワイヤロープの撚り線機でロープ状に撚合構成した後、所定長に切断した1次成形体16aの一端を捻回装置10の回転作動チェック11に固定セットし、他端を前記1次成形体16aの長手方向にスライド自在にして、所定重量の静荷重ウエイト13を吊設したスライド型固定チェック12間に、前記1次成形体16aに引張力を加えた状態のまま固定する。そして回転作動チャック11とスライド型固定チャック12は電流発生装置14より導通線15で結ばれて、前記1次成形体16aの各金属素線へ電気抵抗加熱による熱処理可能な状態に設定する。
【0074】
そして後述する所定量の静荷重ウエイト13を吊設して前記1次成形体16aに引張力を加えた状態のまま回転作動チャック11を前記1次成形体16aの撚合方向と同一方向へ(図11、図示(イ)符号a)20回/mから200回/m、好ましくは25回/mから180回/m、より好ましくは30回/mから150回/m捻回加工を行う。その後撚合方向と逆方向へ前記捻回加工の10%から30%、より好ましくは15%から25%、より望ましくは20%逆捻回(図11、図示(イ)符号b)させることが最も望ましい形態である。
【0075】
そして1次成形体16aの撚合方向と同一の捻回加工の捻回数を前記範囲としたのは、前記範囲内であれば後述する静荷重ウエイト13の設定範囲と合致する条件において、回転ムラを発生しない高度の回転伝達性を有する医療用コイル構造体を得るからである。
そして撚合方向と同一方向の捻回加工のみでもよいが、前記逆捻回を加えることが最も望ましい形態としたのは、1次成形体16aの撚合構成した金属素線の隣接線との局部的に発生した圧縮応力を均質化させて高度の回転伝達性の高い医療用コイル構造体を得る為である。
【0076】
そしてその後、前記捻回加工と同時、又は捻回加工中、又は捻回加工後に180℃から495℃の温度範囲、又は1次成形体16aの金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の温度範囲で電気抵抗加熱処理を施す。
ここで捻回加工と同時、又は捻回加工中としたのは、前記捻回加工の捻回時に金属素線の断線発生を抑制する効果が高いからであり、特に金属素線の総減面率が90%を超えて94%から99.5%の高い引張破断強度を有する場合に好適であり、いずれを選択するかは要求される医療用コイル構造体の金属素線の引張破断強度特性等により任意選択する。
【0077】
そして次に、1次成形体16aの芯材17を抜き出して(図11、図示(ロ))2次成形体16bのコイル体5とした後、前記実施例と同様に接合部材7を用いて部分的に接合部6を有する医療用コイル構造体とする。かかる場合において、芯材17を抜き出した後、溶融温度が180℃から420℃の溶融温度をもつポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、ふっ素樹脂等の合成樹脂で樹脂被膜19成形した小ピース体18を2次成形体16b内へ挿入(図11、図示(ハ))し、前記接合部材7を溶融させて接合部6を形成してもよい。樹脂被膜19を形成した小ピース体18を用いる理由は、接合部6での接合部材7と芯材との離型性が向上し、かつ3次成形体16cの内側表面が平滑に形成できるからである。
そして、又接合部7での接合方法は、棒状の接合部材7を2次成形体16bの外周部の長手方向に置いた後、レーザー光等を照射させて長手方向に狭小範囲の接合部6を形成した後、小ピース体18を抜き出して医療用コイル構造体としてもよい。
そして又、前記小ピース体18と同様に1次成形体16aの芯材17の外周部に樹脂被膜を形成した樹脂被膜付きの芯材を用いて、その芯材の外周部に巻回成形、又は撚合構成した1次成形体16aを捻回加工と電気抵抗加熱処理後に前記接合部材7を用いて部分的に接合部6を形成した後、前記樹脂被膜付き芯材を抜き出す工程としてもよい。
【0078】
