説明

半導体レーザ素子

【課題】活性層に変調電流を注入した場合でも、発振波長の変化を低減でき、波長チャーピングを抑制することができる半導体レーザ素子を提供する。
【解決手段】半導体レーザ素子1Aは、n型クラッド層15と、p型クラッド層19及びp型コンタクト層20と、活性層17とを備える。更に、半導体レーザ素子1Aは、回折格子層13および該回折格子層13上に設けられた接着層14から成り、活性層17との間にn型クラッド層15を挟む位置に設けられた回折格子24と、n型クラッド層15に接触するカソード電極21と、p型コンタクト層20に接触するアノード電極22とを備える。活性層17は第1の光導波路を構成し、回折格子層13および接着層14は第2の光導波路を構成する。第1の光導波路と第2の光導波路とは、n型クラッド層15を介して光学的に結合し、レーザ共振器を構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体レーザ素子に関するものである。
【背景技術】
【0002】
特許文献1には、半導体基板上に形成された分布帰還型レーザ(DFB laser:Distributed FeedBack laser)が記載されている。この分布帰還型半導体レーザでは、p型InP基板上に、p型InPクラッド層、光ガイド層、歪量子井戸活性層およびn型InPクラッド層が、この順に形成されている。また、p型InPクラッド層と光ガイド層との界面には回折格子が形成されている。p型InPクラッド層およびn型InPクラッド層の屈折率は、光ガイド層、歪量子井戸活性層の屈折率より小さい。つまり、この分布帰還型半導体レーザは、p型InPクラッド層、光ガイド層、歪量子井戸活性層およびn型InPクラッド層からなる単一の光導波路を有しており、光ガイド層および歪量子井戸活性層がこの光導波路のコア領域として機能する。活性層にて生じた光は、p型InPクラッド層およびn型InPクラッド層に挟まれた光ガイド層および歪量子井戸活性層に閉じ込められる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平7−249829号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に示されたような構造を備える従来のDFBレーザには、次の問題がある。DFBレーザに変調電流を印加すると、変調された光信号が出力される。ところで、DFBレーザの活性層および光ガイド層の屈折率は、活性層および光ガイド層を流れる電流の大きさに応じて変化する。故に、高周波の変調電流をこの半導体レーザ素子に与えると、電流量の変化に応じて活性層および光ガイド層の屈折率も変化する。活性層および光ガイド層の屈折率が変化することにより、光導波路の実効屈折率が変化する。p型InPクラッド層と光ガイド層との界面に回折格子が形成されているので、光ガイド層を含む光導波路の実効屈折率が変化することにより、回折格子の反射波長が変化する。これに伴い、DFBレーザの発振波長が変化する、いわゆる波長チャーピングが生じる。この波長チャーピングにより、光通信システムにおいて、伝送距離や伝送速度が制限される。つまり、従来のDFB型半導体レーザ素子は、比較的短い距離での伝送速度の小さい光通信用光源としての用途に制限される。
【0005】
本発明は、このような問題点に鑑みてなされたものであり、活性層に変調電流を注入した場合でも、発振波長の変化を低減でき、波長チャーピングを抑制することができる半導体レーザ素子を提供することを目的とする。
【課題を解決するための手段】
【0006】
上述した課題を解決するために、本発明による半導体レーザ素子は、所定方向に積層された第1導電型半導体層および第2導電型半導体層と、所定方向において第1導電型半導体層と第2導電型半導体層との間に設けられた活性層と、光伝搬方向に沿って所定の周期で配置された凸部を有する回折格子層、および回折格子層上に設けられて回折格子の凸部を埋め込む埋込層から成り、活性層との間に第1導電型半導体層を挟む位置に設けられた回折格子と、第1導電型半導体層に接触する第1電極と、第2導電型半導体層に接触する第2電極とを備え、活性層が第1の光導波路を構成し、回折格子層および埋込層が第2の光導波路を構成し、第1の光導波路と第2の光導波路とが、第1導電型半導体層を介して光学的に結合し、レーザ共振器を構成することを特徴とする。
【0007】
この半導体レーザ素子は、活性層を中心とする第1の光導波路と、回折格子層および埋込層を中心とする第2の光導波路とを備える。そして、第1の光導波路と第2の光導波路とは、第1導電型半導体層を介して光学的に結合され、レーザ共振器を構成している。また、回折格子層は、光伝搬方向に沿って所定の周期で配置された凸部を有する。回折格子層上に設けられた埋込層は、回折格子層の凸部を埋め込んで形成される。このような構成において、活性層にて生じた光は、第1の光導波路内を伝搬する。一方、この第1の光導波路内を伝搬する光の導波モード(以下、活性層モードという)とは別に、回折格子層を含む第2の光導波路内を伝搬する光の導波モード(以下、回折格子層モードという)が生じる。この回折格子層モードの分散曲線は、活性層モードの分散曲線と異なる。活性層モード及び回折格子層モードは互いに近接して、第1および第2の光導波路から成るレーザ共振器内を導波する。このとき、活性層モードの分散曲線と回折格子層モードの分散曲線とが交わる波長において、レーザ発振のための位相整合条件が満たされる。この位相整合条件が満たされる特定の波長(単一の波長)において、レーザ発振が生じる。ここで、回折格子層モードにて伝搬する光の波長は、回折格子の周期によって決定される。また、第1および第2の光導波路は、第1導電型半導体層を介して空間的に分離して設けられている。従って、活性層に電流が注入されると、活性層の屈折率変化に伴って第1の光導波路を伝搬する活性層モードの分散曲線が変化するが、回折格子層の屈折率はほとんど変化せず、第2の光導波路を伝搬する回折格子層モードの分散曲線および光の波長もほとんど変化しない。故に、上述した半導体レーザ素子によれば、活性層に変調電流を注入した場合でも、発振波長の変化を低減でき、波長チャーピングを抑制することができる。
【0008】
また、半導体レーザ素子は、回折格子層が半導体から成り、埋込層が誘電体から成ることを特徴としてもよい。誘電体の屈折率は半導体の屈折率と比べて格段に小さいので、このような構成によれば、回折格子を構成する二つの材料の屈折率差を大きくすることができる。これにより、回折格子層モードにおける前進波と後進波との結合係数κが大きくなる。この結合係数κを大きくすることによって、回折格子層モードの分散曲線における伝搬定数の変化に応じた波長変化を小さくすることができる。この結果、電流注入による活性層の屈折率変化に起因する発振波長への影響を更に抑制することが可能となる。従って、この半導体レーザ素子によれば、波長チャーピングを更に低減できる。また、誘電体は、SiO、SiN、Al、及びTiOのうち少なくとも一つを含むことが好ましい。
【0009】
また、埋込層が誘電体から成る場合、回折格子層は、第1導電型半導体層における活性層と対向する面とは反対側の面上に堆積されたアモルファスシリコンをエッチングすることにより好適に形成されることができる。また、埋込層は、回折格子層を覆うように誘電体が堆積されることにより好適に形成されることができる。
【0010】
また、半導体レーザ素子は、回折格子層が半導体から成り、埋込層がポリイミド樹脂またはBCB樹脂から成ることを特徴としてもよい。ポリイミド樹脂やBCB樹脂といった樹脂の屈折率は、半導体の屈折率と比べて格段に小さいので、このような構成によれば、回折格子を構成する二つの材料の屈折率差を大きくすることができる。これにより、回折格子層モードにおける前進波と後進波との結合係数κが大きくなるので、回折格子層モードの分散曲線における伝搬定数の変化に応じた波長変化を小さくすることができる。この結果、電流注入による活性層の屈折率変化に起因する発振波長への影響を更に抑制することが可能となるので、波長チャーピングを更に低減できる。また、このように、埋込層がポリイミド樹脂またはBCB樹脂から成る場合、回折格子層と第1導電型半導体層とは埋込層を介して接合されることができる。
