説明

基板処理装置

【課題】ポッドの安全性を確保しつつ、生産性を向上させる。
【解決手段】正圧移載装置が処理済みウエハWをポッドPに回収する際に、最適化プログラムはパラメータ記憶部から初回搬出開始時点のウエハ温度T1を読み出し(S1)、ポッドPの耐熱保証温度T2を読み出し(S2)、単位時間当たりのウエハ低下温度T3を読み出し(S3)、次に、時刻記憶部から初回搬出開始時刻と現在時刻とを読み出す(S4)。経過時間演算部は初回搬出開始時刻と現在時刻との差を演算し、その値を搬出経過時間t2とする(S5)。冷却所要時間演算部は最適低下温度T4を、T4=(T1−T2)−(T3×t2)、で演算し(S6)、ポッド耐熱保証温度までの冷却所要時間t1を、t1=T4/T3、で演算する(S7)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板処理装置に関する。
例えば、半導体集積回路装置(以下、ICという。)の製造方法において、半導体素子を含む集積回路が作り込まれる半導体ウエハ(以下、ウエハという。)に金属膜や絶縁膜および半導体膜を形成する工程に利用して有効なものに関する。
【背景技術】
【0002】
ICの製造方法において、ウエハに金属膜や絶縁膜および半導体膜を形成する成膜工程には、マルチチャンバ型基板処理装置(以下、基板処理装置という。)が広く使用されている。
従来の基板処理装置として、ウエハに処理を施す少なくとも一つの処理室と、処理室へウエハを搬送する第一搬送装置を備え処理室と連接される第一搬送室と、大気圧状態でウエハを搬送する第二搬送装置を備えた第二搬送室と、第一搬送室と第二搬送室とを連結する雰囲気可変の予備室と、複数のウエハの収納容器を載置するステージと、収納容器と処理室との間のウエハの搬送を第一搬送装置および第二搬送装置により制御するコントローラと、を備えたものがある。
【0003】
複数枚のウエハを一括して搬送するために複数枚のウエハが収納される収納容器(キャリアと称されることもある。)としては、オープンカセット(単に、カセットと称されることもある。)と、FOUP(front opening unified pod 。以下、ポッドという。)と、がある。
オープンカセットおよびポッドは樹脂によって形成されるのが、通例である。
オープンカセットは一対の対向面が開口した略立方体の箱形状に形成されている。
ポッドは一つの面が開口した略立方体の箱形状に形成されており、その開口には蓋が着脱自在に嵌入されている。ポッドはウエハを収納した収納室の気密を蓋によって維持することができるので、ウエハの汚染等を防止することができる。したがって、最近の基板処理装置においては、ポッドが多く使用されている。
【発明の開示】
【発明が解決しようとする課題】
【0004】
一般に、オープンカセットおよびポッドは樹脂によって形成されるので、耐熱保証温度が設定されている。
そこで、前述した基板処理装置においては、処理済みのウエハを予備室から第二搬送室に第二搬送装置によって搬送し収納容器であるオープンカセットまたはポッドに戻す際に、コントローラは、搭載したソフトウエアが予め指定してあるパラメータ(通常、プロセスレシピに設定されている。)に従いウエハ冷却時間分の経過を待ってからポッドへの収納を始める。
このとき、指定パラメータが固定されていることにより、ウエハ冷却時間は搬送毎に同じ時間で、かつ、最長時間が予め設定されていることになるため、各ウエハ搬送毎に最長時間を待つことになる。なぜならば、予め設定される冷却待ち時間は、最初のウエハ搬送時の冷却時間が設定されることになるためである。実際には、処理済みウエハは大気に接し徐々に冷却され温度降下するので、毎回最大時間待つ必要はない。
このように従来の基板処理装置においては、処理済みウエハが第二搬送装置のアーム上にあるときに余分な待ち時間が発生するという問題点がある。
最大時間待つので、収納容器の安全は保証される。
しかし、基板処理装置としての生産性はその分低くなり、収納容器の交換が遅れるため、結果として、ICの製造方法の生産性までも影響を受ける可能性がある。
【0005】
本発明の目的は、収納容器の安全性を確保しつつ、生産性を向上させることができる基板処理装置を提供することにある。
【課題を解決するための手段】