そして次に、図12(イ)は、本発明の医療用コイル構造体を図示(ハ)に示す取り回し状態において回転性能試験結果を示す図で、横軸に手元側を90度毎回転したときの回転数と、縦軸に先端側追従回転角度を示し、符号bは手元側90度毎の回転に対する応答性が遅く、かつ回転ムラが多く発生している場合を示し、又図示aは、これとは逆に応答性が早く、かつ回転ムラの発生が少ない場合を示す。尚、ここでいう回転ムラとは、例えばガイドパイプ内(図示(ハ))で医療用コイル構造体を回転させると屈曲部での抵抗により回転し難くなって回転による捩り溜まりがコイル体に発生し、そしてさらに手元側を回転させるとこの捩り溜まりが一時に開放されて先端側の先端側追従回転角度が手元側の回転角度(90度)を大きく越えて回転し、一定の均一な回転性能が得られない現象のことをいう。そして図示(ロ)は、横軸に後述する捻回加工前の芯材17を含む医療用コイル構造体の引張破断力P(kgf)に対する静荷重ウエイトW(kgw)の割合の静荷重比(%)を示し、又静荷重比(%)はW/P×100の関係があり、そして縦軸に応答比を示したものである。尚、ここでいう応答比とは、先端側追従回転角度が90度のときの手元側の総回転角度を前記先端側追従回転角度の90度で除した値のことをいい、例えば、図示符号aのとき、手元側の総回転角度は3×90度を示して応答比は3(3×90÷90)となり、応答比が1に近づくほど応答性が高く、回転追従性(又は回転伝達性)が高いこととなる。
【0079】
図示(ロ)によれば、静荷重比の値により応答性が変化することが判明し、この応答性が高いときの静荷重比は3%から40%で、好ましくは5%から35%で、最も好ましくは7%から30%である。
この理由は、静荷重比が前記下限を下回れば、金属素線の撚合時に金属素線個々に生じている引張力、せん断応力と隣接線の接触による圧縮応力とが複雑に生じて長手方向に曲がりくねる「うねり」を前記捻回加工と低温加熱処理によって解消することは困難となり、又静荷重比が前記上限を上回れば過大な引張力を生じて隣接線相互の接触による圧縮応力の高い部位と低い部位の存在が顕著となり、又隣接線間の隙間が大なる部分と小なる部分とがランダムに生じて、回転追従性を低下させ、つまり応答性を低くさせるもの、と考えることができるからである。そして静荷重比の選択は、捻回加工と低温熱処理の工法において重要項目である。
【0080】
そして補足すれば、本発明の捻回数の範囲(20回/mから200回/m)と静荷重比の範囲(引張破断力の3%から40%)との関係は、静荷重比の範囲が3%から10%の低荷重域のAゾーン(図示符号A)においては、100回/mから200回/m程度の前記捻回加工数の上限範囲が望ましく、又静荷重比の範囲が30%から40%の高荷重域のBゾーン(図示符号B)においては、20回/mから100回/m程度前記捻回加工数の下限範囲が望ましい。いずれを選択するかは医療用コイル構造体に要求される特性により任意選択する。そして前記工法に基づく二次成形体16b、又は3次成形体16cを二層構造、三層構造とすることにより、前記医療用コイル構造体3、4を得ることとができる。尚、二層、三層構造のコイル体は、二層構造、又は三層構造とした後に接合部材7を用いて部分的に接合して接合部6を形成することが望ましい形態である。
【0081】
そしてさらに補足すれば、特許文献3には、中空撚線コイル体の捻回工法が記載されているが、前記静荷重比と回転追従性との関係については相反する内容記載があって解析不充分であり、又捻回加工の際の中空撚線コイル体の捻回方向の開示もなく、これに対して本発明の捻回加工工法はこの点についても解明したものであり、そして又強加工の伸線加工した金属素線を用いて接合部材の溶融熱を利用して引張破断強度を向上させる本発明の技術思想については、特許文献3には記載されていない。
【0082】
そして前記コイル体の工法は、一定の静荷重ウエイトで引張力を加えた状態で、所定量捻回加工をすることにより回転追従性等を向上させる最も好適な方法を述べたが、芯金の外周に巻回成形して芯金を内蔵したコイル体、又は芯材の外周に撚合構成した芯材を内蔵したコイル体、若しくは前記芯金、又は芯材を抜き出した中空状のコイル体に180℃から525℃の低温加熱処理を施しても、前記コイル体の金属素線の引張破断強度を向上させながら、かつ回転追従性等を向上させることができる。
この理由は、強加工の伸線加工したオーステナイト系ステンレス鋼線の前記温度と引張破断強度の特質(図3)から、及び巻回成形、又は撚合構成した各金属素線の局部的に発生した残留応力を平均化できるからである。
【0083】
そして本発明の医療用コイル構造体の製造方法は、素線直径が0.014mmから0.300mmの金属素線を用いてコイル体とした後、接合部材を用いて部分的に接合して接合部を設けた医療用コイル構造体の製造方法において、
前記金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%で引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とする伸線工程と、又は伸線工程と低温加熱処理工程から成り、
芯材の外周に前記金属素線を撚合構成してロープ体とする撚合工程と、
