説明

多化学物質の電気化学的処理システム

本発明の実施形態は、一般に、単一のメッキプロセスに対して複数の化学物質を与えるように構成された電気化学的処理システムを提供する。これらの複数の化学物質は、一般に、処理システムに位置決めされた個々のメッキセルへ配送される。個々の化学物質は、一般に、バリア層への直接的なメッキ、合金メッキ、薄いシード層へのメッキ、最適な特徴部充填及びバルク充填メッキ、最小限の欠陥を伴うメッキ、及び/又は複数の化学物質を使用して各化学物質の希望の特性の利点を取り入れられる他のメッキプロセス、を遂行するのに使用できる。

【発明の詳細な説明】
【発明の背景】
【0001】
【発明の分野】
【0002】
[0001]本発明の実施形態は、一般に、基板に導電性材料を電気化学的に堆積するための電気化学的処理システム及び方法に関する。
【関連技術の説明】
【0003】
[0002]サブクオーターミクロンサイズの特徴部を金属化することは、現在及び将来世代の集積回路製造プロセスのための基本的技術である。より詳細には、超大規模集積型デバイス、即ち百万を越える論理ゲートを伴う集積回路を有するデバイスのようなデバイスでは、これらデバイスの中心部に存在する多レベル相互接続部が、一般に、アスペクト比が高い即ち約4:1以上の相互接続特徴部に銅やアルミニウムのような導電性材料を充填することで形成される。従来、これらの相互接続特徴部を充填するために、化学気相堆積(CVD)及び物理気相堆積(PVD)のような堆積技術が使用されている。しかしながら、相互接続部のサイズが小さくなり且つアスペクト比が高くなるにつれて、従来の金属化技術によりボイドなしに相互接続特徴部を充填することが次第に困難になる。それ故、集積回路製造プロセスにおいてサブクオーターミクロンサイズの高アスペクト比の相互接続特徴部をボイドなしに充填するための有望なプロセスとして、メッキ技術、即ち電気化学メッキ(ECP)及び無電気メッキが出現した。
【0004】
[0003]例えば、ECPプロセスでは、基板(又はそこに堆積された層)の表面に形成されたサブクオーターミクロンサイズの高アスペクト比の特徴部に、銅のような導電性材料を効率的に充填することができる。ECPメッキプロセスは、一般に、2段階プロセスであり、即ち基板の表面特徴部の上にシード層を最初に形成し、次いで、基板の表面特徴部を電解溶液に露出しつつ、シード層と、電解溶液内に位置決めされた銅のアノードとの間に電気的バイアスを印加する。電解溶液は、一般に、基板の表面にメッキされるべきイオンを含み、それ故、電気的バイアスを印加すると、これらのイオンが電解溶液からそのバイアスされたシード層にメッキされるように押しやられ、従って、基板表面上にイオンの層を堆積して特徴部を充填することができる。
【0005】
[0004]ビアやトレンチのような表面特徴部は、半導体デバイス製造プロセスのスループットを促進するために、充填層に欠陥を生じることなく、できるだけ素早く充填することが望ましい。しかしながら、特徴部充填率を一般的に高めるメッキ化学物質は、平坦さが悪く且つ欠陥比の高い膜をしばしば形成する。例えば、至近間隔の特徴部の上に材料を迅速に堆積するように構成された化学物質は、一般に、特徴部の上角から厚みを積み上げて、最終的に、特徴部の頂部を横切って合流させ、周囲の膜に対して高いスポットを作り出す。更に、特徴部の上角からあまりに迅速に材料が積み上がる場合には、特徴部の開口が閉じて、ボイドが形成されることがある。逆に、平坦化及び実質的に欠陥のない膜を促進する化学物質は、一般に、メッキ速度が低速で、特徴部の上部を開いたままにするが、本来スループットが低速になる。それ故、従来の電気化学メッキの化学物質は、一般に、特徴部充填性能と、欠陥及び平坦化特性とをバランスさせ又は妥協させるように構成される。より詳細には、メッキセルにおける化学物質は、一般に、欠陥を最小限にしながら、スループットを容易に得るのに受け入れられる特徴部充填率を与えるよう構成される。しかしながら、化学物質は、異なる目標をもつ2つの別々のプロセスの必要性をバランスさせねばならないので、各々のプロセスにおけるある特性を本来犠牲にしなければならず、即ちスループットの上昇は、一般に、欠陥比を犠牲にして達せられる。
【0006】
[0005]しかしながら、複数の化学物質の効果的な特性を単一のメッキプロセスに合体できるように多化学物質能力を与えることのできるメッキシステムを提供することが要望される。特徴部充填及びバルク充填プロセスに適用するのに加えて、多化学物質能力を有するシステムは、単一化学物質メッキプロセスのメッキ特性をバランスさせることが従来必要とされる他の種々のメッキプロセスに対しても効果を発揮する。例えば、多化学物質メッキシステムは、第1メッキ化学物質を使用して、バリア層への付着を容易にすることができ(一般的な低速メッキプロセス)、次いで、第2化学物質を使用して、付着の難題を伴うことなくバリア層の頂部の層の上にメッキを行って特徴部を充填することができるので、バリア層上での直接的なメッキを容易にする。更に、多化学物質システムは、第1化学物質を使用して合金層をメッキすることができ、次いで、第2化学物質を使用して、既に堆積された層の上に異なる層又は別の合金層をメッキできるような合金メッキプロセスにも有益である。更に、多化学物質プロセスは、最小限の欠陥で第1層をメッキする(一般に低い速度で)ように構成された第1化学物質を使用し、次いで、スループットを最適化するように最小限の欠陥で第1層の上に第2層をメッキするように構成された第2化学物質を使用することにより、半導体基板メッキプロセスにおける欠陥比を実質的に改善するのに使用することができる。
【0007】
[0006]それ故、単一の電気化学的メッキプロセスに対して複数の化学物質を与えるように構成された改良された電気化学的メッキシステムが要望される。
【発明の概要】
【0008】
[0007]本発明の実施形態は、一般に、単一のメッキプロセスに対して複数の化学物質を与えるように構成された電気化学的処理システムを提供する。これら複数の化学物質は、バリア層への直接的なメッキ、合金メッキ、薄いシード層へのメッキ、最適な特徴部充填及びバルク充填メッキ、最小限の欠陥を伴うメッキ、及び/又は複数の化学物質を使用して各化学物質の特性の利点を取り入れることのできる他のメッキプロセス、を遂行するのに使用できる。複数の化学物質は、一般に、一体的な電気化学的メッキシステムに位置決めされた別々の電気化学的処理セルに与えられる。