【0011】
また、半導体レーザ素子は、回折格子層の屈折率n1と、埋込層の屈折率n0との相対屈折率差(n1−n0)/n1が0.15以上であることを特徴としてもよい。回折格子層と埋込層との上記相対屈折率差が0.15以上であれば、回折格子層モードの前進波と後進波の結合係数κが十分に大きくなり、活性層の屈折率変化による発振波長への影響を効果的に抑制できる。すなわち、この半導体レーザ素子によれば、チャーピングをより効果的に低減できる。
【0012】
また、半導体レーザ素子は、回折格子層の厚さが200nm以上であることを特徴としてもよい。このように、回折格子層が厚いことによって、回折格子層モードを好適に発生させることができる。
【0013】
また、半導体レーザ素子は、第1導電型半導体層の厚さが50nm以上500nm以下であることを特徴としてもよい。第1導電型半導体層がこのような厚さを有することによって、第1導電型半導体層は比較的薄いクラッドとして機能する。そして、このように比較的薄いクラッドを挟んで活性層と回折格子層とが配置されることによって、第1および第2の光導波路を効果的に分離できるので、活性層モードおよび回折格子層モードを好適に発生させ、且つこれらのモードを相互に結合させることができる。
【発明の効果】
【0014】
本発明による半導体レーザ素子によれば、活性層に変調電流を注入した場合でも、発振波長の変化を低減でき、波長チャーピングを抑制することができる。
【図面の簡単な説明】
【0015】
【図1】図1は、第1実施形態に係る半導体レーザ素子の構造を示す断面図である。図1(a)は、半導体レーザ素子の光伝搬方向に対して垂直な断面を示している。図1(b)は、図1(a)のI−I線に沿った断面(すなわち光伝搬方向に沿った断面)を示している。
【図2】図2(a)は、半導体レーザ素子の積層方向における屈折率分布を示す図である。図2(b)は、半導体レーザ素子に生じる導波モードを示す図である。
【図3】図3は、半導体レーザ素子に生じる伝搬光の周波数と伝搬定数との関係を示すグラフである。
【図4】図4は、回折格子を構成する2つの材料のうち、屈折率が大きい材料の屈折率n1と屈折率が小さい材料の屈折率n0との相対屈折率差(n1−n0)/n1と、群速度との関係、および該相対屈折率差(n1−n0)/n1と周波数差Δf2との関係を示している。
【図5】図5(a)〜図5(c)は、第1実施形態に係る半導体レーザ素子の作製方法の各工程を示す断面図である。
【図6】図6(a)は、第1実施形態に係る半導体レーザ素子の作製方法の一工程を示す断面図である。図6(b)は、図6(a)のII−II線に沿った断面図であり、光伝搬方向に垂直な断面を示している。
【図7】図7(a)及び図7(b)は、第1実施形態に係る半導体レーザ素子の作製方法の各工程を示す断面図である。
【図8】図8(a)及び図8(b)は、第1実施形態に係る半導体レーザ素子の作製方法の各工程を示す断面図である。
【図9】図9は、第2実施形態に係る半導体レーザ素子の構造を示す断面図である。図9(a)は、半導体レーザ素子の光伝搬方向に対して垂直な断面を示している。図9(b)は、図9(a)のIV−IV線に沿った断面(すなわち光伝搬方向に沿った断面)を示している。
【図10】図10(a)及び図10(b)は、第2実施形態に係る半導体レーザ素子の作製方法の各工程を示す断面図である。
【図11】図11(a)及び図11(b)は、第2実施形態に係る半導体レーザ素子の作製方法の各工程を示す断面図である。
【図12】図12(a)及び図12(b)は、第2実施形態に係る半導体レーザ素子の作製方法の各工程を示す断面図である。
【図13】図13(a)及び図13(b)は、第2実施形態に係る半導体レーザ素子の作製方法の各工程を示す断面図である。
【図14】図14(a)は、第2実施形態に係る半導体レーザ素子の作製方法の一工程を示す断面図である。図14(b)は、図14(a)のV−V線に沿った断面を示している。
【図15】図15(a)は、第2実施形態に係る半導体レーザ素子の作製方法の一工程を示す断面図である。図15(b)は、図15(a)のVI−VI線に沿った断面を示している。
【図16】図16は、第3実施形態に係る半導体レーザ素子の構造を示す断面図である。図16(a)は、半導体レーザ素子の光伝搬方向に対して垂直な断面を示している。図16(b)は、図16(a)のVII−VII線に沿った断面(すなわち光伝搬方向に沿った断面)を示している。
【発明を実施するための形態】
【0016】
以下、添付図面を参照しながら本発明による半導体レーザ素子の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0017】
(第1の実施の形態)
図1は、本発明の第1実施形態に係る半導体レーザ素子1Aの構造を示す断面図である。図1(a)は、半導体レーザ素子1Aの光伝搬方向に対して垂直な断面を示している。図1(b)は、図1(a)のI−I線に沿った断面(すなわち光伝搬方向に沿った断面)を示している。
【0018】
半導体レーザ素子1Aは、n型クラッド層15を備えている。n型クラッド層15は、本実施形態における第1導電型半導体層である。n型クラッド層15は、例えばn型InPといったIII−V族化合物半導体によって構成され、図示しないIII−V族化合物半導体基板上にエピタキシャル成長されたのち、該III−V族化合物半導体基板から分離された半導体層である。n型クラッド層15の好適な厚さは、通常のクラッド層よりも比較的薄く、例えば50nm以上500nm以下であり、一実施例では250nmである。
【0019】
また、半導体レーザ素子1Aは、p型クラッド層19及びp型コンタクト層20を更に備えている。p型クラッド層19及びp型コンタクト層20は、本実施形態における第2導電型半導体層である。n型クラッド層15、p型クラッド層19及びp型コンタクト層20は、所定方向(これらの層15,19および20の厚さ方向)に積層されている。p型クラッド層19は、例えばp型InPといったIII−V族化合物半導体によって構成され、後述する上部光閉じ込め層18上にエピタキシャル成長されたものである。p型クラッド層19の好適な厚さは、例えば1.5μmである。p型コンタクト層20は、例えばp型GaInAsといったIII−V族化合物半導体によって構成され、p型クラッド層19上にエピタキシャル成長されて成る。p型コンタクト層20の好適な厚さは、例えば200nmである。
【0020】
また、半導体レーザ素子1Aは、下部光閉じ込め層16、活性層17、および上部光閉じ込め層18を更に備えている。下部光閉じ込め層16、活性層17、および上部光閉じ込め層18は、第1の光導波路を構成する。すなわち、下部光閉じ込め層16、活性層17、および上部光閉じ込め層18は、n型クラッド層15とp型クラッド層19との間に設けられた高屈折率領域であり、第1の光導波路のコア領域として機能する。
【0021】
下部光閉じ込め層16および上部光閉じ込め層18の屈折率は、n型クラッド層15およびp型クラッド層19の屈折率よりも大きい。下部光閉じ込め層16および上部光閉じ込め層18のバンドギャップエネルギーはn型クラッド層15のバンドギャップエネルギーより小さく、そのバンドギャップ波長は例えば1.2μmである。なお、バンドギャップエネルギーEg(eV)とバンドギャップ波長λg(μm)とは、Eg=1.24/λgの関係を有する。下部光閉じ込め層16および上部光閉じ込め層18は、例えばアンドープInAlGaAsといったIII−V族化合物半導体によって構成される。下部光閉じ込め層16及び上部光閉じ込め層18の好適な厚さは例えばそれぞれ100nmである。下部光閉じ込め層16は、n型クラッド層15上にエピタキシャル成長されて成る。上部光閉じ込め層18は、活性層17上にエピタキシャル成長されて成る。