前記ロープ体に電流導通させて電気抵抗加熱による加熱処理可能状態に設定する工程と、前記ロープ体に一端に前記ロープ体の引張破断力の3%から40%の静荷重ウエイトを吊設して引張力を加える工程と、
引張力を加えた状態で前記ロープ体の他端を、前記ロープ体の撚合方向と同一方向へ20回/mから200回/mの捻回加工工程と、
その後、前記捻回加工の捻回数の10%から30%逆方向へする逆捻回加工工程と、
前記捻回工程と同時、又は捻回加工中、又は捻回加工後に電気抵抗加熱による熱処理工程と、
前記ロープ体の芯材を抜き出して中空状のコイル体とする芯抜きコイル体工程とした後に溶融温度が180℃から495℃の前記接合部材を用いて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには溶融温度が180℃から525℃の前記接合部材を用いて部分的に接合する接合工程から成ることを特徴、又は
前記電気抵抗加熱による熱処理工程の後に溶融温度が180℃から495℃の接合部材を用いて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、溶融温度が180℃から525℃の前記接合部材を用いて部分的に接合する接合工工程とした後に前記ロープ体の芯材を抜き出して中空状の医療用コイル構造体とする芯抜きコイル体工程から成ることを特徴とする医療用コイル構造体の製造方法である。
この製造方法により、高度の回転伝達性、回転追従性を有する医療用コイル構造体を得ることができ、特に回転性能が要求される医療用クリップ装置等の医療用コイル構造体をはじめとして回転ムラのない高度の回転伝達性が要求される駆動シャフトから成る超音波診断、又は光干渉診断医療用カテーテルには好適用途例である。
【0084】
そして又、前記医療用コイル構造体の製造方法の前記芯抜きコイル体工程において、前記芯材が、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材から成ることを特徴とし、又、前記芯抜きコイル体工程の後に、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材を前記中空状のコイル体内へ挿入した後、前記接合部材を用いて部分的に接合する工程と、その後、前記樹脂被膜を形成した芯材を抜き出す工程から成ることを特徴とする医療用コイル構造体の製造方法である。
この製造方法により、接合部6を形成する際の接合部材7の芯材17との離型性を高め、接合部6の内周面を平滑にして均等内径から成る医療用コイル構造体を製造することができる。
【0085】
[発明の効果]
以上説明のとおり、本発明の医療用コイル構造体、及びそれを用いて成る医療用処置具等は、強加工の伸線加工した引張破断強度の高い金属素線を複数本用いて撚合構成し、引張破断強度の高い金属素線から成るコイル体を備え、そして強加工伸線により引張破断強度が向上する温度範囲と一致させた溶融温度範囲をもつ接合部材である共晶合金の溶融熱を利用して、前記コイル体の引張破断強度をより向上させながら、接合部、及び接続口金等との強固な接合を可能とするものである。
【0086】
そして又、本発明の医療用コイル構造体を駆動シャフトとして用いて成る診断医療用カテーテルは、高速回転においても画像診断装置の良質な断層画像を提供することができ、迅速治療に大きく寄与することができる。以上の諸効果がある。
【符号の説明】
【0087】
1 医療用コイル構造体(実施例1A〜1E)
2 医療用コイル構造体(実施例2A〜2C)
3 医療用コイル構造体(実施例3A)
4 医療用コイル構造体(実施例4A)
5 コイル体
6 接合部
7 接合部材
8 接続口金
100 医療用ガイドワイヤ
101 医療用内視鏡
102A 医療用鉗子(医療用処置具)
102B 医療用クリップ装置(医療用処置具)
103 超音波診断医療用カテーテル
104 光干渉診断医療用カテーテル

【特許請求の範囲】
【請求項1】
素線直径が0.014mmから0.300mmの金属素線を用いてコイル体に成形した後、接合部材を用いて部分的に接合した接合部を設けた医療用コイル構造体において、
前記コイル体の金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%の伸線加工を行い、引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とし、