【0006】
本願において開示される発明のうち代表的なものは、次の通りである。
基板に処理を施す少なくとも一つの処理室と、
前記処理室へ前記基板を搬送する第一搬送装置を備え、前記処理室と連接される第一搬送室と、
大気圧状態で前記基板を搬送する第二搬送装置を備えた第二搬送室と、
前記第一搬送室と前記第二搬送室とを連結する雰囲気可変の予備室と、
複数の前記基板の収納容器を載置するステージと、
前記収納容器と前記処理室との間の前記基板の搬送を前記第一搬送装置および前記第二搬送装置により制御するコントローラと、を備えた基板処理装置であって、
前記コントローラは、前記予備室から前記収納容器へ前記基板を回収する際の冷却時間を最適化することを特徴とする基板処理装置。
【発明の効果】
【0007】
前記した手段によれば、収納容器の安全性を確保しつつ、生産性を向上させることができる。
【発明を実施するための最良の形態】
【0008】
以下、本発明の一実施の形態を図面に即して説明する。
【0009】
本実施の形態において、本発明に係る基板処理装置は、図1および図2に示されているように、マルチチャンバ型基板処理装置(以下、連続処理装置という。)として構成されている。この連続処理装置はICの製造方法にあってウエハに所望の薄膜を堆積させる成膜工程に使用されるように構成されている。
なお、本実施の形態に係る連続処理装置においてはウエハ搬送用の収納容器としては、ポッドが使用されている。
以下の説明において、前後左右は図1を基準とする。すなわち、第二ウエハ移載室40側が前側、その反対側すなわち第一ウエハ移載室10側が後側、第一予備室20側が左側、第二予備室30側が右側とする。
【0010】
図1および図2に示されているように、連続処理装置は第一搬送室としての第一ウエハ移載室10を備えており、第一ウエハ移載室10は大気圧未満の圧力(負圧)に耐えるロードロックチャンバ構造に構成されている。第一ウエハ移載室(以下、負圧移載室という。)10の筐体(以下、負圧移載室筐体という。)11は、平面視が六角形で上下両端が閉塞した箱形状に形成されている。
負圧移載室10の中央部には、第一搬送装置としてのウエハ移載装置12が設置されている。ウエハ移載装置12は負圧下においてウエハWを移載するように構成されている。ウエハ移載装置(以下、負圧移載装置という。)12は、スカラ形ロボット(selective compliance assembly robot arm SCARA)によって構成されており、負圧移載室筐体11の底壁に設置されたエレベータ13によって気密シールを維持しつつ昇降するように構成されている。
負圧移載装置12はウエハWを保持する保持部としての一対のアーム14、15を備えている。上側に位置する第一アーム(以下、上側アームという。)14の先端部には、二股のフォーク形状に形成された上側エンドエフェクタ16が取り付けられており、下側に位置する第二アーム(以下、下側アームという。)15の先端部には、下側エンドエフェクタ17が取り付けられている。
【0011】
負圧移載室筐体11の6枚の側壁のうち正面側に位置する2枚の側壁には、負圧移載室10に対してウエハWを搬入搬出する予備室としての第一予備室20と第二予備室30とがそれぞれ隣接して連結されている。
第一予備室20の筐体(以下、第一予備室筐体という。)21および第二予備室30の筐体(以下、第二予備室筐体という。)31はいずれも、平面視が大略四角形で上下両端が閉塞した箱形状に形成されているとともに、負圧に耐え得るロードロックチャンバ構造に構成されている。
【0012】
互いに隣接した第一予備室筐体21の側壁および負圧移載室筐体11の側壁には搬入搬出口22、23がそれぞれ開設されており、負圧移載室10側の搬入搬出口23には搬入搬出口22、23を開閉するゲートバルブ24が設置されている。第一予備室20には第一予備室用仮置き台25が設置されている。
互いに隣接した第二予備室筐体31の側壁および負圧移載室筐体11の側壁には搬入搬出口32、33がそれぞれ開設されており、負圧移載室10側の搬入搬出口33には搬入搬出口32、33を開閉するゲートバルブ34が設置されている。第二予備室30には第二予備室用仮置き台35が設置されている。
【0013】