【0022】
活性層17は、III−V族化合物半導体からなり、下部光閉じ込め層16と上部光閉じ込め層18との間に設けられている。好ましくは、活性層17は、量子井戸層とバリア層とが交互に積層された多重量子井戸構造を有する。この多重量子井戸構造に含まれる量子井戸層及びバリア層は、例えば組成の異なるアンドープInAlGaAsからなる。量子井戸層の厚さは例えば5nmである。バリア層の厚さは例えば8nmである。バリア層を構成する半導体層のバンドギャップエネルギーは量子井戸層を構成する半導体層のバンドギャップエネルギーより大きい。井戸層を構成する半導体層のバンドギャップ波長は例えば1.6μmである。バリア層を構成する半導体層のバンドギャップ波長は例えば1.25μmである。活性層17の発光波長は、例えば1.55μmである。量子井戸層は圧縮歪み(例えば0.8%)を有する。一実施例では、量子井戸層は7層設けられ、バリア層は8層設けられる。
【0023】
本実施形態において、下部光閉じ込め層16、活性層17、および上部光閉じ込め層18は、n型クラッド層15上において光導波方向に延びる領域上に設けられており、メサ構造32を構成している。メサ構造32は、光導波方向に沿った側面32a及び32bを有する。また、p型クラッド層19およびp型コンタクト層20は、上部光閉じ込め層18上において光導波方向に延びる領域上に設けられており、メサ構造33を構成している。メサ構造33は、光導波方向に沿った側面33a及び33bを有する。なお、側面33a及び33bの間隔は、側面32a及び32bの間隔よりも狭い。側面33a及び33bの間隔は例えば1.5μmであり、側面32a及び32bの間隔は例えば6μmである。そして、メサ構造33の両側面33a,33bから、上部光閉じ込め層18上およびメサ構造32の側面32a及び32b上にわたって、半導体層を保護するための絶縁膜23が設けられている。絶縁膜23は、例えばSiOといった絶縁性のシリコン化合物から成る。
【0024】
また、半導体レーザ素子1Aは、カソード電極21およびアノード電極22を更に備えている。カソード電極21及びアノード電極22は、活性層17に電流を供給するための電極である。カソード電極21は本実施形態における第1電極であり、アノード電極22は本実施形態における第2電極である。カソード電極21は、下部光閉じ込め層16、活性層17、および上部光閉じ込め層18の周辺において絶縁膜23から露出したn型クラッド層15上に設けられており、n型クラッド層15とオーミック接触を成している。カソード電極21は、例えばAuGeを含んで構成される。アノード電極22は、メサ構造33上に設けられており、絶縁膜23に形成された開口を介してp型コンタクト層20とオーミック接触を成している。アノード電極22は、例えばTi/Pt/AuやTi/Auによって構成される。
【0025】
また、半導体レーザ素子1Aは、基板11、クラッド層12、回折格子層13、及び接着層(埋込層)14を更に備えている。基板11は、主面11aを有する。本実施形態の基板11は、例えばシリコン(Si)から成る。なお、基板11の構成材料はこれに限られず、クラッド層12及び回折格子層13を主面11a上に堆積し得る様々な材料から成ることができる。
【0026】
クラッド層12は、誘電体から成る層であり、例えばSiOといったシリコン化合物から成る。クラッド層12の厚さは例えば1μmである。回折格子層13は、光伝搬方向に沿って所定の周期で配置された凸部を有しており、本実施形態では、回折格子層13は、当該周期でもって光伝搬方向に分割された複数の領域から成る。回折格子層13は、クラッド層12よりも屈折率が大きい材料から成り、例えば半導体であるSiから成る。クラッド層12及び回折格子層13がそれぞれSiOおよびSiから成る場合、回折格子層13は、例えばSOI(Silicon on Insulator)基板の表面Si層をエッチングすることによって好適に形成される。
【0027】
回折格子層13の好適な厚さは200nm以上であり、一般的なDFB型半導体レーザ素子の回折格子層の厚さ(約10nm)より格段に厚い。一実施例では、回折格子層13の厚さは300nmである。また、回折格子層13のバンドギャップ波長は例えば1.25μmであり、一般的なDFB型半導体レーザ素子の回折格子層のバンドギャップ波長(1.1μm)より長い。換言すれば、回折格子層13のバンドギャップエネルギーは、一般的なDFB型半導体レーザ素子の回折格子層のバンドギャップエネルギーより小さい。そして、回折格子層13のバンドギャップエネルギーは、その直下に位置するクラッド層12のバンドギャップエネルギーより小さい。
【0028】
接着層14は、本実施形態における埋込層であり、回折格子層13上に設けられて回折格子層13の凸部を埋め込む。接着層14は、回折格子層13よりも屈折率が小さいポリイミドやBCB(Benzocyclobutene)といった樹脂から成り、一実施例ではDVS−BCB(Divinyl-siloxane-bis-BCB)といったポリマーから成る。ポリイミドまたはBCBは、活性層17において生じる光の波長に対して透明であり、光損失が小さいので接着層14の材料として好適である。接着層14は、回折格子層13と共に回折格子24を構成する。上述したように接着層14の屈折率は回折格子層13の屈折率よりも小さいので、回折格子24は、回折格子層13の凸部の周期でもって光導波方向に沿って屈折率が周期的に変化する構造を有する。本実施形態の回折格子24は、上記周期で分割された回折格子層13と、当該分割された回折格子層13の間、及び回折格子層13の上に設けられた接着層14によって構成されている。
【0029】
なお、回折格子24を構成する回折格子層13と接着層14との屈折率差が大きくなるように、接着層14の材料を選択することが望ましい。後述するように、回折格子層13の屈折率n1と、接着層14の屈折率n0との相対屈折率差(n1−n0)/n1は、0.15以上であることが好ましい。つまり、接着層14の屈折率n0が、回折格子層13の屈折率n1の85%以下であることが好ましい。本実施形態において、ポリイミドまたはBCBの屈折率は約1.5であり、回折格子層13の屈折率である約3.2と比べて格段に小さな値を有する。故に、相対屈折率差(n1−n0)/n1を、容易に0.15以上とすることができる。
【0030】
ここで、回折格子層13および接着層14は、第2の光導波路を構成する。すなわち、クラッド層12及び接着層14によって挟まれた高屈折率領域である回折格子層13は、第2の光導波路のコア領域として機能する。下部光閉じ込め層16、活性層17および上部光閉じ込め層18によって構成される第1の光導波路と、回折格子層13および接着層14によって構成される第2の光導波路とは、n型クラッド層15を介して光学的に結合される。なお、クラッド層12及び回折格子層13は、接着層14によってn型クラッド層15に接合されている。
【0031】
半導体レーザ素子1Aの発光波長は、回折格子24の周期によって決定される。回折格子24の周期は例えば0.24μmであり、回折格子24のデューティ比(回折格子24の一周期に占める回折格子層13と回折格子層13を埋め込む接着層14との比)は例えば0.71である。このときの回折格子24の周期は、活性層17において生じる波長に対して一次の回折が生じるように設定されるとよい。活性層17において生じた光は、回折格子24にて反射され、第2の光導波路内をレーザ共振器長方向(基板11の主面11aに平行の方向)に伝搬することができる。
【0032】
なお、一般的なDFB型半導体レーザ素子では、回折格子層は下部光閉じ込め層の直下に設けられる。一方、本実施形態の回折格子層13は、n型クラッド層15の下側に設けられている。従って、本実施形態に係る半導体レーザ素子1Aでは、回折格子層13と活性層17との間隔が、一般的なDFBレーザよりも大きくなっている。