前記接合部材は、180℃から495℃の溶融温度をもつ共晶合金を用い、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃の溶融温度をもつ共晶合金を用い、
前記部分的に接合した接合部が、前記コイル体の少なくとも一方の端部の長手方向に前記コイル体外径の1/20倍から30倍の幅で隣接線同士を接合したことを特徴とする医療用コイル構造体。
【請求項2】
請求項1に記載の医療用コイル体構造において、
前記コイル体の金属素線は、伸線と伸線後に180℃から495℃の低温加熱処理を設けて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の低温加熱処理を設けて、前記伸線と前記低温加熱処理を1セットとして少なくとも1セット以上繰り返した後に最終伸線を設けて、前記最終伸線までの総減面率を90%から99.5%としたことを特徴とする医療用コイル構造体。
【請求項3】
前記医療用コイル構造体のコイル体が、
前記金属素線を2本から30本用いて芯金の外周に巻回成形した後に前記芯金を抜き取って中空状の多条線から成るコイル体、又は芯材の外周にロープを撚るようにして撚合構成してロープ体とした後に前記芯材を抜き取って中空状の多条線から成るコイル体であることを特徴とする請求項1〜2のいずれか一つに記載の医療用コイル構造体。
【請求項4】
前記医療用コイル構造体のコイル体が、
内層と、前記内層の外周に密着して外層を設け、前記内層の巻回方向、又は撚合方向とが異なる、前記内層と前記外層の二層構造から成るコイル体、
又は中層と、前記中層の内周、及び外周に密着して内層と外層を設け、前記中層の巻回方向、又は撚合方向と前記内層及び前記外層の巻回方向、又は撚合方向とが異なる、前記内層と前記中層と前記外層の三層構造から成るコイル体であることを特徴とする請求項1〜3のいずれか一つに記載の医療用コイル構造体。
【請求項5】
前記医療用コイル構造体のコイル体が、180℃から525℃の低温加熱処理したコイル体であることを特徴とする請求項1〜4のいずれか一つに記載の医療用コイル構造体。
【請求項6】
前記医療用コイル構造体のコイル体が、
芯材の外周に前記金属素線を撚合構成してロープ体とし、
前記ロープ体に電流を導通させて電気抵抗加熱による加熱処理可能状態に設定し、
前記ロープ体の一端に前記ロープ体の引張破断力の3%から40%の引張力を加えた状態で前記ロープ体の他端を、前記ロープ体の撚合方向と同一方向へ20回/mから200回/mの捻回加工をした後に、
前記捻回加工の10%から30%逆方向へ逆捻回加工を行い、かつ前記捻回加工と同時、又は捻回加工中、又は捻回加工後に180℃から525℃で電気抵抗加熱による熱処理を行い、その後前記ロープ体の芯材を抜き出して中空状の多条線から成るコイル体であることを特徴とする請求項1〜4のいずれか一つに記載の医療用コイル構造体。
【請求項7】
素線直径が0.014mmから0.300mmの金属素線を用いてコイル体とした後、接合部材を用いて部分的に接合して接合部を設けた医療用コイル構造体の製造方法において、
前記金属素線は、オーステナイト系ステンレス鋼線を用いて固溶化処理した後に総減面率が80%から99.5%で引張破断強度を200kgf/mm2 以上450kgf/mm2 以下とする伸線工程と、又は伸線工程と低温加熱処理工程から成り、
芯材の外周に前記金属素線を撚合構成してロープ体とする撚合工程と、
前記ロープ体に電流導通させて電気抵抗加熱による加熱処理可能状態に設定する工程と、前記ロープ体の一端に前記ロープ体の引張破断力の3%から40%の静荷重ウエイトを吊設して引張力を加える工程と、
引張力を加えた状態で前記ロープ体の他端を、前記ロープ体の撚合方向と同一方向へ20回/mから200回/mの捻回加工工程と、
その後、前記捻回加工の捻回数の10%から30%逆方向へする逆捻回加工工程と、
前記捻回工程と同時、又は捻回加工中、又は捻回加工後に電気抵抗加熱による熱処理工程と、
前記ロープ体の芯材を抜き出して中空状のコイル体とする芯抜きコイル体工程とした後に溶融温度が180℃から495℃の前記接合部材を用いて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには溶融温度が180℃から525℃の前記接合部材を用いて部分的に接合する接合工程から成ることを特徴、又は
前記電気抵抗加熱による熱処理工程の後に溶融温度が180℃から495℃の接合部材を用いて、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、溶融温度が180℃から525℃の前記接合部材を用いて部分的に接合する接合工工程とした後に前記ロープ体の芯材を抜き出して中空状の医療用コイル構造体とする芯抜きコイル体工程から成ることを特徴とする医療用コイル構造体の製造方法。