第一予備室20および第二予備室30の前側には、第二搬送室としての第二ウエハ移載室40が隣接して連結されている。第二ウエハ移載室(以下、正圧移載室という。)40は大気圧以上の圧力(正圧)を維持可能な構造に構成されている。正圧移載室40の筐体(以下、正圧移載室筐体という。)41は、平面視が横長の長方形で上下両端が閉塞した箱形状に形成されている。
正圧移載室40には第二搬送装置としての第二ウエハ移載装置42が設置されており、第二ウエハ移載装置(以下、正圧移載装置という。)42は正圧下でウエハWを移載する。正圧移載装置42はスカラ形ロボットによって2枚のウエハを同時に搬送し得るように構成されている。
正圧移載装置42は正圧移載室40に設置されたエレベータ43によって昇降されるように構成されているとともに、リニアアクチュエータ44によって左右方向に往復移動されるように構成されている。
【0014】
互いに隣接した第一予備室筐体21の側壁および正圧移載室筐体41の側壁には搬入搬出口26、27がそれぞれ開設されており、正圧移載室40側の搬入搬出口27には搬入搬出口26、27を開閉するゲートバルブ28が設置されている。
互いに隣接した第二予備室筐体31の側壁および正圧移載室筐体41の側壁には搬入搬出口36、37がそれぞれ開設されており、正圧移載室40側の搬入搬出口37には搬入搬出口36、37を開閉するゲートバルブ38が設置されている。
図1に示されているように、正圧移載室40の左側にはノッチ合わせ装置45が設置されている。
また、図2に示されているように、正圧移載室40の上部にはクリーンエアを供給するクリーンユニット46が設置されている。
【0015】
図1および図2に示されているように、正圧移載室筐体41の正面壁には三つのウエハ搬入搬出口47、48、49が左右方向に並べられて開設されており、これらのウエハ搬入搬出口47、48、49はウエハWを正圧移載室40に対して搬入搬出し得るように設定されている。これらのウエハ搬入搬出口47、48、49にはポッドオープナ50がそれぞれ設置されている。
【0016】
ポッドオープナ50はポッドPを載置する載置台51と、載置台51に載置されたポッドPのキャップ(蓋)を着脱するキャップ着脱機構52とを備えており、載置台51に載置されたポッドPのキャップをキャップ着脱機構52によって着脱することにより、ポッドPのウエハ出し入れ口を開閉するようになっている。
ポッドオープナ50の載置台51に対してはポッドPが、図示しない構内搬送装置(RGV)によって供給および排出されるようになっている。したがって、載置台51によって収納容器ステージとしてのポッドステージが構成されていることになる。
【0017】
図1に示されているように、負圧移載室筐体11の6枚の側壁のうち背面側に位置する2枚の側壁には、第一処理モジュールとしての第一CVDモジュール61と、第二処理モジュールとしての第二CVDモジュール62とがそれぞれ隣接して連結されている。第一CVDモジュール61および第二CVDモジュール62はいずれも、枚葉式CVD装置(枚葉式コールドウオール形CVD装置)によってそれぞれ構成されている。
なお、図1中、65、66はウエハ搬入搬出口である。
【0018】
連続処理装置は図3に示された制御システム70を備えている。
図3に示されているように、制御システム70はパーソナルコンピュータ等から構築されたメインコントローラ71を備えている。メインコントローラ71にはLANシステム72を介して、負圧移載装置12を制御するサブコントローラ73、正圧移載装置42を制御するサブコントローラ74、第一CVDモジュール(第一処理モジュール)61を制御するサブコントローラ75、第二CVDモジュール(第二処理モジュール)62を制御するサブコントローラ76、が接続されている。
メインコントローラ71には、キーボードやマウス等の入力手段によって構成された入力装置81、テレビモニタ等の表示部(操作画面)によって構成された表示装置82、プロセスレシピを含む各種レシピや制御パラメータを規定するパラメータファイルを記憶した記憶媒体駆動装置等によって構成された記憶装置83等が接続されている。
また、メインコントローラはホストコンピュータ84に接続することができるようになっている。
【0019】