【0033】
図1(b)に示されるように、光伝搬方向における半導体レーザ素子1Aの両端面34a及び34bには、反射防止膜(AR膜)35a及び35bが設けられている。また、端面34aと端面34bとの間に設けられた、活性層17を含む第1の光導波路と回折格子層13を含む第2の光導波路とによって、レーザ共振器が構成される。端面34aと端面34bとの間隔(レーザ共振器長)は、例えば250μmである。
【0034】
以上の構成を備える半導体レーザ素子1Aの動作について説明する。図2(a)は、半導体レーザ素子1Aの積層方向における屈折率分布を示す図である。図2(a)において、グラフの横軸は屈折率を示し、縦軸は半導体レーザ素子1Aの厚さ方向における位置を示す。また、図2(b)は、半導体レーザ素子1Aに生じる導波モードを示す図である。図2(b)において、グラフの横軸は導波光の強度を示し、縦軸は半導体レーザ素子1Aの厚さ方向における位置を示す。図2に示されるように、半導体レーザ素子1Aでは、活性層17を中心とする導波モードである活性層モードM1と、回折格子層13を中心とする導波モードである回折格子層モードM2といった2つの導波モードが生じる。回折格子層モードM2は、定在波としての性質を有する。回折格子層モードM2は、本実施形態のように回折格子層13が厚く、更に回折格子層13と活性層17とが離れている場合に、顕著に発生する。回折格子層13の厚さは、例えば200nm以上である。更に、半導体レーザ素子1Aの内部において、活性層モードM1と回折格子層モードM2とが互いに近接しながら平行に導波するので、これらのモードM1,M2は互いにカップリングされることが可能である。換言すれば、半導体レーザ素子1Aの内部構造は、活性層モードM1と回折格子層モードM2とを結合する光結合器となることが可能である。
【0035】
ここで、図3は、半導体レーザ素子1Aがハイレベル(1レベル)とローレベル(0レベル)とを含むデジタル信号電流によって変調された場合における、半導体レーザ素子1Aに生じる伝搬光の周波数と伝搬定数との関係を示すグラフである。図3において、縦軸は規格化された周波数を示し、横軸は規格化された伝搬定数を示している。ここで、レーザ光の周波数fは、レーザ光の真空中の波長λに対して、f=c/λの関係を有する。また、規格化周波数とは、f/(a・c)で定義され、規格化伝搬定数とは、β・a/(2π)で定義されるパラメータである。ここで、aは回折格子の周期を、βは伝搬定数を、cは真空中の光速度をそれぞれ表す。なお、規格化伝搬定数は、その値が0.5のときに、レーザ光の周波数がブラッグ周波数となるように規格化されている。また、図中に示されるグラフG11は、半導体レーザ素子1Aがハイレベルの信号電流で駆動されている場合(つまり、半導体レーザ素子1Aからの送信光がハイレベルである場合)の活性層モードM1の分散曲線を示している。一方、グラフG12は、半導体レーザ素子1Aがローレベルの信号電流で駆動されている場合(つまり、半導体レーザ素子1Aからの送信光がローレベルである場合)の活性層モードM1の分散曲線を示している。また、グラフG13は、回折格子層モードM2の分散曲線を示している。なお、本実施形態では回折格子層13には電流が流れないので、送信光のハイレベル/ローレベルによって回折格子層モードM2の分散曲線は変化しない。
【0036】
活性層モードのみ存在する通常のDFBレーザは、ブラッグ周波数でレーザ発振する。このことは、図3の活性層モードの分散曲線において、通常のDFBレーザの動作点が、規格化伝搬定数β・a/(2π)が0.5となるポイントであることを表している。また、ブラッグ周波数は、活性層へ注入される電流変化に起因する屈折率変化に伴って変動する。具体的には、送信光がハイレベルである場合には図中のA1点でレーザ発振し、送信光がローレベルである場合には図中のA2点でレーザ発振する。この場合、A1点における規格化周波数とA2点における規格化周波数との差Δf1が、発振周波数の大きな変化(チャーピング)となって現れる。
【0037】
これに対し、活性層モードM1と回折格子層モードM2とが結合すれば、モードM1及びM2の位相整合条件が一致する動作点で発振することとなる。すなわち、送信光がハイレベルである場合には、グラフG11とグラフG13との交点(図中のB1点)で発振する。また、送信光がローレベルである場合には、グラフG12とグラフG13との交点(図中のB2点)で発振する。従って、B1点における規格化周波数とB2点における規格化周波数との差Δf2が、発振周波数の変化となって現れる。
【0038】
この周波数差Δf2は、回折格子層モードM2の分散曲線であるグラフG13の傾きが緩やかなほど小さくなる。すなわち、周波数差Δf2は、群速度vgが小さいほど小さくなる。ここで、図4は、回折格子を構成する2つの材料の相対屈折率差(relative refractive index difference)と群速度(グラフG21)との関係を表す。ここで、2つの材料の屈折率について、屈折率が大きい材料の屈折率をn1、屈折率が小さい材料の屈折率をn0とする。このとき、2つの材料の相対屈折率差は、(n1−n0)/n1で表される。さらに、図4に、該相対屈折率差(n1−n0)/n1と周波数差Δf2との関係(グラフG22)も示す。なお、図4において、横軸は相対的な屈折率差(n1−n0)/n1を示す。また、左の縦軸は、真空中の光速度cで規格化された規格化群速度(vg/c)を示し、一方、右の縦軸は、周波数差Δf2を示す。ここで、図4における周波数差Δf2は、図3の規格化周波数差Δf2を、実際の周波数差に換算してプロットしてある。
【0039】
図4に示されるように、回折格子を構成する2つの材料の屈折率差が大きくなるほど、群速度が小さくなり且つ周波数差Δf2が小さくなる傾向がある。一般に、回折格子を有する光導波路を伝搬する光の群速度は、当該光導波路を伝搬する回折格子層モードの前進波と後進波の結合係数κが大きいほど小さくなる。つまり、図4においては、回折格子を構成する2つの材料の屈折率差を大きくして、当該回折格子層モードの前進波と後進波の結合係数κを大きくすることによって、伝播光の群速度を小さくし、周波数差Δf2を小さくできることが示されている。本実施形態の半導体レーザ素子1Aでは、回折格子を構成する2つの材料の屈折率差を大きくし、さらに、回折格子層13に形成する凹凸の深さを深くすることで、回折格子層モードの前進波と後進波の結合係数κを大きくしている。回折格子を構成する回折格子層13はSiといった半導体により構成され、接着層14は、例えばBCBといった樹脂により構成される。接着層14がBCBにより構成される場合、その屈折率は、1.5程度である。回折格子層13がSiにより構成される場合、その屈折率は、3.5程度である。従って、回折格子層モードの前進波と後進波の結合係数κを大きくできるので、周波数差Δf2が小さくなり、チャーピングを効果的に低減できる。
【0040】
また、図4より、チャーピングを低減するために、回折格子を構成する2つの材料の相対屈折率差は0.15以上であることが好ましい。その場合、回折格子層モードの前進波と後進波の結合係数κが十分に大きくなり、周波数差Δf2を15GHz以下とすることができる。また、相対屈折率差は0.4以上であることが更に好ましく、その場合、周波数差Δf2を6GHz以下とすることができる。たとえば、本実施形態において、回折格子層13がSiからなり、接着層14がBCBからなる場合の相対屈折率差は約0.57となり、周波数差Δf2を十分小さくすることができる。なお、通常のDFB型半導体レーザ素子においては、チャーピングを表す周波数差Δf1は20GHz程度である。
【0041】