【0009】
[0008]本発明の実施形態は、更に、複数の処理セルが位置決めされたシステムプラットホームと、これら複数の処理セル間で基板を移送するように位置決めされたロボットと、システムプラットホームと連通するように位置決めされたファクトリインターフェイスであって、基板を処理のためにシステムプラットホームに供給するように構成されたファクトリインターフェイスとを備えた電気化学的処理システムを提供する。このシステムは、更に、複数の処理セルの各々と流体連通する流体配送システムを備え、この流体配送システムは、複数の処理セルの各々に複数の化学物質を与えるように構成される。
【0010】
[0009]本発明の実施形態は、更に、電気化学的処理システムを提供することができる。この処理システムは、複数の処理セル位置を有する処理システムベースと、処理セル位置の2つに位置決めされた少なくとも2つの電気化学メッキセルと、処理セル位置の1つに位置決めされた少なくとも1つのスピンリンス乾燥セルと、処理セル位置の別の1つに位置決めされた少なくとも1つの基板ベベル清掃セルとを含むことができる。処理システムは、更に、少なくとも2つの電気化学的処理セルに流体連通した多化学物質メッキ溶液配送システムを含むことができる。この多化学物質メッキ溶液配送システムは、一般に、計測ポンプと、該計測ポンプと流体連通する複数のメッキ溶液添加容器と、計測ポンプと流体連通する少なくとも1つの第1のバージン電解溶液容器と、計測ポンプの出口と流体連通すると共に、少なくとも2つの電気化学的メッキセルの各々と選択的に個々に流体連通するメッキ溶液分配マニホールドとを備えている。
【0011】
[0010]本発明の実施形態は、更に、システムベースに位置決めされた複数の電気化学的処理セルと、これら複数の電気化学的処理セルの各々に複数の異なる電気化学的メッキ溶液を配送する手段とを有する電気化学的処理システムを提供することができる。
【0012】
[0011]本発明の実施形態は、更に、半導体基板上に少なくとも1つの層を電気化学的にメッキするための方法を提供することができる。この方法は、一般に、第1のメッキ操作のために一体的メッキシステムプラットホーム上の第1の電気化学的メッキセルに基板を位置決めするステップと、第2のメッキ操作のために一体的メッキシステムプラットホーム上の第2のメッキセルに基板を位置決めするステップと、多化学物質の流体配送システムで第1のメッキセルに第1の電気化学的メッキ化学物質を供給するステップと、多化学物質の流体配送システムで第2のメッキセルに第2の電気化学的メッキ化学物質を供給するステップであって、第1及び第2の化学物質が異なるものであるステップと、を備えている。
【0013】
[0012]本発明の上述した特徴を詳細に理解できるようにするため、前記で簡単に要約した本発明の更に特定の説明を、添付図面に示された実施形態を参照して行うことができる。しかしながら、添付図面は、本発明の典型的な実施形態を示すに過ぎず、従って、本発明の範囲を限定するものではなく、本発明は、等しく有効な他の実施形態も受け入れられることに注意されたい。
【好ましい実施形態の詳細な説明】
【0014】
[0019]本発明の実施形態は、一般に、複数の化学物質を使用して半導体基板上に金属のような導電性材料をメッキするように構成された電気化学的メッキシステムを提供する。単一のメッキプラットホーム上に複数の化学物質を実施することで、複数のプロセスステップの最適化を許容し、これは、膜のクオリティの向上及びシステムスループットの改善をもたらす。本発明の実施形態は、バリア層への直接的なメッキ、合金メッキ、従来の金属メッキと結合された合金メッキ、薄いシード層へのメッキ、最適な特徴部充填及びバルク充填メッキ、最小限の欠陥での複数層のメッキ、或いは2つ以上の化学物質がメッキプロセスに有益となり得るような他のメッキプロセスを含む(それらに限定されないが)種々のメッキプロセスに多化学物質システムを使用できることを意図している。
【0015】
[0020]図1は、本発明の電気化学的処理システム(ECP)100の一実施形態を示す上面図である。ECPシステム100は、一般に、ロボット120が中央に位置決めされた処理ベース113を備えている。ロボット120は、一般に、基板を支持するように構成された1つ以上のロボットアーム122、124を備えている。更に、ロボット120及びそれに付随するブレード122、124は、一般に、伸張し、回転し且つ垂直に移動するように構成されて、ロボット120が、ベース113に位置決めされた複数の処理位置102、104、106、108、110、112、114、116へ基板を挿入したり取り出したりできるようにする。
【0016】
[0021]ECPシステム100は、更に、ファクトリインターフェイス(FI)130を備えている。このFI130は、一般に、処理ベース113に隣接するFIの側の付近に位置決めされた少なくとも1つのFIロボット132を備えている。ロボット132のこの位置は、該ロボットが基板カセット134にアクセスして、そこから基板126を取り出し、次いで、その基板126を処理セル114、116の1つへ配送して、処理シーケンスを開始するのを許容する。同様に、ロボット132は、基板の処理シーケンスが完了した後に処理セル114、116の1つから基板を回収するのにも使用できる。この状態において、ロボット132は、基板126をカセット134の1つへ戻し、システム100から取り出せるようにする。更に、ロボット132は、FI130と連通するように位置決めされたアニールチャンバー135にもアクセスするように構成される。このアニールチャンバー135は、一般に、2位置アニールチャンバーを含み、ここでは、冷却プレート即ち位置136と、加熱プレート即ち位置137とが隣接位置決めされ、その付近、例えば、これら2つのステーション間に、基板移送ロボット140が位置決めされている。このロボット140は、一般に、加熱プレート137と冷却プレート136との間で基板を移動するように構成される。
【0017】
[0022]一般に、処理位置102、104、106、108、110、112、114、116は、電気化学的メッキプラットホームに使用される多数の処理セルでよい。より詳細には、これらの処理位置は、電気化学的メッキセル、リンスセル、ベベル清掃セル、スピンリンス乾燥セル、基板面清掃セル、無電気メッキセル、計測点検ステーション、及びメッキプラットホームに関連して有益に使用できる他のセル又はプロセスとして構成されてもよい。