メインコントローラ71はGUI(グラフィカル・ユーザ・インタフエース)85を備えている。GUI85は表示装置82に表示された操作画面上のアイコン(機能を表す図形記号)をマウスポインタで指示してクリックしたり、カーソルで指示して決定したりして選択することにより、画面を切り替えたり、処理や命令、判断およびデータ(情報)を入力することができるようにするソフトウエア、である。
【0020】
メインコントローラ71には冷却時間を最適化するプログラム(以下、最適化プログラムという。)90が組み込まれている。
図4に示されているように、最適化プログラム90は搬送制御部91、時計制御部92、時刻記憶部93、経過時間演算部94、パラメータ記憶部95および冷却所要時間演算部96、を備えている。後述するプロセスフローを実行するように構成されている。
なお、別にプロセスを実行するプログラムを構成してもよい。
【0021】
以下、前記構成に係る連続処理装置の運用方法を説明する。
まず、ICの製造方法における成膜工程(プロセス)を実施する場合に即して、ウエハのフローに伴う連続処理装置の作動を説明する。
これから成膜すべきウエハWは25枚がポッドPに収納された状態で、成膜工程を実施する連続処理装置へ工程内搬送装置によって搬送されて来る。
図1および図2に示されているように、搬送されて来たポッドPはポットステージにおけるポッドオープナ50の載置台51の上に構内搬送装置から受け渡されて載置される。ポッドPのキャップがキャップ着脱機構52によって取り外され、ポッドPのウエハ出し入れ口が開放される。
【0022】
ポッドPがポッドオープナ50によって開放されると、正圧移載室40に設置された正圧移載装置42はウエハ搬入搬出口47を通してポッドPからウエハWを1枚ずつピックアップし、第一予備室20に搬入搬出口26、27を通して搬入(ウエハローディング)し、ウエハWを第一予備室用仮置き台25に移載して行く。
この移載作業中には、負圧移載室10側の搬入搬出口22、23はゲートバルブ24によって閉じられており、負圧移載室10の負圧は維持されている。
【0023】
ポッドP内のウエハWの第一予備室用仮置き台25への移載が完了すると、正圧移載室40側の搬入搬出口26、27がゲートバルブ28によって閉じられ、第一予備室20が排気装置(図示せず)によって負圧に排気される。
第一予備室20が予め設定された圧力値に減圧されると、負圧移載室10側の搬入搬出口22、23がゲートバルブ24によって開かれる。
【0024】
次に、負圧移載室10の負圧移載装置12は搬入搬出口22、23を通して第一予備室用仮置き台25から処理前のウエハWを1枚ずつピックアップして負圧移載室10に搬入する。
例えば、負圧移載装置12は処理前のウエハWを第一CVDモジュール61のウエハ搬入搬出口65に搬送して、ウエハ搬入搬出口65から第一CVDモジュール61である枚葉式CVD装置の処理室へ搬入(ウエハローディング)する。
【0025】
第一CVDモジュール61において所定の成膜処理が終了すると、負圧移載装置12は成膜処理後(成膜済)のウエハWを第一CVDモジュール61からピックアップして、負圧に維持されている負圧移載室10に第一CVDモジュール61のウエハ搬入搬出口65から搬出(ウエハアンローディング)する。
続いて、負圧移載装置12は成膜処理後のウエハWを負圧移載室10の搬入搬出口23へ搬送し、第一予備室20へ搬入搬出口23を通して搬出し、第一予備室用仮置き台25に移載する。
【0026】
第一予備室20のロードロック解除後に、ポッドオープナ50は第一予備室20に対応したウエハ搬入搬出口47を開くとともに、載置台51に載置された空のポッドPのキャップを開く。
続いて、正圧移載室40の正圧移載装置42は第一予備室用仮置き台25からウエハWを搬入搬出口27を通してピックアップして正圧移載室40に搬出し、正圧移載室40のウエハ搬入搬出口47を通してポッドPに収納(チャージング)して行く。
【0027】
処理済の25枚のウエハWのポッドPへの収納が完了すると、ポッドオープナ50のキャップ着脱機構52はポッドPのキャップをウエハ出し入れ口に装着し、ポッドPを閉じる。
構内搬送装置は閉じられたポッドPを載置台51の上から次の工程へ搬送して行く。
以上の作動が繰り返されることにより、ウエハが1枚ずつ順次に処理されて行く。