また、本実施形態のように、n型クラッド層15の厚さは50nm以上500nm以下であることが好ましい。厚さ500nm以下といった比較的薄いn型クラッド層15を挟んで活性層17と回折格子層13とが配置されることによって、第1および第2の光導波路を効果的に分離できるので、活性層モードM1および回折格子層モードM2を好適に発生させ、且つこれらのモードM1およびM2を相互に結合させることができる。また、n型クラッド層15の厚さが50nm以上であることによって、カソード電極21へ電流を効率良く流すことができる。
【0042】
また、本実施形態の半導体レーザ素子1Aは、n型クラッド層15、活性層17およびp型コンタクト層20を含む半導体積層構造を有しており、n型クラッド層15にカソード電極21が接触しており、p型コンタクト層20にアノード電極22が接触している、いわゆる縦方向電流注入型の構成を備えている。これに対し、例えば活性層を含むメサ構造を形成し、該メサ構造の一方の側面に沿ってn型半導体を配置し、他方の側面に沿ってp型半導体を配置するといった、いわゆる横方向電流注入型の構成も考えられる。
【0043】
しかし、このような横方向電流注入型の構成では、閾値が高く、また光電変換効率が抑えられるといった問題がある。すなわち、横方向電流注入型の構成では、活性層の一方の側面から他方の側面へ電流が流れるが、活性層の幅を狭くすることには限界があり、活性層における電流経路はキャリアの拡散長より長くなる。したがって、活性層中でのキャリア分布が不均一となり、発光効率が抑制され、或いは不安定となる傾向がある。また、アンドープの活性層とp型半導体との界面において、バンド構造のエネルギー不連続が大きいと、抵抗が大きくなって電流注入効率が低下する。横方向電流注入型の構成では、このようなエネルギー不連続を小さく抑える為にドーピング濃度や半導体組成を段階的に変化させるといった対応が難しい。
【0044】
上述した問題に対し、本実施形態の半導体レーザ素子1Aは縦方向電流注入型の構成を備えているので、活性層の厚さを調整することによってキャリア分布を容易に均一にすることができる。また、活性層の上下においてエネルギー不連続を小さく抑える為にドーピング濃度や半導体組成を段階的に変化させることが容易である。したがって、本実施形態の半導体レーザ素子1Aによれば、閾値を低くすることができ、また光電変換効率を高めることが可能となる。
【0045】
ここで、図5〜図8は、上述した本実施形態による半導体レーザ素子1Aの作製方法の一例について説明するための断面図である。なお、図5(a)〜図5(c)及び図6(a)は、光伝搬方向に沿った断面を示している。図6(b)は、図6(a)のII−II線に沿った断面図であり、光伝搬方向に垂直な断面を示している。図7(a),図7(b)及び図8(a),図8(b)は、光伝搬方向に垂直な断面を示している。
【0046】
この作製方法では、まず、図5(a)に示されるように、シリコン基板11上にSiO層(クラッド層12)およびSi層41が設けられたSOI基板10を用意する。次に、通常のフォトリソフラフィー技術を用いて、回折格子24に応じたパターンを有するマスクをSi層41上に形成し、このマスクを介してSi層41をエッチングする。これにより、図5(b)に示されるように、光伝搬方向に沿って所定の周期で配置された凸部を有する回折格子層13が形成される。一例では、このエッチング工程においてエッチング深さがクラッド層12に達する。その結果、回折格子層13が上記周期で分割される。こうして、シリコン基板11、クラッド層12及び回折格子層13を有する第1基板生産物40が作製される。なお、回折格子の形態は本実施形態に限られず、例えばSi層41の途中でエッチングが停止されることにより、回折格子層13の上面(すなわちクラッド層12と対向する面とは反対側の回折格子層13の表面)に周期的な凸部を有する回折格子が形成されてもよい。
【0047】
一方、第1基板生産物40の作製工程とは別に、図5(c)に示されるように半導体基板43を用意し、この半導体基板43の主面43a上に、p型コンタクト層20、p型クラッド層19、上部光閉じ込め層18、活性層17、下部光閉じ込め層16、及びn型クラッド層15をこの順でエピタキシャル成長させる。半導体基板43は、例えばInP基板である。こうして、半導体基板43および各半導体層15〜20を有する第2基板生産物50が作製される。
【0048】
続いて、図6(a)及び図6(b)に示されるように、第1基板生産物40と第2基板生産物50とを接着層14を介して相互に接合する。具体的には、第1基板生産物40の回折格子層13と第2基板生産物50のn型クラッド層15との間にBCBやポリイミドといった樹脂を挟み込み、この樹脂を硬化させることによって第1基板生産物40と第2基板生産物50とを接合する。このとき、樹脂の一部は回折格子層13の複数の凸部の隙間に入り込み、回折格子層13を埋め込む。こうして、回折格子層13の凸部を埋め込む埋込層としての接着層14が形成される。なお、回折格子層13の各凸部の上面とn型クラッド層15との間隔D1は、前述した活性層モードM1と回折格子層モードM2との良好なカップリングのために薄いことが好ましく、例えば50nmである。
【0049】
続いて、図7(a)に示されるように、p型コンタクト層20上の半導体基板43を除去する。この除去は、例えば半導体基板43をエッチングすることによって好適に行われる。続いて、図7(b)に示されるように、メサ構造32及び33を形成する。まず、メサ構造33の平面形状に応じたパターンを有するマスクをp型コンタクト層20上に形成し、このマスクを介してp型コンタクト層20及びp型クラッド層19をエッチングする。なお、このエッチングは上部光閉じ込め層18に達することにより停止する。こうして、側面33a,33bを有するメサ構造33が形成される。次に、メサ構造32の平面形状に応じたパターンを有するマスクをp型コンタクト層20上および上部光閉じ込め層18上に形成し、このマスクを介して上部光閉じ込め層18、活性層17及び下部光閉じ込め層16をエッチングする。なお、このエッチングはn型クラッド層15に達することにより停止する。こうして、側面32a,32bを有するメサ構造32が形成される。
【0050】
続いて、図8(a)に示されるように、メサ構造33の側面33a,33bから上部光閉じ込め層18上を経てメサ構造32の側面32a,32bに至る絶縁膜23を形成する。具体的には、まず、絶縁材料(SiOなど)をシリコン基板11上の全面に堆積する。そして、通常のフォトリソグラフィー技術を用いて、メサ構造33上およびメサ構造32の周辺領域に開口を有するマスクを絶縁材料の上に形成する。このマスクを介して絶縁材料をエッチングすることにより、絶縁膜23を形成する。
【0051】
続いて、図8(b)に示されるように、n型クラッド層15上にカソード電極21を形成するとともに、メサ構造33上にアノード電極22を形成する。具体的には、カソード電極21の平面形状に相当する開口を有するマスクを通常のフォトリソグラフィー技術を用いて形成したのち、カソード電極21の金属材料をシリコン基板11上の全面に蒸着する。そして、マスクを除去することによってカソード電極21を除く金属材料を取り去り(リフトオフ)、アニール処理を行う。アノード電極22もまた、これと同様にして形成することができる。その後、劈開によって図1(b)に示された端面34a,34bを形成し、該端面34a,34b上に反射防止膜35a,35bを形成する。こうして、図1に示された半導体レーザ素子1Aが完成する。
【0052】
(第2の実施の形態)
図9は、本発明の第2実施形態に係る半導体レーザ素子1Bの構造を示す断面図である。図9(a)は、半導体レーザ素子1Bの光伝搬方向に対して垂直な断面を示している。図9(b)は、図9(a)のIV−IV線に沿った断面(すなわち光伝搬方向に沿った断面)を示している。
【0053】
半導体レーザ素子1Bは、n型クラッド層15、下部光閉じ込め層16、活性層17、上部光閉じ込め層18、p型クラッド層19、p型コンタクト層20、カソード電極21、アノード電極22、及び絶縁膜23を備えている。これらの構成は、前述した第1実施形態と同様である。但し、本実施形態では、n型クラッド層15の厚さは例えば400nmである。