【0018】
[0023]図2Aは、処理システム100の処理位置102、104、106、108、110、112、114、116のいずれか1つで実施することのできる処理セルの一実施形態を示す断面図である(図2Aは、電気化学的メッキセルの一例を示す)。しかしながら、一般に、ここに例示する処理システム100は、処理位置102、104、112及び110に4つの電気化学的メッキセルを含むように構成される。処理位置106及び108は、一般に、エッジビード除去又はベベル清掃チャンバーとして構成される。更に、処理位置114及び116は、一般に、基板面清掃チャンバー及びスピンリンス乾燥チャンバーとして構成され、これらは、積み重ね式に、即ち互いに上下に位置決めされてもよい。しかしながら、本発明は、本発明の範囲から逸脱せずに種々の組合せ及び配列が実施できるので、セルの特定の順序又は配列に限定されるものではない。
【0019】
[0024]図2Aに戻ると、電気化学的処理セル102は、一般に、ヘッドアッセンブリ220と、アノードアッセンブリ220と、内部深皿272と、外部深皿240とを備えている。外部深皿240は、ベース108に結合されると共に、内部深皿272を取り囲んでいる。内部及び外部深皿272、240は、通常、プロセス化学物質に適合する電気絶縁材料、例えば、セラミック、プラスチック、プレキシグラス(アクリル樹脂)、レキサン、PVC、CPVC又はPVDFから製造される。或いは又、内部及び外部深皿272、240は、ステンレススチール、ニッケル又はチタンのような金属から形成して、これに、テフロン(登録商標)、フルオロポリマー、PVDF、プラスチック、ゴム、及びメッキ流体に適合し得る材料の他の組合せのような絶縁層を被覆し、電極(即ち、電気メッキシステムのアノード及びカソード)から電気的に絶縁できるようにしてもよい。内部深皿272は、通常、基板のメッキ面に合致するように構成され、システムにより処理されている基板の形状は、一般に、円形又は長方形である。一実施形態では、内部深皿272は、円筒状のセラミック管で、その内径は、セル102でメッキされる基板の直径とほぼ同じ寸法又はそれより若干大きい。外部深皿272は、一般に、内部深皿272から流れ出るメッキ流体を捕獲するためのチャンネル248を含む。又、外部深皿272は、これを貫通して形成された排出口218も有し、これは、使用済みメッキ流体を処理、リサイクル及び/又は廃棄するための再生システムへチャンネル248を結合する。
【0020】
[0025]ヘッドアッセンブリ220は、ヘッドアッセンブリフレーム252に取り付けられる。このヘッドアッセンブリフレーム252は、取り付けポスト254及び片持梁アーム256を含む。取り付けポスト254は、処理システム100のベース108に結合され、又、片持梁アーム256は、取り付けポスト254の上部から横方向に延びて、取り付けポスト254の垂直軸の周りで回転するように一般的に適応され、深皿240、272の上への又はそれらを越えるヘッドアッセンブリ220の移動を許容する。ヘッドアッセンブリ220は、一般に、片持梁アーム256の遠方端に配置された取り付けプレート260に固定される。片持梁アーム256の下端は、取り付けポスト254に取り付けられた空気シリンダーのような片持梁アームアクチュエータ268に接続される。この片持梁アームアクチュエータ268は、片持梁アーム256と取り付けポスト254との間の接合部に対して片持梁アーム256を枢着運動させる。片持梁アームアクチュエータ268が引っ込められると、片持梁アーム256は、ヘッドアッセンブリ220を、内部深皿272に配置されたアノードアッセンブリ220から離れるように移動し、アノードアッセンブリ220を第1処理セル102から取り出し及び/又は交換するのに必要なスペースを与える。片持梁アームアクチュエータ268が伸ばされると、片持梁アーム256は、ヘッドアッセンブリ220をアノードアッセンブリ220に向けて軸方向に移動し、ヘッドアッセンブリ220の基板を処理位置に位置決めさせる。又、ヘッドアッセンブリ220は、そこに保持された基板を、水平からある角度に傾斜又は方向付けすることもできる。
【0021】
[0026]ヘッドアッセンブリ220は、一般に、基板ホルダアッセンブリ250及び基板アッセンブリアクチュエータ258を備えている。この基板アッセンブリアクチュエータ258は、取り付けプレート260に取り付けられると共に、この取り付けプレート260を貫通して下方に延びるヘッドアッセンブリシャフト262を備えている。このヘッドアッセンブリシャフト262の下端は、基板ホルダアッセンブリ250に接続されて、この基板ホルダアッセンブリ250を処理位置及び基板ロード位置に位置決めする。基板アッセンブリアクチュエータ258は、更に、ヘッドアッセンブリ220に回転運動も与えるように構成されてもよい。一実施形態では、ヘッドアッセンブリ220は、電気メッキプロセス中に約2rpmから約50rpmで回転されるが、約5から約20rpmで回転されてもよい。又、ヘッドアッセンブリ220は、基板を処理セル内のメッキ溶液に接触位置決めするためにこれを下げるとき、及び基板を処理セル内のメッキ溶液から取り出すためにこれを上げるときにも、回転することができる。ヘッドアッセンブリ220は、これを処理セルから持ち上げた後に、このヘッドアッセンブリ220及び基板からの残留メッキ溶液の除去を促進するために、高い速度(即ち>20rpm)で回転されてもよい。
【0022】
[0027]基板ホルダアッセンブリ250は、一般に、スラストプレート264及びカソード接触リング266を備えている。このカソード接触リング266は、メッキされるべき基板の表面に電気的に接触するように構成される。通常、基板は、銅のような金属のシード層が基板の特徴部側に堆積されている。カソード接触リング266とアノードアッセンブリ220との間に電源246が結合され、メッキプロセスを推進する電気的バイアスを与える。
【0023】