【請求項8】
前記芯抜きコイル体工程において、
前記芯材が、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材から成ることを特徴とする請求項7記載の医療用コイル構造体の製造方法。
【請求項9】
前記芯抜きコイル体工程の後に、溶融温度が180℃から420℃の樹脂被膜を外周部に形成した芯材を前記中空状のコイル体内へ挿入した後、前記接合部材を用いて部分的に接合する工程と、その後、前記樹脂被膜を形成した芯材を抜き出す工程から成ることを特徴とする請求項7記載の医療用コイル構造体の製造方法。
【請求項10】
可とう性シース体の先端側に先端処置部と、手元側に手元操作部を備え、前記可とう性シース体内に、前記先端処置部と前記手元操作部と連結した操作用ロープを貫挿したコイル体を備え、前記先端処置部は、湾曲駒を複数個連結し、先端側の前記湾曲駒と前記操作用ロープとの先端部を連結した湾曲部から成り、前記手元操作部を操作して前記操作用ロープの操作力の伝達作用により、前記湾曲部を湾曲変形させた医療用内視鏡において、
前記可とう性シース体内のコイル体が、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記コイル体の少なくとも一端と接合する接続口金、又は前記湾曲駒と部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする医療用内視鏡。
【請求項11】
コイル体から成る可とう性管体の先端側に先端処置部と、手元側に手元操作部を備え、前記コイル体内に貫挿した操作用ロープを前記先端処置部と手元操作部とに連結し、前記手元操作部を押し、引き、又は回転操作して前記操作用ロープの操作力の伝達作用により、前記先端処置部を動作させる医療用処置具において、
前記可とう性管体のコイル体が、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記コイル体の少なくとも一端と接合する接続口金と部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする医療用処置具。
【請求項12】
可とう性管体の手元側は、血管内超音波診断装置の操作制御装置と信号線で連結された駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が超音波を送受信する振動子として機能する超音波振動子を収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する超音波診断医療用カテーテルにおいて、
前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタに部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする超音波診断医療用カテーテル。
【請求項13】
可とう性管体の手元側は、光干渉断層診断装置の操作制御装置と信号線で連結された駆動シャフトコネクタから成るコネクタを備え、先端側は、中空管体のカテーテルシースから成り、前記カテーテルシース内に、先端部が低干渉光を照射、受光する光プローブとして機能するプリズム、又はミラーを収納、保持するハウジングから成り、手元側は前記コネクタまで延びてコイル状に形成された駆動シャフトを備え、前記駆動シャフトの回転により体腔内組織画像を描出する光干渉診断医療用カテーテルにおいて、
前記駆動シャフトが、請求項1〜6のいずれか一つに記載の医療用コイル構造体を用いて成り、又は前記接合部材を用いて前記ハウジング、又は前記駆動シャフトコネクタに部分的に接合した接合部を有する請求項1〜6のいずれか一つに記載の医療用コイル構造体を形成して成ることを特徴とする光干渉診断医療用カテーテル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2011−177231(P2011−177231A)
【公開日】平成23年9月15日(2011.9.15)
【国際特許分類】
【出願番号】特願2010−42380(P2010−42380)
【出願日】平成22年2月26日(2010.2.26)
【出願人】(309023704)株式会社パテントストラ (16)
【Fターム(参考)】