【0054】
また、半導体レーザ素子1Bは、回折格子層53及び埋込層54を更に備えている。回折格子層53は、光伝搬方向に沿って所定の周期で配置された凸部を有しており、本実施形態では、回折格子層53は、当該周期でもって光伝搬方向に分割された複数の領域から成る。回折格子層53は、n型クラッド層15よりも屈折率が大きい材料から成り、例えば非晶質半導体であるアモルファスシリコンから成る。回折格子層53の好適な厚さは200nm以上であり、一実施例では300nmである。また、回折格子層53のバンドギャップ波長は例えば1.25μmであり、一般的なDFB型半導体レーザ素子の回折格子層のバンドギャップ波長(1.1μm)より長い。換言すれば、回折格子層53のバンドギャップエネルギーは、一般的なDFB型半導体レーザ素子の回折格子層のバンドギャップエネルギーより小さい。そして、回折格子層53のバンドギャップエネルギーは、その直上に位置するn型クラッド層15のバンドギャップエネルギーより小さい。
【0055】
埋込層54は、回折格子層53上に設けられて回折格子層53の凸部を埋め込む。埋込層54は、回折格子層53よりも屈折率が小さい誘電体が回折格子層53を覆うように堆積されて成ることができる。回折格子層53を構成する誘電体としては、SiO、SiN、Al、及びTiOのうち少なくとも一つの材料が含まれる。埋込層54は、回折格子層53と共に回折格子64を構成する。上述したように埋込層54の屈折率は回折格子層53の屈折率よりも小さいので、回折格子64は、回折格子層53の凸部の周期でもって光導波方向に沿って屈折率が周期的に変化する構造を有する。本実施形態の回折格子64は、上記周期で分割された回折格子層53と、当該分割された回折格子層53の間、及び回折格子層53上に設けられた埋込層54とによって構成されている。
【0056】
なお、回折格子64を構成する回折格子層53と埋込層54との屈折率差が大きくなるように、埋込層54の材料を選択することが望ましい。第1実施形態において述べたように、回折格子層53の屈折率n1と、埋込層54の屈折率n0との相対屈折率差(n1−n0)/n1は、0.15以上であることが好ましい。つまり、埋込層54の屈折率n0が、回折格子層53の屈折率n1の85%以下であることが好ましい。一実施例では、埋込層54は、誘電体としてのSiOから成る。この場合、埋込層54の屈折率は約1.5であり、回折格子層53の屈折率である3.2と比べて格段に小さな値を有する。この実施例における相対屈折率差(n1−n0)/n1は約0.53である。
【0057】
ここで、回折格子層53および埋込層54は、第2の光導波路を構成する。すなわち、n型クラッド層15及び埋込層54によって挟まれた高屈折率領域である回折格子層53は、第2の光導波路のコア領域として機能する。そして、下部光閉じ込め層16、活性層17および上部光閉じ込め層18によって構成される第1の光導波路と、回折格子層53および埋込層54によって構成される第2の光導波路とは、n型クラッド層15を介して光学的に結合される。なお、本実施形態の埋込層54は、回折格子層53よりも十分に厚いことが好ましい。回折格子層53と埋込層54との界面と埋込層54の表面(半導体レーザ素子1Bの裏面)との距離D2は、例えば0.4μmである。このように埋込層54が比較的厚く設けられることによって、埋込層54は第2の光導波路におけるクラッド層として好適に機能する。
【0058】
図9(b)に示されるように、光伝搬方向における半導体レーザ素子1Bの両端面74a及び74bには、反射防止膜(AR膜)75a及び75bが設けられている。また、端面74aと端面74bとの間に設けられた、活性層17を含む第1の光導波路と回折格子層53を含む第2の光導波路とによって、レーザ共振器が構成される。端面74aと端面74bとの間隔(レーザ共振器長)は、例えば250μmである。
【0059】
以上の構成を備える半導体レーザ素子1Bの動作について説明する。半導体レーザ素子1Bでは、第1実施形態に係る半導体レーザ素子1Aと同様に、活性層17を中心とする導波モードである活性層モードと、回折格子層53を中心とする導波モードである回折格子層モードといった2つの導波モードが生じる。そして、半導体レーザ素子1Bの内部において、活性層モードと回折格子層モードとは互いに近接しながら平行に導波するので、これらのモードは互いにカップリングされることが可能である。換言すれば、半導体レーザ素子1Bの内部構造は、活性層モードと回折格子層モードとを結合する光結合器となることが可能である。
【0060】
図3に示されたように、活性層モードと回折格子層モードとが結合すれば、これらのモードの位相整合条件が一致する動作点で発振することとなる。そして、送信光がハイレベルであるときの発振周波数とローレベルであるときの発振周波数との差Δf2は、回折格子層モードの分散曲線の傾きが緩やかなほど小さくなる。さらに、図4に示されたように、回折格子を構成する2つの材料の屈折率差が大きくなるほど、周波数差Δf2が小さくなる。本実施形態において、回折格子を構成する回折格子層53はアモルファスシリコンといった半導体により構成され、埋込層54は、例えばSiOといった誘電体により構成される。埋込層54がSiOにより構成される場合、その屈折率は、1.5程度である。回折格子層53がアモルファスシリコンにより構成される場合、その屈折率は、3.5程度である。従って、周波数差Δf2が小さくなり、チャーピングを効果的に低減できる。
【0061】
また、図4に示されたように、チャーピングを低減するためには、回折格子64を構成する2つの材料の相対屈折率差は0.15以上であることが好ましい。その場合、回折格子層モードの前進波と後進波の結合係数κが十分に大きくなり、周波数差Δf2を15GHz以下とすることができる。また、相対屈折率差は0.4以上であることが更に好ましく、その場合、周波数差Δf2を6GHz以下とすることができる。たとえば、本実施形態において、回折格子層53がアモルファスシリコンからなり、埋込層54がSiOからなる場合の相対屈折率差は約4.2となり、周波数差Δf2を十分小さくすることができる。
【0062】
図10〜図15は、上述した本実施形態による半導体レーザ素子1Bの作製方法の一例について説明するための断面図である。なお、図10〜図13、図14(a)および図15(a)は、光伝搬方向に垂直な断面を示している。また、図14(b)は図14(a)のV−V線に沿った断面図であり、図15(b)は図15(a)のVI−VI線に沿った断面図であり、それぞれ光伝搬方向に沿った断面を示している。
【0063】
この作製方法では、まず、図10(a)に示されるように、半導体基板43を用意し、この半導体基板43の主面43a上に、p型コンタクト層20、p型クラッド層19、上部光閉じ込め層18、活性層17、下部光閉じ込め層16、及びn型クラッド層15をこの順でエピタキシャル成長させる。半導体基板43は、例えばInP基板である。次に、図10(b)に示されるように、n型クラッド層15と第1仮基板44とを、接着剤45を介して相互に接合する。第1仮基板44は、機械的強度を維持できる様々な材料から成ることができ、一実施例ではSi基板である。
【0064】
続いて、図11(a)に示されるように、p型コンタクト層20上の半導体基板43を除去する。この除去は、例えば半導体基板43をエッチングすることによって好適に行われる。そして、図11(b)に示されるように、側面32a及び32bを有するメサ構造32、並びに側面33a及び33bを有するメサ構造33を形成する。なお、メサ構造32及び33の形成方法は第1実施形態と同様である。
【0065】
続いて、図12(a)に示されるように、メサ構造33の側面33a,33bから上部光閉じ込め層18上を経てメサ構造32の側面32a,32bに至る絶縁膜23を形成する。そして、図12(b)に示されるように、n型クラッド層15上にカソード電極21を形成するとともに、メサ構造33上にアノード電極22を形成する。なお、絶縁膜23、カソード電極21およびアノード電極22の形成方法は、第1実施形態と同様である。