[0028]スラストプレート264及びカソード接触リング266は、ハンガープレート236から懸架される。ハンガープレート236は、ヘッドアッセンブリシャフト262に結合される。カソード接触リング266は、ハンガーピン238によりハンガープレート236に結合される。ハンガーピン238は、カソード接触リング266が、内部深皿272に嵌合されたときに、ハンガープレート236に接近するように移動するのを許容し、従って、スラストプレート264により保持された基板を、処理中に、ハンガープレート236とスラストプレート264との間にサンドイッチさせ、これにより、基板のシード層とカソード接触リング266との間に良好な電気的接触を確保することができる。
【0024】
[0029]アノードアッセンブリ220は、一般に、基板ホルダアッセンブリ250の下で、内部深皿272の下部内に位置決めされる。アノードアッセンブリ220は、一般に、1つ以上のアノード244及び拡散プレート222を含む。アノード244は、通常、内部深皿272の下端に配置され、又、拡散プレート222は、アノード244と、基板ホルダアッセンブリ250により内部深皿272の頂部に保持された基板との間に配置される。アノード244及び拡散プレート222は、一般に、絶縁スペーサ224により離間関係に維持される。拡散プレート222は、通常、内部深皿272の内部開口に実質的にまたがって固定される。拡散プレート222は、一般に、メッキ溶液を浸透でき、通常、プラスチック又はセラミック材料、例えば、スピン結合ポリエステル膜のようなオレフィンで製造される。又、拡散プレート222は、一般に、メッキされている基板112の表面にわたる流れの均一性を改善するための流体制流板として働く。又、拡散プレート222は、電気化学的セルの電気的変動を減衰し、即ち電束を制御するように働いて、メッキの均一性を改善する。或いは又、拡散プレート222は、親水性プラスチック、例えば、処理されたPE、PVDF、PP、或いは電気抵抗減衰特性を与える他の多孔性又は浸透性材料で作られてもよい。
【0025】
[0030]アノードアッセンブリ220は、メッキプロセスの金属ソースとして働く消耗性アノード244を含んでもよい。或いは又、アノード244は、非消耗性アノードでもよく、電気メッキされるべき金属は、メッキ溶液配送システム111からのメッキ溶液内で供給される。アノードアッセンブリ220は、銅のような電気メッキされるべき金属と同じ金属で好ましくは作られた多孔性包囲体を有する自己包囲型モジュールでよい。或いは又、この包囲体は、セラミック又はポリマー系メンブレーンのような多孔性材料で作られてもよい。消耗性及び非消耗性アノードは、例えば、銅/ドープされた銅及び白金を各々含む。アノード244は、通常、金属粒子、ワイヤ及び/又は孔付きシートであると共に、通常、基板上に堆積されるべき材料、例えば、銅、アルミニウム、金、銀、白金、タングステン、燐酸銅、貴金属、或いは基板上に電気化学的に堆積できる他の材料から製造される。アノード244は、多孔性、孔付き、浸透性、或いはその他、メッキ溶液の通過を許容するように構成されてもよい。或いは又、アノード244は、個体でもよい。非消耗性アノードに比して、消耗性(即ち可溶性)アノードは、ガス発生のないメッキ溶液を与えると共に、メッキ溶液に金属を常時補充する必要性を最小にする。図2Aに示す実施形態では、アノード244は、固体銅円板である。
【0026】
[0031]電解液入口216は、内部深皿272を貫通して形成され、メッキ溶液配送システム111に結合される。電解液入口216を経て内部深皿272に入るメッキ溶液は、アノードアッセンブリ220を通り又はその周囲を流れて、内部深皿272の上端に位置決めされた基板112の面に向って上昇する。メッキ溶液は、基板面を横切って流れ、次いで、カソード接触リング266のスロット(図示せず)を通り、外部深皿240に形成された流路へと流れる。電源246により基板(カソード接触リング266を経て)とアノード244との間に印加されたバイアスは、メッキ流体及び/又はアノードからの金属イオンを基板の面に堆積させる。本発明から利益を得るように適応できる処理セルは、例えば、2001年7月13日に出願された米国特許出願第09/905,513号、及び2002年1月30日に出願された米国特許出願第10/061,126号に説明されており、これら両特許出願は、参考としてその全体をここに援用する。
【0027】
[0032]図2Bは、処理セルの別の実施形態の部分断面図で、特に、電気化学的メッキセル200の一例を示す。この電気化学的メッキセル200は、一般に、外部深皿201と、その中に位置決めされた内部深皿202とを備えている。内部深皿202は、一般に、電気化学的メッキプロセス中に基板に例えば銅のような金属をメッキするのに使用されるメッキ溶液を収容するように構成される。メッキプロセス中に、メッキ溶液は、一般に、内部深皿202へ連続的に供給され(例えば、10リッターのメッキセルの場合に約1ガロン/分で)、それ故、メッキ溶液は、内部深皿202の最上点を常時オーバーフローして、外部深皿201へと流れ込む。オーバーフローしたメッキ溶液は、次いで、外部深皿201により収集され、そこから、内部深皿202へ再循環するように排出される。メッキセル200は、一般に、ある傾斜角度で位置決めされ、即ちメッキセル200のフレーム部分203は、メッキセル200の各要素が約3°から約30°傾斜されるように、片側が一般的に持ち上げられている。それ故、メッキ操作中に内部深皿202内に充分な深さのメッキ溶液を収容するために、深皿202の最上部をメッキセル200の片側において上方に延長して、内部深皿202の最上部が一般的に水平になるようにし、そこに供給されるメッキ溶液が深皿202の周囲を連続的にオーバーフローするのを許容する。
【0028】
