説明

半導体レーザ素子

【課題】半導体レーザ素子の共振器内部の劣化を抑制する。
【解決手段】半導体レーザ素子1は、n型の下部クラッド層11と下部クラッド層11の上に設けられた活性層12とを含む半導体積層10と、p型の上部クラッド層13を含み、半導体積層10の主面12aにおいて一方向に延在するリッジ部15と、半導体積層10及びリッジ部15を覆う絶縁膜21と、を備え、絶縁膜21は、主面12aにおけるリッジ部15が設けられていない領域と、リッジ部15の側面と、に設けられ、絶縁膜21は、第1部分21a、第2部分21b及び第3部分21cからなり、第1部分21a、第2部分21b及び第3部分21cは、リッジ部15の延在方向に順に配置され、第2部分21bの厚さは、第1部分21aの厚さ及び第3部分21cの厚さよりも大きいことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体レーザ素子に関するものである。
【背景技術】
【0002】
リッジ型の半導体レーザ素子では、通電により共振器の端面が劣化することがある。下記の特許文献1〜4には、共振器の端面近傍に加わる応力を低減することにより、端面の劣化を抑制して高出力動作を可能とする半導体レーザ素子が記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平6−85389号公報
【特許文献2】特開2008−130876号公報
【特許文献3】特開2003−283039号公報
【特許文献4】特開2003−258370号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、リッジ型半導体レーザ素子において通電を行ったところ、共振器内部が劣化するというこれまでに確認されていない劣化現象が見つかった。リッジ型半導体レーザ素子の信頼性を確保するためには、この共振器内部の劣化を抑制する必要がある。しかしながら、共振器内部の劣化は、共振器端面に加わる応力を低減する手法では抑制できない。このため、上記特許文献1〜4に記載の半導体レーザ素子では、共振器内部の劣化を抑制できない。
【0005】
そこで本発明は、このような問題点を解決するためになされたものであって、共振器内部の劣化を抑制する半導体レーザ素子を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するため、本発明に係る半導体レーザ素子は、第1導電型の第1半導体層と第1半導体層の上に設けられた活性層とを含む半導体積層と、第1導電型と異なる導電型である第2導電型の第2半導体層を含み、半導体積層の主面において一方向に延在するリッジ部と、半導体積層及びリッジ部を覆う絶縁膜と、を備え、絶縁膜は、主面におけるリッジ部が設けられていない領域と、リッジ部の側面と、に設けられ、絶縁膜は、第1部分、第2部分及び第3部分からなり、第1部分、第2部分及び第3部分は、リッジ部の延在方向に順に配置され、第2部分の厚さは、第1部分の厚さ及び第3部分の厚さよりも大きいことを特徴とする。
【0007】
この半導体レーザ素子においては、リッジ部の延在方向における端面側に設けられた第1部分の厚さ及び第3部分の厚さよりも、第1部分と第3部分との間に設けられた第2部分の厚さを大きくすることにより、第2部分が設けられたリッジ部に加わる応力を低減することができる。このため、共振器内部の劣化を抑制することが可能となる。
【0008】
第2部分の厚さは、第1部分の厚さ又は第3部分の厚さの2倍であるのが好ましい。この場合、第2部分が設けられたリッジ部に加わる応力をさらに低減することができる。
【0009】
第2部分の厚さは、第1部分の厚さ又は第3部分の厚さの4倍であるのが好ましい。この場合、第2部分が設けられたリッジ部に加わる応力をさらに低減することができる。
【0010】
第1部分及び第3部分はそれぞれ、一端面及び他端面から5μm以上30μm以下の範囲に設けられているのが好ましい。この場合、第1部分及び第3部分が設けられている範囲を一端面及び他端面の近傍とすることにより、共振器の内部に対応する部分の膜厚を大きくすることができ、共振器の内部において、リッジ部に加わる応力を低減することができる。このため、共振器内部の劣化を抑制することが可能となる。
【0011】
第1部分の厚さ及び第3部分の厚さは、100nm以上300nm以下であるのが好ましい。この場合、一端面近傍及び他端面近傍における放熱性の低下を抑制しつつ、第2部分が設けられたリッジ部に加わる応力を低減することができる。このため、共振器端面における信頼性を確保しつつ、共振器内部の劣化を抑制することが可能となる。
【発明の効果】
【0012】
本発明によれば、共振器内部の劣化を抑制することができる。
【図面の簡単な説明】
【0013】
【図1】本実施形態に係る半導体レーザ素子を示す図である。
【図2】図1の半導体レーザ素子の側面を示す図である。