【0028】
次に、最適化プログラム90による冷却時間最適化運用方法を図4および図5について説明する。
ここでは、便宜上、1台のポッドP内の25枚のウエハWに対して、第一CVDモジュール61が使用されることにより、25枚のウエハWに対して所望の処理がそれぞれ施される場合について説明する。
【0029】
前述した連続処理装置の作動において、正圧移載室40の正圧移載装置42が最初(1枚目)の処理済みウエハWをポッドPに回収する際に、最適化プログラム90は図5に示された最適冷却時間計算フローを開始する。
【0030】
第一ステップS1では、第一予備室20からポッドPへの初回搬出開始時点のウエハ温度T1を、パラメータ記憶部95から読み出す。
第二ステップS2では、ポッドPの耐熱保証温度T2を読み出す。
第三ステップS3では、単位時間当たりのウエハ低下温度T3をパラメータ記憶部95から読み出す。
これらT1、T2、T3は、例えば、実験による測定値をパラメータ記憶部95に事前に記憶させた温度、である。
このようにして、T1、T2、T3をパラメータ記憶部95から読み出すように構成することにより、連続処理装置(例えば、第二ウエハ移載装置42のアーム)にウエハWの温度を実測する温度計を設置せずに済むので、連続処理装置のイニシャルコストおよびランニングコストの増加を大幅に抑制することができる。換言すれば、冷却時間の最適化をソフトウエアの追加だけで実現することができる。
なお、パラメータ記憶部95は最適化プログラム90内に設けるに限らず、第一CVDモジュール61のサブコントローラ76以外のコントローラ(どれでも制御は可能)に設けることができる。
【0031】
第四ステップS4では、初回搬出開始時刻と現在時刻とを時刻記憶部93からそれぞれ読み出す。
第五ステップS5では、経過時間演算部94が初回搬出開始時刻と現在時刻との差を演算し、その値を搬出経過時間t2とする。
初回搬出開始時刻は、正圧移載装置42が最初の処理済みウエハWをポッドPに回収する時刻、すなわち、最適化プログラム90が最適冷却時間計算フローを開始する時刻であり、時刻記憶部93に自動的に記憶される。
現在時刻は、経過時間演算部94が演算を開始する時刻であり、時計制御部92からの時刻を利用することができる。
なお、時刻記憶部93は最適化プログラム90内に設けるに限らず、第一CVDモジュール61のサブコントローラ76以外のコントローラに設けることができる。
【0032】
冷却所要時間演算部96は、必要な低下温度T4を次式(1)によって演算し(第六ステップS6)、ポッド耐熱保証温度T2までの冷却所要時間t1を次式(2)によって演算する(第七ステップS7)。
T4=(T1−T2)−(T3×t2)・・・(1)
t1=T4/T3・・・(2)
前記式(1)(2)中、T1:予備室からポッドへの初回搬出開始時刻のウエハ温度、T2:ポッド耐熱保証温度、T3:単位時間当たり(/min)のウエハ低下温度、T4:必要な低下温度、t1:冷却所要時間、t2:搬出経過時間、である。
以上のようにして、冷却所要時間t1が求められる。
最適化プログラム90はメインコントローラ71に冷却待ち時間を送信する。
【0033】
メインコントローラ71はサブコントローラ74に冷却待ち指令を送信する。
サブコントローラ73は正圧移載装置42を制御することにより、ポッドPに戻すウエハWを正圧移載装置42のアーム上で待機させる。
冷却待ち時間経過後に、サブコントローラ73は正圧移載装置42を制御することにより、冷却待ちしたウエハWをポッドPに戻す。
【0034】
以上のシーケンスを繰り返すことにより、メインコントローラ71は25枚の処理済みウエハWをポッドPに回収して行く。
【0035】
図6は本実施形態の効果を示すグラフである。
図6において、横軸は搬送回数(N)を示し、左側縦軸は冷却時間(分)を示し、右側縦軸は冷却時間累計(分)を示している。
破線L1は従来例の冷却待ち時間を示し、実線L2は本実施形態の冷却待ち時間を示している。
また、白棒Aは従来例の冷却待ち時間累計を示し、斜線棒Bは本実施形態の冷却待ち時間累計を示している。
なお、このグラフを得た実験条件は、次の通りである。