[0033]メッキセル200のフレーム部材203は、一般に、このフレーム部材203に固定された環状ベース部材204を備えている。フレーム部材203は片側が持ち上げられているので、ベース部材204の上面は、水平位置に対するフレーム部材203の角度に対応する角度で、水平から一般的に傾斜される。ベース部材204には、環状又は円板状のくぼみが形成されており、環状のくぼみは、円板状のアノード部材205を受け入れるように構成される。ベース部材204は、更に、複数の流体入口/排出口209がその下面に位置決めされている。流体入口/排出口209の各々は、一般に、メッキセル200のアノード区画又はカソード区画へ流体を個々に供給し又はそこから流体を排出するように構成される。アノード部材205は、一般に、これを貫通して形成された複数のスロット207を含み、これらスロット207は、一般に、アノード205の表面にわたり互いに平行な向きに位置決めされる。この平行な向きは、アノード表面に発生される高濃度の流体がアノード表面を横切って下方に流れてスロット207の1つに流れ込むのを許容する。メッキセル200は、更に、メンブレーン支持アッセンブリ206も備えている。このメンブレーン支持アッセンブリ206は、一般に、その外周がベース部材204に固定され、且つその内部領域は、流体の通過を許容するように構成されている。メンブレーン208は、支持体206にわたって張られ、メッキセルのカソード液チャンバー及びアノード液チャンバー部分を流体分離するように働く。メンブレーン支持アッセンブリは、メンブレーンの周囲付近に位置決めされたOリング形式のシールを含んでもよく、このシールは、メンブレーン支持体206に固定されたメンブレーンの片側からメンブレーンの他側へ流体が流れるのを防止するように構成される。拡散プレート210がメンブレーン208の上に位置決めされ、これは、図2Aに示された拡散部材222と同様に構成される。
【0029】
[0034]操作中に、傾斜実施が使用されると仮定すれば、メッキセル200は、一般に、内部深皿202内に収容されたメッキ溶液に基板を浸漬する。硫酸銅、塩素、及びメッキパラメータを制御するように構成された複数の有機メッキ添加剤(ならし剤、抑制剤、加速剤、等)の1つ以上を一般に含むメッキ溶液に基板が浸漬されると、基板上のシード層と、メッキセルに位置決めされたアノード205との間に電気的バイアスが印加される。この電気的バイアスは、一般に、メッキ溶液を通して移動する金属イオンを、カソードである基板表面に堆積させるように構成される。メッキセル200のこの実施形態では、メンブレーン208より上の容積部と、メンブレーン208より下の容積部とに別々の流体溶液が供給される。一般に、メンブレーンより上の容積部は、カソード電極又はメッキ電極が位置決めされる領域であるので、カソード区画又は領域と指定される。同様に、メンブレーン208より下の容積部は、アノードが配置される領域であるので、アノード区画又は領域と一般に指定される。各アノード及びカソード領域は、一般に、メンブレーン208(これは、一般に、イオン性メンブレーンである)を介して互いに流体分離される。従って、カソード区画に供給される流体は、一般に、メッキ操作をサポートするに必要な全ての成分を含むメッキ溶液であり、一方、アノード区画に供給される流体は、一般に、例えば、硫酸銅溶液のような、カソードチャンバーに存在するメッキ溶液添加剤を含まない溶液である。図2Bに示す例示的メッキセルの構成及び操作に関する更なる詳細は、2002年10月9日に出願された「ELECTROCHEMICAL PROCESSING CELL」と題する共通に譲渡された米国特許出願第10/268,284号に見ることができる。
【0030】
[0035]図3は、メッキ溶液配送システム111の一実施形態を示す概略図である。このメッキ溶液配送システム111は、一般に、メッキ溶液を必要とするシステム100の各処理位置へメッキ溶液を供給するように構成される。より詳細には、このメッキ溶液配送システムは、更に、処理位置の各々に異なるメッキ溶液即ち化学物質を供給するように構成される。例えば、この配送システムは、処理位置110、112に第1メッキ溶液即ち化学物質を供給する一方、処理位置102、104には異なるメッキ溶液即ち化学物質を供給することができる。個々のメッキ溶液は、一般に、単一のメッキセルに使用するように分離され、それ故、異なる化学物質との交配汚染の問題は生じない。しかしながら、本発明の実施形態は、2つ以上のセルが、システムの別のメッキセルへ供給される別の化学物質とは異なる共通の化学物質を共有してもよいことも意図する。これらの特徴は、単一の処理プラットホームに複数の化学物質を供給できることにより単一のプラットホーム上で複数の化学物質メッキプロセスを許容するので、効果的である。
【0031】
[0036]本発明の別の実施形態では、第1のメッキ溶液と、それとは別個の異なる第2のメッキ溶液を、単一のメッキセルへ順次に供給することができる。通常、2つの別々の化学物質を単一のメッキセルに供給するには、各化学物質と化学物質との間にメッキセルを排出し及び/又はパージする必要があるが、第1メッキ溶液と第2メッキ溶液の混合比が約10%未満であれば、膜の特性に有害とはならない。
【0032】
[0037]より詳細には、メッキ溶液配送システム111は、通常、マニホールド332を経てシステム100の各処理セルに流体結合された複数の添加剤ソース302及び少なくとも1つの電解液ソース304を備えている。通常、添加剤ソース302は、加速剤ソース306と、ならし剤ソース308と、抑制剤ソース310とを含む。加速剤ソース306は、通常、基板の表面に吸収されて、その吸収された場所で所与の電圧における電流を局部的に加速する加速剤物質を供給するように適応される。加速剤は、例えば、硫化物系の分子を含む。ならし剤ソース308は、平坦なメッキを容易にするように働くならし剤物質を供給するように適応される。ならし剤は、例えば、窒素を含む長連鎖ポリマーである。抑制剤ソース310は、それらが吸収される場所(通常、アスペクト比の高い特徴部の上縁/角)において電流を減少する傾向のある抑制剤物質を供給するように適応される。それ故、抑制剤は、これらの位置においてメッキプロセスを低速化し、これにより、特徴部が完全に充填される前に特徴部が早目に閉じるのを減少すると共に、有害なボイドの形成を最小限にする。抑制剤は、例えば、ポリエチレングリコールのポリマー、エチレン酸化物及びプロピレン酸化物の混合物、又はエチレン酸化物及びプロピレン酸化物のコポリマーを含む。
【0033】
[0038]添加剤ソースを使い果たす状態を防止すると共に、バルク容器交換中の添加剤の浪費を最小限にするために、添加剤ソース302の各々は、一般に、小さな緩衝容器316に結合された大きな即ちバルク蓄積容器を備えている。緩衝容器316は、一般に、バルク蓄積容器314から充填され、それ故、バルク容器は、流体配送システムの操作に影響せずに交換のために取り外すことができる。というのは、バルク容器の交換中にそれに関連した緩衝容器がシステムへ特定の添加剤を供給できるからである。緩衝容器316の容積は、通常、バルク容器314の容積より著しく小さい。これは、10から12時間の非中断操作に充分な添加剤を収容するサイズとされる。これは、バルク容器が空になったときに操作者がバルク容器を交換するに充分な時間を与える。緩衝容器が存在せずに、非中断操作が要望される場合には、バルク容器を、それが空になる前に交換しなければならず、従って、添加剤の著しい浪費を招く。