【図3】(a)は図2のIII(a)−III(a)線に沿っての断面を示す図、(b)は図3のIII(b)−III(b)線に沿っての断面を示す図である。
【図4】図1の半導体レーザ素子の製造方法を示す図である。
【図5】図1の半導体レーザ素子の製造方法を示す図である。
【図6】絶縁膜の膜厚と応力との関係を示す図である。
【図7】図6の計算に用いた半導体レーザ素子を示す図である。
【図8】図6の計算に用いたパラメータを示す図である。
【発明を実施するための形態】
【0014】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0015】
図1は、半導体レーザ素子を示す図である。半導体レーザ素子1は、リッジ型の半導体レーザ素子である。半導体レーザ素子1の幅は250μm程度、長さは200〜250μm程度、高さ(積層方向の長さ)は100μm程度である。図1に示されるように、半導体レーザ素子1は、半導体積層10と、リッジ部15と、絶縁膜21と、埋込部22と、第1電極31と、第2電極32とを備える。半導体積層10は、下部クラッド層(第1半導体層)11及び活性層12を含む。下部クラッド層11は、第1導電型のIII−V族化合物半導体により構成され、例えばn型InPにより構成される。この下部クラッド層11は、基板の主面に積層された半導体層を含み、その厚さは、例えば1μm程度である。
【0016】
活性層12は、下部クラッド層11の主面11a上に設けられている。活性層12は、例えば下部SCH(Separate Confinement Heterostructure)層と、MQW(Multi Quantum Well)活性層と、上部SCH層とが順に積層された構造を有している。下部SCH層は、III−V族化合物半導体により構成され、例えばノンドープGaInAsPにより構成される。下部SCH層の厚さは、例えば50nm以上100nm以下程度である。MQW活性層は、III−V族化合物半導体により構成され、例えばノンドープAlGaInAsにより構成される。MQW活性層の厚さは、例えば200nm以上300nm以下程度である。上部SCH層は、III−V族化合物半導体により構成され、例えばノンドープGaInAsPにより構成される。上部SCH層の厚さは、例えば50nm以上100nm以下程度である。
【0017】
リッジ部15は、活性層12の主面12aに設けられ、一方向に延在している。リッジ部15は、上部クラッド層(第2半導体層)13及びコンタクト層14を含む。リッジ部15の高さは、例えば2.0μm程度であり、リッジ部15の幅は、例えば1.5μm程度である。上部クラッド層13は、第2導電型のIII−V族化合物半導体により構成され、例えばp型InPにより構成される。上部クラッド層13の厚さは、例えば1.7μm程度である。コンタクト層14は、上部クラッド層13上に設けられている。コンタクト層14は、第2導電型のIII−V族化合物半導体により構成され、例えばp型InGaAsにより構成される。コンタクト層14の厚さは、例えば0.3μm程度である。
【0018】
絶縁膜21は、半導体積層10及びリッジ部15を覆うように設けられている。絶縁膜21は、例えばシリコン酸化物(例えばSiO)等の誘電体膜により構成される。絶縁膜21の詳細については、後述する。
【0019】
埋込部22は、リッジ部15の両側を埋め込むように、絶縁膜21上に設けられている。埋込部22は、例えばBCB(ベンゾシクロブテン)樹脂により構成される。第1電極31は、リッジ部15の頂面を覆うように設けられ、リッジ部15の幅方向において埋込部22の頂面にまで延びている。第1電極31は、コンタクト層14に接合されている。第1電極31は、例えばTi、Pt、Au等の金属により構成される。第1電極31の厚さは例えば0.6μm程度で、第1電極31の幅は例えば3μm程度ある。また、第1電極31は、電極パッド31pを有してもよい。第2電極32は、下部クラッド層11の裏面11bに設けられている。第2電極32は、例えばAuGe、Au、Ti等の金属により構成され、第2電極32の厚さは例えば1.0μm程度である。
【0020】
半導体レーザ素子1は、さらにリッジ部15の延在方向の前端面(一端面)10a及び後端面(他端面)10bにそれぞれ誘電体多層膜で構成された反射膜(不図示)を有している。これらの反射膜とリッジ部15が設けられた位置に対応する活性層12とで共振器が形成され、レーザ発振を行う。
【0021】
続いて、上述した絶縁膜21についてさらに詳細に説明する。図2は、半導体レーザ素子1の側面を示す図である。図3の(a)は図2のIII(a)−III(a)線に沿っての断面を示す図、(b)は図2のIII(b)−III(b)線に沿っての断面を示す図である。図2及び図3に示されるように、絶縁膜21は、活性層12の主面12aにおいてリッジ部15が設けられていない領域、及び、リッジ部15の側面に設けられている。また、絶縁膜21は、リッジ部15の延在方向の前端面10aから後端面10bまで延びている。
【0022】