【0066】
続いて、図13(a)に示されるように、メサ構造32,33と第2仮基板47とが互いに対向するように、第1仮基板44と第2仮基板47とを接着剤46を介して相互に接合する。その後、図13(b)に示されるように、第1仮基板44をn型クラッド層15から剥離する。そして、図14に示されるように、n型クラッド層15上に回折格子層53を形成する。具体的には、n型クラッド層15における活性層17と対向する面とは反対側の面上にアモルファスシリコン膜を堆積させたのち、通常のフォトリソグラフィー技術を用いて、回折格子64に応じたパターンを有するマスクをアモルファスシリコン膜上に形成する。そして、このマスクを介してアモルファスシリコン膜をエッチングする。これにより、図14(b)に示されるように、光伝搬方向に沿って所定の周期で配置された凸部を有する回折格子層53が形成される。
【0067】
続いて、図15に示されるように、n型クラッド層15上に埋込層54を堆積させる。このとき、埋込層54の一部は回折格子層53の複数の凸部の隙間に入り込み、回折格子層53を埋め込む。その後、第2仮基板47を剥離し、劈開によって図9(b)に示された端面74a,74bを形成し、該端面74a,74b上に反射防止膜75a,75bを形成する。こうして、図9に示された半導体レーザ素子1Bが完成する。
【0068】
以上に説明した作製方法のように、本実施形態の半導体レーザ素子1Bを作製する際には、第1実施形態の半導体レーザ素子1Aと異なり、活性層を有する構造物と回折格子層を有する構造物とを相互に貼り合わせるといった工程を必要としない。したがって、接着層の厚さを制御する必要がなく、半導体レーザ素子を容易に作製することができる。
【0069】
(第3の実施の形態)
図16は、本発明の第3実施形態に係る半導体レーザ素子1Cの構造を示す断面図である。図16(a)は、半導体レーザ素子1Cの光伝搬方向に対して垂直な断面を示している。図16(b)は、図16(a)のVII−VII線に沿った断面(すなわち光伝搬方向に沿った断面)を示している。
【0070】
半導体レーザ素子1Aは、n型クラッド層85を備えている。n型クラッド層85は、本実施形態における第2導電型半導体層である。n型クラッド層85は、例えばn型InPといったIII−V族化合物半導体によって構成され、主面85a及び裏面85bを有する。n型クラッド層85の好適な厚さは、例えば100μmである。
【0071】
また、半導体レーザ素子1Cは、p型クラッド層89を更に備えている。p型クラッド層89は、本実施形態における第1導電型半導体層である。p型クラッド層89は、例えばp型InPといったIII−V族化合物半導体によって構成され、後述する上部光閉じ込め層88上にエピタキシャル成長されたものである。p型クラッド層89の好適な厚さは、例えば50nm以上500nm以下であり、一実施例では400nmである。
【0072】
また、半導体レーザ素子1Cは、下部光閉じ込め層86、活性層87、および上部光閉じ込め層88を更に備えている。下部光閉じ込め層86、活性層87、および上部光閉じ込め層88は、第1の光導波路を構成する。すなわち、下部光閉じ込め層86、活性層87、および上部光閉じ込め層88は、n型クラッド層85とp型クラッド層89との間に設けられた高屈折率領域であり、第1の光導波路のコア領域として機能する。
【0073】
下部光閉じ込め層86および上部光閉じ込め層88の屈折率は、n型クラッド層85およびp型クラッド層89の屈折率よりも大きい。下部光閉じ込め層86および上部光閉じ込め層88のバンドギャップエネルギーはn型クラッド層85のバンドギャップエネルギーより小さく、そのバンドギャップ波長は例えば1.2μmである。下部光閉じ込め層86および上部光閉じ込め層88は、例えばアンドープInAlGaAsといったIII−V族化合物半導体によって構成される。下部光閉じ込め層86及び上部光閉じ込め層88の好適な厚さは例えばそれぞれ100nmである。下部光閉じ込め層86は、n型クラッド層85上にエピタキシャル成長されて成る。上部光閉じ込め層88は、活性層87上にエピタキシャル成長されて成る。
【0074】
活性層87は、III−V族化合物半導体からなり、下部光閉じ込め層86と上部光閉じ込め層88との間に設けられている。なお、活性層87の内部構成は、前述した第1実施形態の活性層17と同様である。
【0075】
下部光閉じ込め層86、活性層87、および上部光閉じ込め層88は、n型クラッド層85上において光導波方向に延びる領域上に設けられており、メサ構造92を構成している。メサ構造92は、光導波方向に沿った側面92a及び92bを有する。また、p型クラッド層89は、上部光閉じ込め層88上において光導波方向に延びる領域上に設けられており、メサ構造93を構成している。メサ構造93は、光導波方向に沿った側面93a及び93bを有する。なお、側面93a及び93bの間隔は、側面92a及び92bの間隔よりも狭い。側面93a及び93bの間隔は例えば1.5μmであり、側面92a及び92bの間隔は例えば3.0μmである。そして、メサ構造92の側面92a及び92b上からn型クラッド層85上にわたって、半導体層を保護するための絶縁膜83が設けられている。絶縁膜83は、例えばSiOといった絶縁性のシリコン化合物から成る。
【0076】
また、半導体レーザ素子1Cは、アノード電極81およびカソード電極82を更に備えている。アノード電極81およびカソード電極82は、活性層87に電流を供給するための電極である。アノード電極81は本実施形態における第1電極であり、カソード電極82は本実施形態における第2電極である。アノード電極81は、メサ構造93の側面93a,93bに沿って上部光閉じ込め層88上に設けられており、p型クラッド層89の側面とオーミック接触を成している。アノード電極81は、例えばTi/Pt/AuやTi/Auによって構成される。カソード電極82は、n型クラッド層85の裏面85b上の全面に設けられており、n型クラッド層85とオーミック接触を成している。カソード電極82は、例えばTi/Pt/AuやTi/Auによって構成される。
【0077】
また、半導体レーザ素子1Cは、回折格子層113及び埋込層114を更に備えている。回折格子層113は、光伝搬方向に沿って所定の周期で配置された凸部を有しており、本実施形態では、回折格子層113は、当該周期でもって光伝搬方向に分割された複数の領域から成る。回折格子層113は、p型クラッド層89よりも屈折率が大きい材料から成り、例えば非晶質半導体であるアモルファスシリコンから成る。回折格子層113の好適な厚さは200nm以上であり、一実施例では300nmである。また、回折格子層113のバンドギャップ波長は例えば1.25μmであり、一般的なDFB型半導体レーザ素子の回折格子層のバンドギャップ波長(1.1μm)より長い。換言すれば、回折格子層113のバンドギャップエネルギーは、一般的なDFB型半導体レーザ素子の回折格子層のバンドギャップエネルギーより小さい。そして、回折格子層113のバンドギャップエネルギーは、その直下に位置するp型クラッド層89のバンドギャップエネルギーより小さい。
【0078】
埋込層114は、回折格子層113上に設けられて回折格子層113の凸部を埋め込む。埋込層114は、回折格子層113よりも屈折率が小さい誘電体からなることができる。回折格子層113を構成する誘電体としては、SiO、SiN、Al、及びTiOのうち少なくとも一つの材料が含まれる。埋込層114は、回折格子層113と共に回折格子124を構成する。上述したように埋込層114の屈折率は回折格子層113の屈折率よりも小さいので、回折格子124は、回折格子層113の凸部の周期でもって光導波方向に沿って屈折率が周期的に変化する構造を有する。本実施形態の回折格子124は、上記周期で分割された回折格子層113と、当該分割された回折格子層113の間、及び回折格子層113上に設けられた埋込層114によって構成されている。