予備室のスロット数:25、ポッドのウエハ収納枚数:25枚、正圧移載装置の1回のウエハ搬送枚数:5枚。予備室からポッドへの回収時に正圧移載装置は1回の搬送につき5枚を搬送し、1ポッドにつき5回搬送した。
予備室からポッドへの初回搬出開始時点のウエハ温度:300℃、ポッドPの耐熱保証温度:100℃、ウエハの単位時間当たり低下温度:10℃/min。
冷却時間パラメータが固定(破線L1参照)である従来例の場合には、搬送回数によらず毎回、初回搬送時の冷却時間Taの分だけ、冷却待ちとなる。したがって、N回搬送する時の冷却待ち時間累計は、Ta×N、となる(白棒A参照)。この初回搬送時の冷却時間Taは、ウエハが最も熱い状態に対する冷却時間であるから最も長い時間である。
これに対して、前述した式(1)(2)によって冷却待ち時間を算出する本実施形態の場合には、冷却待ち時間は実線L2に示されているように、搬送回数毎に低下して行くので、冷却待ち時間累計Tzは、斜線棒Bに示されているように、漸増する程度である。
つまり、本実施形態に係る冷却待ち時間累計Tzと、従来例の冷却待ち時間累計との関係は、Tz<(Ta×N)になり、本実施形態によれば、ウエハ搬出時間を短縮することができる。
【0036】
前記実施の形態によれば、次の効果が得られる。
【0037】
1) 処理済みウエハを予備室からポッドへ回収する際の冷却待ち時間を最適化することにより、ポッド単位のウエハ回収時間を短縮することができるので、正圧移載装置の予備室への搬入、その逆の搬出の回数を増加することができ、連続処理装置の生産性を向上させることができる。
【0038】
2) 冷却時間の最適化をソフトウエアの追加だけで実行することにより、連続処理装置にウエハの温度を実測する温度計等を設置せずに済むので、連続処理装置のイニシャルコストおよびランニングコストの増加を大幅に抑制することができる。
【0039】
なお、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であることはいうまでもない。
【0040】
例えば、ポッドへの初回搬出開始時点のウエハ温度T1、ポッドの耐熱保証温度T2、単位時間当たりのウエハ低下温度T3は、既に設置されている温度計によって実測するように構成してもよい。この場合には、最適化プログラムを簡単化することができる。
また、ウエハに対する制御温度をプロセスレシピから読み取り、ウエハ温度T1の基準
としてもよい。この場合、レシピ毎に処理温度が異なる運用にも適用することができる。
【0041】
収納容器はポッドを使用するに限らず、オープンカセットを使用してもよい。
【0042】
前記実施の形態ではマルチチャンバ型連続処理装置について説明したが、クラスタ型連続処理装置等の基板処理装置全般に適用することができる。
【0043】
また、露光装置、リソグラフィ装置、塗布装置、プラズマを利用したCVD装置のような他の基板処理装置にも適用することができる。
【0044】
成膜処理には、例えば、CVD、PVD、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理等を含む。
【0045】
また、ウエハを処理する場合について説明したが、液晶パネルや磁気ディスク、光ディスク等の基板全般について適用することができる。
【0046】
本発明の好ましい態様を付記する。
(1)基板に処理を施す少なくとも一つの処理室と、
前記処理室へ前記基板を搬送する第一搬送装置を備え、前記処理室と連接される第一搬送室と、
大気圧状態で前記基板を搬送する第二搬送装置を備えた第二搬送室と、
前記第一搬送室と前記第二搬送室とを連結する雰囲気可変の予備室と、
複数の前記基板の収納容器を載置するステージと、
前記収納容器と前記処理室との間の前記基板の搬送を前記第一搬送装置および前記第二搬送装置により制御するコントローラと、を備えた基板処理装置であって、
前記コントローラは、前記予備室から前記収納容器へ前記基板を回収する際の冷却時間を最適化することを特徴とする基板処理装置。
(2)前記(1)において、前記冷却時間は、前記第二搬送装置に前記基板を保持させる時間であることを特徴とする基板処理装置。
(3)前記(1)において、単位時間当たりの基板低下温度をT3、最適低下温度をT4とすると、前記冷却時間t1は、t1=T4/T3、で求められる基板処理装置。