この絶縁膜21は、第1部分21a、第2部分21b及び第3部分21cからなり、各部分は、リッジ部15の延在方向に沿って前端面10aから順に配置されている。すなわち、第1部分21aは、前端面10aからリッジ部15の延在方向に沿って一定の長さを有する。第3部分21cは、後端面10bからリッジ部15の延在方向に沿って一定の長さを有する。第2部分21bは、第1部分21a及び第3部分21cに挟まれている。リッジ部15の延在方向において、第1部分21a及び第3部分21cの長さは、リッジ部15の長さの10%以下である。第1部分21a及び第3部分21cの長さは、例えば5μm以上30μm以下であって、10μm程度である。第1部分21aの厚さTaと第3部分21cの厚さTcは、略同じであって、例えば100nm以上300nm以下であって、180nm程度である。一方、第2部分21bの厚さTbは、第1部分21aの厚さTa及び第3部分21cの厚さTcよりも大きく、例えば360nm以上720nm以下の範囲である。なお、第1部分21a、第2部分21b及び第3部分21cにおいて、活性層12の主面12aに設けられた絶縁膜の厚さ及びリッジ部15の側面に設けられた絶縁膜の厚さは略同じである。
【0023】
続いて、半導体レーザ素子1の製造方法について説明する。図4及び図5は、半導体レーザ素子1の製造方法を示す図である。図4及び図5において、A1〜A5は図2のIII(a)−III(a)線に沿っての断面を示す図、B1〜B5は図2のIII(b)−III(b)線に沿っての断面を示す図である。まず、半導体基板の主面に半導体エピタキシャル層(下部クラッド層11、活性層12、上部クラッド層13、及び、コンタクト層14)を順に成長させる。そして、半導体エピタキシャル層を加工して、リッジ部15を形成する。具体的には、半導体エピタキシャル層のうちリッジ部15を形成する部分の両側のコンタクト層14及び上部クラッド層13をウェットエッチング又はドライエッチングによりエッチングし、リッジ部15を形成する(リッジ形成工程S01)。その後、スパッタ又はCVD(Chemical Vapor Deposition)等の誘電体膜成膜装置を用いて、活性層12の表面のリッジ部15が形成されていない領域、及び、リッジ部15の側面及び頂面に絶縁膜16を成膜する(絶縁膜形成工程S02)。
【0024】
次に、リッジ部15の延在方向において、両端面10a,10bから所定の範囲をマスク17で覆う。そして、誘電体膜成膜装置を用いて、絶縁膜16bを形成する(第2部分形成工程S03)。その後、絶縁膜16及び絶縁膜16bから、リッジ部15の頂面に形成された部分をそれぞれ除去して第1部分21a(絶縁膜21)及び第2部分21b(絶縁膜21)とする。さらに、リッジ部15の両側を覆うように、絶縁膜21上に埋込部22を形成し素子の平坦化がなされる(埋込部形成工程S04)。そして、リッジ部15の頂面に沿って第1電極31を形成し、半導体基板(下部クラッド層11)の裏面に第2電極32を形成する(電極形成工程S05)。なお、第1電極31は、埋込部22の頂面まで延びて設けられてもよい。以上の工程により、半導体レーザ素子1が製造される。
【0025】
続いて、半導体レーザ素子1の作用効果を説明する。上述したように、従来のリッジ型半導体レーザ素子では、通電を行った結果、共振器の内部が劣化するという現象が確認された。また、断面TEM(Transmission Electron Microscope)分析の結果、共振器端面より共振器内部において、リッジ部の付け根部分(図7の点線部分)に欠陥が生じていることが判明した。さらに、計算モデルによる分析の結果、リッジ部の付け根部分に圧縮方向の応力が集中し、共振器端面よりも共振器内部において、特に応力が集中することが判明した。以上のことから、従来のリッジ型半導体レーザ素子における共振器の内部劣化は、リッジ部の付け根部分に圧縮方向の応力が加わることが一因であると考えられる。そこで、半導体レーザ素子1では、絶縁膜21の膜厚を調整することにより、リッジ部15の付け根部分に加わる応力を低減している。
【0026】
図6は、絶縁膜21の膜厚と共振器内部のリッジ部15の付け根部分15aに加わる応力との関係を示す図である。図7は、半導体レーザ素子1をモデル化した図である。図8は、図6の計算に用いたパラメータを示す図である。図6に示される関係は、図7に示される各材料に対し、図8の各パラメータを用いて計算を行った結果である。図8に示されるように、第1電極31の表面に設けられたメッキ31aをヤング率が78000MPa、ポアソン比が0.44、線膨張係数が0.00011%のAuメッキとし、第1電極31をヤング率が101889MPa、ポアソン比が0.41、線膨張係数が−0.001406%のOhmic金属とし、埋込部22をヤング率が2900MPa、ポアソン比が0.34、線膨張係数が−0.011%のBCB樹脂とし、絶縁膜21をヤング率が70000MPa、ポアソン比が0.17、線膨張係数が0.00107%のSiOとして3次元の有限要素法を用いて計算を行った。