【0034】
[0039]図3に示す実施形態では、複数の添加剤ソース302と複数の処理セルとの間に計量ポンプ312が結合される。この計量ポンプ312は、一般に、少なくとも第1から第4の入口ポート322、324、326、328を備えている。例えば、第1の入口ポート322は、一般に、加速剤ソース306に結合され、第2の入口ポート324は、一般に、ならし剤ソース308に結合され、第3の入口ポート326は、一般に、抑制剤ソース310に結合され、更に、第4の入口ポート328は、一般に、電解液ソース304に結合される。計量ポンプ312の出口330は、一般に、出口ライン340によりマニホールド332を経て処理セルに結合され、ここでは、順次に供給される添加剤の混合物(即ち、少なくとも1つ以上の加速剤、ならし剤、及び/又は抑制剤)が、電解液ソース304から第1配送ライン350を経てマニホールド332へ供給される電解液と合成されて、必要に応じて第1又は第2のメッキ溶液を形成することができる。計量ポンプ312は、測定された量の選択的添加剤を処理セル102、104へ供給するように適応されたいかなる計測装置(1つ又は複数)でもよい。計量ポンプ312は、ロータリー計測バルブ、ソレノイド計測ポンプ、ダイアフラムポンプ、注射器、蠕動ポンプ、或いは単独で又は流量センサに結合されて使用される他の正変位ポンプでよい。更に、添加剤は、加圧して流量センサに結合することもできるし、液体質量流量コントローラに結合することもできるし、或いは電気化学的メッキ溶液をメッキセルへ流すのに受け入れられる加圧分与容器又は他の流体計測装置の重量利用ロードセル測定により計測することもできる。一実施形態では、計量ポンプは、0.32ml/サイクルの所定添加剤を推進する回転及び往復運動セラミックピストンを備えている。
【0035】
[0040]本発明の別の実施形態では、流体配送システムは、第2の完全に異なるメッキ溶液及びそれに関連した添加剤を供給するように構成できる。例えば、この実施形態では、例えば2つの別々の製造者からのメッキ溶液を使用する能力を処理システム100に与えるように、異なる基本的電解溶液(容器304に収容された溶液と同様の)を実施することができる。更に、第2の基本的メッキ溶液に対応するように、添加剤容器の追加セットも実施することができる。それ故、本発明のこの実施形態は、第1の化学物質(第1の製造者により提供される化学物質)をシステム100の1つ以上のメッキセルへ供給するのを許容する一方、第2の化学物質(第2の製造者により提供される化学物質)をシステム100の1つ以上のメッキセルへ供給するのを許容する。各々の化学物質は、一般に、それら自身の関連添加剤を有するが、1つ又は複数の添加剤ソースからの化学物質の交配量が本発明の範囲を越えることはない。
【0036】
[0041]個別の基本的電解液から2つの個別の化学物質を供給できる流体配送システムを実施するために、図3に示す流体配送システムの複製が処理システムに接続される。より詳細には、図3に示す流体配送システムは、一般に、第2組の添加剤容器302と、第2のポンプアッセンブリ330と、第2のマニホールド332(共有マニホールドも可能である)とを含むように変更される。更に、バージン補給溶液/基本的電解液304の個別ソースも設けられる。図3に示すハードウェアと同じ構成で付加的なハードウェアが設定されるが、第2の流体配送システムは、一般に、図示された即ち第1の流体配送システムと並列である。従って、この構成が実施されると、使用可能な添加剤の組合せを伴う各基本的化学物質をシステム100の1つ以上の処理セルに供給することができる。
【0037】
[0042]マニホールド332は、通常、バルブのバンク334とインターフェイスするように構成される。バルブバンク334の各バルブは、マニホールド332からメッキシステム100の処理セルの1つへ流体を向けるように選択的に開閉することができる。マニホールド332及びバルブバンク334は、付加的な数の処理セルへの選択的な流体配送をサポートするように任意に構成することができる。図3に示す実施形態では、マニホールド332及びバルブバンク334は、システム100に使用される化学物質及びその成分を異なる組合せで、処理を中断せずに、サンプリングするのを許容するサンプルポート336を備えている。
【0038】
[0043]ある実施形態では、計量ポンプ312、出口ライン340及び/又はマニホールド332をパージすることが望ましい。このようなパージを容易にするために、メッキ溶液配送システム111は、製造及び/又はパージ流体の少なくとも一方を供給するように構成される。図3に示す実施形態では、メッキ溶液配送システム111は、第1配送ライン350に結合された脱イオン水ソース342及び非反応ガスソース344を備えている。非反応ガスソース344は、不活性ガス、空気又は窒素のような非反応ガスを、第1配送ライン350を経て供給し、マニホールド332からどっと流すことができる。脱イオン水は、非反応ガスに加えて又はそれに代わって、脱イオン水ソース342から供給して、マニホールド332からどっと流すことができる。又、電解液ソース304からの電解液をパージ媒体として使用してもよい。
【0039】
[0044]第1のガス配送ライン350と計量ポンプ312との間に第2の配送ライン352が設けられる。パージ流体は、各ソース304、342、344からの電解液、脱イオン水又は非反応ガスの少なくとも1つを含み、これは、第1の配送ライン350から第2のガス配送ライン352を経て計量ポンプ312へと転向することができる。このパージ流体は、計量ポンプ312を経て出口ライン340からマニホールド332へ推進される。バルブバンク334は、通常、パージ流体を排出ポート338から再生システム232へ向ける。簡単化のために、ここでは、種々の他のバルブ、レギュレータ及び他の流量制御装置は、説明及び/又は図示しない。
【0040】