(4)前記(1)において、前記コントローラは、前記予備室から前記収納容器へ前記基板を回収する際に、前記基板の低下温度を最適化することを特徴とする基板処理装着。
(5)前記(4)において、予備室からポッドへの初回搬出開始時点の基板温度をT1、ポッド耐熱温度をT2、単位時間当たりの基板低下温度をT3、搬出経過時間をt2とすると、最適低下温度T4は、T4=(T1−T2)−(T3×t2)、で求められる基板処理装置。
(6)処理後の基板を収納容器に回収する基板処理方法であって、
初回搬出開始時点の前記基板温度T1を読み出すステップと、
前記収納容器の耐熱温度T2を読み出すステップと、
単位時間当たりの基板低下温度T3を読み出すステップと、
初回搬出開始時刻と現在時刻とを読み出すステップと、
前記初回搬出開始時刻と前記現在時刻との差を搬出経過時間t2とするステップと、
最適低下温度T4をT4=(T1−T2)−(T3×t2)で演算するステップと、
前記耐熱保証温度T2までの冷却所要時間t1を、t1=T4/T3、で演算するステップと、
を備えた基板処理方法。
【図面の簡単な説明】
【0047】
【図1】本発明の一実施の形態であるマルチチャンバ型連続処理装置を示す平面断面図である。
【図2】その側面断面図である。
【図3】その制御システムを示すブロック図である。
【図4】最適化プログラムのフローチャートである。
【図5】冷却時間最適化運用を示すプロセスフローチャートである。
【図6】本実施形態の効果を示すグラフである。
【符号の説明】
【0048】
W…ウエハ(基板)、P…ポッド(基板キャリア)、
10…負圧移載室(搬送室)、11…負圧移載室筐体、12…負圧移載装置(搬送装置)、13…エレベータ、14…上側アーム(保持部)、15…下側アーム(保持部)、16、17…エンドエフェクタ、
20…第一予備室、21…第一予備室筐体、22、23…搬入搬出口、24…ゲートバルブ、25…第一予備室用仮置き台、26、27…搬入搬出口、28…ゲートバルブ、
30…第二予備室、31…第二予備室筐体、32、33…搬入搬出口、34…ゲートバルブ、35…第二予備室用仮置き台、36、37…搬入搬出口、38…ゲートバルブ、
40…正圧移載室(ウエハ移載室)、41…正圧移載室筐体、42…正圧移載装置(ウエハ移載装置)、43…エレベータ、44…リニアアクチュエータ、45…ノッチ合わせ装置、46…クリーンユニット、
47、48、49…ウエハ搬入搬出口、50…ポッドオープナ、51…載置台、52…キャップ着脱機構、
61…第一CVDモジュール(第一処理モジュール)、62…第二CVDモジュール(第二処理モジュール)、65、66…ウエハ搬入搬出口、
70…制御システム(制御装置)、71…メインコントローラ、72…LANシステム、73〜76…サブコントローラ、81…入力装置、82…表示装置、83…記憶装置、84…ホストコンピュータ、85…GUI、
90…最適化プログラム、91…搬送制御部、92…時計制御部、93…時刻記憶部、94…経過時間演算部、95…パラメータ記憶部、96…冷却所要時間演算部。

【特許請求の範囲】
【請求項1】
基板に処理を施す少なくとも一つの処理室と、
前記処理室へ前記基板を搬送する第一搬送装置を備え、前記処理室と連接される第一搬送室と、
大気圧状態で前記基板を搬送する第二搬送装置を備えた第二搬送室と、
前記第一搬送室と前記第二搬送室とを連結する雰囲気可変の予備室と、
複数の前記基板の収納容器を載置するステージと、
前記収納容器と前記処理室との間の前記基板の搬送を前記第一搬送装置および前記第二搬送装置により制御するコントローラと、を備えた基板処理装置であって、
前記コントローラは、前記予備室から前記収納容器へ前記基板を回収する際の冷却時間を最適化することを特徴とする基板処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−3920(P2010−3920A)
【公開日】平成22年1月7日(2010.1.7)
【国際特許分類】
【出願番号】特願2008−162063(P2008−162063)
【出願日】平成20年6月20日(2008.6.20)
【出願人】(000001122)株式会社日立国際電気 (5,007)
【Fターム(参考)】