【0027】
図6に示されるグラフの横軸は、絶縁膜21の膜厚[nm]を示し、縦軸はリッジ部15の付け根部分15aに加わる圧縮方向の応力[MPa]を示している。計算の結果、図6に示されるように、絶縁膜21の膜厚が180nmの場合、リッジ部15の付け根部分15aに加わる圧縮方向の応力は350MPaであり、絶縁膜21の膜厚が360nmの場合、リッジ部15の付け根部分15aに加わる圧縮方向の応力は290MPaであり、絶縁膜21の膜厚が720nmの場合、リッジ部15の付け根部分15aに加わる圧縮方向の応力は250MPaであった。このように、絶縁膜21の膜厚が大きくなるに従い、リッジ部15の付け根部分15aに加わる圧縮方向の応力は減少する傾向にあることが分かる。すなわち、絶縁膜21の膜厚を大きくすることにより、リッジ部15の付け根部分15aに加わる応力を低減させることができる。
【0028】
一方、SiOは、熱伝導率が1.40×10−6[W/μm・℃]であり、半導体レーザ素子1を構成する他の材料と比較して熱伝導率が低い。このため、絶縁膜21の厚さを大きくすると、放熱性が低下する場合がある。共振器内部における放熱性の低下は、半導体レーザ素子1の信頼性にほとんど影響ないと考えられるが、共振器端面にける放熱性の低下は、半導体レーザ素子1の信頼性に影響を及ぼす。そこで、半導体レーザ素子1では、端面10a,10b近傍以外の領域で絶縁膜21の厚さを大きくしている。例えば、前端面10aから20μm以下の領域に設けられた第1部分21aの厚さTa、及び、後端面10bから20μm以下の領域に設けられた第3部分21cの厚さTcは、従来の半導体レーザ素子における絶縁膜の厚さと同程度(例えば、180nm)である。そして、第1部分21a及び第3部分21cの間に設けられた第2部分21bの厚さTbは、第1部分21aの厚さTa及び第3部分21cの厚さTcより大きい。この第2部分21bの厚さTbは、例えば第1部分21aの厚さTa及び第3部分21cの厚さTcの2倍以上4倍以下(360nm以上720nm以下)の範囲とする。
【0029】
このようにすることで、前端面10a近傍及び後端面10b近傍における放熱性の低下を抑制しつつ、第2部分21bが設けられたリッジ部15の付け根部分15aに加わる応力を低減することができる。その結果、半導体レーザ素子1では、共振器端面における信頼性を確保しつつ、共振器内部の劣化を抑制することが可能となる。
【0030】
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
【符号の説明】
【0031】
1…半導体レーザ素子、10…半導体積層、10a…前端面(一端面)、10b…後端面(他端面)、11…下部クラッド層(第1半導体層)、12…活性層、12a…主面、13…上部クラッド層(第2半導体層)、15…リッジ部、15a…付け根部分、21…絶縁膜、21a…第1部分、21b…第2部分、21c…第3部分。

【特許請求の範囲】
【請求項1】
第1導電型の第1半導体層と前記第1半導体層の上に設けられた活性層とを含む半導体積層と、
前記第1導電型と異なる導電型である第2導電型の第2半導体層を含み、前記半導体積層の主面において一方向に延在するリッジ部と、
前記半導体積層及び前記リッジ部を覆う絶縁膜と、
を備え、
前記絶縁膜は、前記主面における前記リッジ部が設けられていない領域と、前記リッジ部の側面と、に設けられ、
前記絶縁膜は、第1部分、第2部分及び第3部分からなり、
前記第1部分、前記第2部分及び前記第3部分は、前記リッジ部の延在方向に順に配置され、
前記第2部分の厚さは、前記第1部分の厚さ及び前記第3部分の厚さよりも大きいことを特徴とする半導体レーザ素子。
【請求項2】
前記第2部分の厚さは、前記第1部分の厚さ又は前記第3部分の厚さの2倍であることを特徴とする請求項1に記載の半導体レーザ素子。
【請求項3】
前記第2部分の厚さは、前記第1部分の厚さ又は前記第3部分の厚さの4倍であることを特徴とする請求項1に記載の半導体レーザ素子。
【請求項4】
前記第1部分及び前記第3部分はそれぞれ、前記リッジ部の延在方向における一端面及び他端面から5μm以上30μm以下の範囲に設けられていることを特徴とする請求項1〜3のいずれか一項に記載の半導体レーザ素子。
【請求項5】
前記第1部分の厚さ及び前記第3部分の厚さは、100nm以上300nm以下であることを特徴とする請求項1〜4のいずれか一項に記載の半導体レーザ素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−21022(P2013−21022A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−151068(P2011−151068)
【出願日】平成23年7月7日(2011.7.7)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】