[0045]本発明の一実施形態では、半導体基板上の特徴部に銅を充填するのを促進する第1化学物質をマニホールド332へ供給することができる。この第1化学物質は、約30から約65g/lの銅と、約55から約85ppmの塩素と、約20から約40g/lの酸と、約4から約7.5ml/Lの加速剤と、約1から5ml/Lの抑制剤とを含むことができ、ならし剤は含まない。この第1化学物質は、マニホールド332から第1メッキセル102へ配送されて、基板上に堆積された特徴部に実質的に金属を充填させることができる。第1化学物質は、一般に、特徴部を完全に充填せず、本来ゆっくりした堆積速度であるので、第1化学物質は、堆積層のギャップ充填性能及び欠陥比を向上するのに最適なものとすることができる。第1化学物質とは異なる化学物質を伴う第2化学物質補給物は、マニホールド332を経てシステム100の別のメッキセルへ供給することができ、ここで、第2化学物質は、基板上に銅を平坦にバルク堆積するのを促進するように構成される。この第2化学物質は、例えば、約35から約60g/lの銅と、約60から約80ppmの塩素と、約20から約40g/lの酸と、約4から約7.5ml/Lの加速剤と、約1から約4ml/Lの抑制剤と、約6から約10ml/Lのならし剤とを含むことができる。第2化学物質は、マニホールド332から第2の処理セルへ配送され、特徴部充填及び平坦化堆積ステップ中に堆積された金属の上に効率的なバルク金属堆積プロセスを実行して、特徴部の残り部分を充填することができる。第2の化学物質は、一般に、特徴部の上部を充填するので、第2の化学物質は、基板のスループットに実質的に影響せずに、堆積材料の平坦化を促進するのに最適なものとすることができる。従って、2ステップの、異なる化学材料での堆積プロセスは、迅速な堆積と、堆積膜の良好な平坦化との両方を実現することができる。
【0041】
[0046]図2Bの処理セル200のようにアノード溶液を必要とする処理セルに使用するときには、メッキ溶液配送システム111は、一般に、メッキセル200の入口209に結合されたアノード液流路380を含む。このアノード液流路380は、複数の添加剤ソース382を備え、これは、計量ポンプ384によりマニホールド386に結合され、このマニホールド386は、ソース382の1つ以上から選択的に計量されてマニホールド386においてアノード液と合成される添加剤(通常使用されない)を、メッキプロセス中にアノード溶液を必要とする処理セル(セル200のような)へ向ける。アノード液は、アノード液ソース388により供給されてもよい。
【0042】
[0047]図4は、基板402のエッジから堆積材料を除去するように構成された処理セル400の一実施形態を示す。この処理セル400は、基板チャック406が配置されたハウジング404を備えている。基板チャック406は、中央ハブ410から延びる複数のアーム(408A−Cで示す)を備えている。各アーム408A−Cは、アームの遠方端に配置された基板クランプ412を備えている。ハブ410は、シャフト414により、ハウジング404の外部に配置されたモーター416に結合される。モーター416は、チャック406及びそこに配置された基板402を処理中に回転するように適応される。処理中に、基板402が回転され、その間に、エッチング剤がエッチング剤ソース418から基板のエッジに配送される。エッチング剤は、通常、ハウジング404内に位置決めされた複数の上部ノズル420を経て、そこから流れるエッチング剤を基板の表面に対して半径方向外方に向ける方向で、基板のエッジへ配送される。又、処理セル400は、エッチング剤ソース418に結合された複数の下部ノズル422を含むこともでき、これは、上部ノズル420とは反対の基板の側で基板のエッジにエッチング剤を向けるように適応される。エッチング剤は、通常、基板が約100から約1000rpmで回転する間に基板402に配送される。ノズル420、422は、通常、エッチング剤を基板において実質的に接線方向に、通常、約10から約70°の角度で、或いは約10から約30°の角度で向けるように構成され、ここで、角度は、基板面と、流体の流れ方向即ち分配ノズルの長手軸との間の角度として定義される。一実施形態において、エッチング剤は、酸と、酸化剤、例えば、硫酸、硝酸、クエン酸、或いは過酸化水素と結合された燐酸との組合せであり、これは、基板の除外ゾーン(一般に、基板面の外環で、巾が一般に約2mm又は3mm)から堆積銅を除去する。
【0043】
[0048]堆積材料が基板のエッジから除去された後に、脱イオン水又は他の清掃剤がノズル420、422を経て供給されて、基板面を清掃する。基板402は、通常、約200rpmで回転され、エッチング剤、脱イオン水及び他の不純物を基板402の上面及び下面の各々から除去する。処理中に分与される種々の流体は、ハウジング404から、ハウジング404の底に形成されたポート424を経て排出される。本発明から利益を得るように適応できる、基板のエッジから堆積材料を除去するように構成された2つの処理セルは、1999年7月9日に出願された米国特許出願第09/350,212号、及び2000年7月12日に出願された米国特許出願第09/614,406号に説明されており、これら両方は、参考としてその全体をここに援用する。
【0044】
[0049]図5は、処理後に基板502をスピンし、リンスし、乾燥するように構成された処理セル500の部分断面図である。この処理セル500は、基板チャック506が配置されたハウジング504を備えている。基板チャック506は、中央ハブ510から延びる複数のアーム(508A−Cで示す)を備えている。各アーム508A−Cは、アームの遠方端に配置された基板クランプ512を備えている。ハブ512は、シャフト514により、ハウジング504の外部に配置されたモーター516に結合される。モーター516は、チャック506及びそこに配置された基板502を処理中に回転するように適応される。処理中に、基板が回転され、その間に、脱イオン水又はアルコールのような清掃剤が流体ソース518から基板502の上面へ配送されるが、これは、ハウジング504内でチャック506の上に位置決めされた複数の上部ノズル520から行なわれる。基板502の背面は、チャック506の下に配置されて流体ソース518に結合された複数の下部ノズル522から分与される清掃剤又は溶解剤の少なくとも1つで処理される。溶解剤は、とりわけ、例えば、塩酸、硫酸、燐酸、フッ化水素酸を含む。流体は、通常、基板が約4から4000rpmで回転する間に基板へ配送される。堆積材料が基板のエッジから除去された後に、脱イオン水又は他の清掃剤がノズル520、522を経て供給されて、基板面を清掃する。基板502は、通常、約100から約5000rpmで回転され、基板502の上面及び下面の各々から液体及び他の不純物を除去しながら基板を乾燥させる。処理中に分与された種々の流体は、ハウジング504から、ハウジング504の底に形成されたポート524を経て排出される。本発明から利益を得るように適応できる、基板を清掃及び乾燥するように構成された1つの処理セルが、参考としてその全体をここに援用する2001年9月18日付の米国特許第6,290,865号に説明されている。