【0079】
なお、回折格子124を構成する回折格子層113と埋込層114との屈折率差が大きくなるように、埋込層114の材料を選択することが望ましい。第1実施形態において述べたように、回折格子層113の屈折率n1と、埋込層114の屈折率n0との相対屈折率差(n1−n0)/n1は、0.15以上であることが好ましい。つまり、埋込層114の屈折率n0が、回折格子層113の屈折率n1の85%以下であることが好ましい。一実施例では、埋込層114は、誘電体としてのSiOから成る。この場合、埋込層114の屈折率は約1.5であり、回折格子層113の屈折率である3.2と比べて格段に小さな値を有する。この実施例における相対屈折率差(n1−n0)/n1は約0.46である。
【0080】
ここで、回折格子層113および埋込層114は、第2の光導波路を構成する。すなわち、p型クラッド層89及び埋込層114によって挟まれた高屈折率領域である回折格子層113は、第2の光導波路のコア領域として機能する。そして、下部光閉じ込め層86、活性層87および上部光閉じ込め層88によって構成される第1の光導波路と、回折格子層113および埋込層114によって構成される第2の光導波路とは、p型クラッド層89を介して光学的に結合される。
【0081】
図16(b)に示されるように、光伝搬方向における半導体レーザ素子1Cの両端面134a及び134bには、反射防止膜(AR膜)135a及び135bが設けられている。また、端面134aと端面134bとの間に設けられた、活性層87を含む第1の光導波路と回折格子層113を含む第2の光導波路とによって、レーザ共振器が構成される。端面134aと端面134bとの間隔(レーザ共振器長)は、例えば250μmである。
【0082】
以上の構成を備える半導体レーザ素子1Cでは、第1実施形態に係る半導体レーザ素子1Aと同様に、活性層87を中心とする導波モードである活性層モードと、回折格子層113を中心とする導波モードである回折格子層モードといった2つの導波モードが生じる。そして、半導体レーザ素子1Cの内部において、活性層モードと回折格子層モードとは互いに近接しながら平行に導波するので、これらのモードは互いにカップリングされることが可能である。換言すれば、半導体レーザ素子1Cの内部構造は、活性層モードと回折格子層モードとを結合する光結合器となることが可能である。
【0083】
図3に示されたように、活性層モードと回折格子層モードとが結合すれば、これらのモードの位相整合条件が一致する動作点で発振することとなる。そして、送信光がハイレベルであるときの発振周波数とローレベルであるときの発振周波数との差Δf2は、回折格子層モードの分散曲線の傾きが緩やかなほど小さくなる。さらに、図4に示されたように、回折格子を構成する2つの材料の屈折率差が大きくなるほど、周波数差Δf2が小さくなる。本実施形態において、回折格子を構成する回折格子層113はアモルファスシリコンといった半導体により構成され、埋込層114は、例えばSiOといった誘電体により構成される。埋込層114がSiOにより構成される場合、その屈折率は、1.5程度である。回折格子層113がアモルファスシリコンにより構成される場合、その屈折率は、3.5程度である。従って、周波数差Δf2が小さくなり、チャーピングを効果的に低減できる。
【0084】
また、本実施形態の半導体レーザ素子1Cを作製する際には、前述した第1実施形態や第2実施形態とは異なり、基板を貼り付ける工程を必要としない。したがって、誘電体から成る埋込層114を備える構造を比較的容易に作製することができる。
【0085】
本発明による半導体レーザ素子は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した実施形態では活性層等がIII−V族化合物半導体からなる半導体レーザ素子を例示したが、本発明は、他の種類の半導体からなる半導体レーザ素子にも適用可能である。
【0086】
以上、好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく詳細において変更され得ることは、当業者によって認識される。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
【符号の説明】
【0087】
1A〜1C…半導体レーザ素子、10…SOI基板、11…基板、12…クラッド層、13…回折格子層、14…接着層、15…n型クラッド層、16…下部光閉じ込め層、17…活性層、18…上部光閉じ込め層、19…p型クラッド層、20…p型コンタクト層、21…カソード電極、22…アノード電極、23…絶縁膜、24,64…回折格子、32,33…メサ構造、35a,35b,75a,75b…反射防止膜、40…第1基板生産物、43…半導体基板、44,47…仮基板、45,46…接着剤、50…第2基板生産物、53…回折格子層、54…埋込層。

【特許請求の範囲】
【請求項1】
所定方向に積層された第1導電型半導体層および第2導電型半導体層と、
前記所定方向において前記第1導電型半導体層と前記第2導電型半導体層との間に設けられた活性層と、
光伝搬方向に沿って所定の周期で配置された凸部を有する回折格子層、および前記回折格子層上に設けられて前記回折格子層の前記凸部を埋め込む埋込層から成り、前記活性層との間に前記第1導電型半導体層を挟む位置に設けられた回折格子と、
前記第1導電型半導体層に接触する第1電極と、
前記第2導電型半導体層に接触する第2電極と
を備え、
前記活性層が第1の光導波路を構成し、
前記回折格子層および前記埋込層が第2の光導波路を構成し、
前記第1の光導波路と前記第2の光導波路とが、前記第1導電型半導体層を介して光学的に結合し、レーザ共振器を構成することを特徴とする、半導体レーザ素子。
【請求項2】
前記回折格子層が半導体から成り、前記埋込層が誘電体から成ることを特徴とする、請求項1に記載の半導体レーザ素子。
【請求項3】
前記誘電体が、SiO、SiN、Al、およびTiOのうち少なくとも一つを含むことを特徴とする、請求項2に記載の半導体レーザ素子。
【請求項4】
前記回折格子層は、前記第1導電型半導体層における前記活性層と対向する面とは反対側の面上に堆積されたアモルファスシリコンをエッチングすることにより形成されており、
前記埋込層は、前記回折格子層を覆うように前記誘電体が堆積されて成ることを特徴とする、請求項2または3に記載の半導体レーザ素子。
【請求項5】
前記回折格子層が半導体から成り、前記埋込層がポリイミド樹脂またはBCB樹脂から成ることを特徴とする、請求項1に記載の半導体レーザ素子。
【請求項6】
前記回折格子層と前記第1導電型半導体層とが前記埋込層を介して接合されていることを特徴とする、請求項5に記載の半導体レーザ素子。
【請求項7】
前記回折格子層の屈折率n1と、前記埋込層の屈折率n0との相対屈折率差(n1−n0)/n1が0.15以上であることを特徴とする、請求項1〜6のいずれか一項に記載の半導体レーザ素子。
【請求項8】
前記回折格子層の厚さが200nm以上であることを特徴とする、請求項1〜7のいずれか一項に記載の半導体レーザ素子。
【請求項9】
前記第1導電型半導体層の厚さが50nm以上500nm以下であることを特徴とする、請求項1〜8のいずれか一項に記載の半導体レーザ素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2013−21023(P2013−21023A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−151071(P2011−151071)
【出願日】平成23年7月7日(2011.7.7)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】