【0045】
[0050]操作に際し、本発明の実施形態は、一般に、単一の一体的プラットホームに複数のメッキセルを有するメッキシステムであって、該メッキシステムのための流体配送システムが複数の化学物質をメッキセルに供給できるようなメッキシステムを提供する。より詳細には、例えば、共通のシステムプラットホームに4つの個々のメッキセルが位置決めされると仮定すれば、本発明の流体配送システムは、4つのメッキセルの各々に異なる化学物質を供給することができる。異なる化学物質は、異なる基本的溶液又はバージン補給溶液を含んでもよく、更に、種々の添加剤を、選択された添加剤の不存在を含む種々の濃度で含んでもよい。
【0046】
[0051]単一プラットホームのための多化学物質能力は、半導体処理の多数の分野で効果を有する。例えば、一体的プラットホーム上の複数のメッキセルへ複数の化学物質を供給する能力は、単一のメッキシステムで、単一基板に対して単一プラットホームにおける複数の化学物質の確実な特性の効果を得られるようにする。多化学物質能力は、例えば、第1のメッキ溶液即ち化学物質を特徴部充填プロセス(低欠陥であるが、堆積速度の遅いプロセス)に対して調整できる一方、第2の溶液を特徴部バルク充填プロセス(第1のプロセスにより特徴部が主として充填されたときに実施できるより迅速な堆積プロセス)に対して調整できるので、特徴部充填及びバルク充填プロセスに適用することができる。更に、多化学物質メッキシステムは、第1メッキ化学物質を使用して、バリア層への第1材料の付着を容易にすることができ、次いで、第2化学物質を使用して、バリア層メッキ付着の難題に遭遇することなくバリア層の頂部の第1材料層の上に第2材料をメッキして特徴部を充填することができるので、バリア層上での直接的なメッキを容易にする。更に、多化学物質システムは、第1化学物質を使用して合金層をメッキすることができ、次いで、第2化学物質を使用して、既に堆積された層の上に異なる層又は別の合金層をメッキできるような合金メッキプロセスにも有益である。更に、多化学物質プロセスは、最小限の欠陥で第1層をメッキするように構成された第1化学物質を使用し、次いで、スループットを最適化するように最小限の欠陥で第1層の上に第2層をメッキするように構成された第2化学物質を使用することにより、半導体基板メッキプロセスにおける欠陥比を実質的に改善するのに使用することができる。
【0047】
[0052]以上、本発明の実施形態を説明したが、本発明の基本的な範囲及び特許請求の範囲に規定された本発明の範囲から逸脱せずに他の、更に別の実施形態を案出することもできる。
【図面の簡単な説明】
【0048】
【図1】本発明の電気化学的メッキシステムの一実施形態を示す上面図である。
【図2A】電気化学的処理セルの一実施形態の部分断面図である。
【図2B】電気化学的処理セルの別の実施形態の部分断面図である。
【図3】メッキ溶液配送システムの一実施形態の概略図である。
【図4】基板のエッジから堆積された材料を除去するように構成された処理セルの一実施形態を示す部分断面図である。
【図5】基板をスピンし、リンスし、乾燥するように構成された処理セルの一実施形態を示す部分断面図である。
【符号の説明】
【0049】
100…電気化学的処理システム、102、104、106、108、110、112、114、116…処理位置、108…ベース、113…処理ベース、120…ロボット、122、124…ロボットアーム、126…基板、130…ファクトリインターフェイス、132…FIロボット、134…基板カセット、135…アニールチャンバー、136…冷却プレート、137…加熱プレート、140…基板移送ロボット、200…電気化学的メッキセル、201…外部深皿、202…内部深皿、203…フレーム部分、204…環状ベース部材、205…アノード部材、207…スロット、208…メンブレーン、210…拡散プレート、216…電解液入口、218…排出口、220…アノードアッセンブリ、222…拡散プレート、224…スペーサ、236…ハンガープレート、238…ハンガーピン、240…外部深皿、244…アノード、248…チャンネル、250…基板ホルダアッセンブリ、252…ヘッドアッセンブリフレーム、254…取り付けポスト、256…片持梁アーム、258…基板アッセンブリアクチュエータ、260…取り付けプレート、262…シャフト、264…スライスプレート、266…カソード接触リング、268…アクチュエータ、272…内部深皿、302…添加剤ソース、304…電解液ソース、312…計量ポンプ、332…マニホールド

【特許請求の範囲】
【請求項1】
複数の電気化学的メッキセルが位置決めされたシステムプラットホームと、
上記複数のメッキセル間で基板を移送するように位置決めされた少なくとも1つのロボットと、
上記複数のメッキセルの各々に流体連通する流体配送システムであって、上記複数の処理セルの各々に複数のメッキ化学物質を与えるように構成された流体配送システムと、
を備えた電気化学的処理システム。
【請求項2】
上記流体配送システムは、
第1の複数の添加剤ソースと、
上記添加剤ソースの各々に流体連通する計測ポンプと、
上記計測ポンプに流体連通する第1のバージン電解液ソースと、
入口では上記計測ポンプに、出口では上記複数のメッキセルに流体連通するマニホールドであって、上記複数のメッキセルの選択された1つに特定の化学物質を向けるように構成されたマニホールドと、
を備えた、請求項1に記載の電気化学的処理セル。
【請求項3】
第2の複数の添加剤ソース及び第2のバージン電解液ソースを更に備え、該第2の複数の添加剤ソース及び第2のバージン電解液ソースは、上記複数のメッキセルに選択的に流体連通する第2のマニホールドと流体連通する、請求項1に記載の電気化学的処理セル。
【請求項4】
上記第1の複数の添加剤ソースは、
電気化学的メッキ加速剤を与える第1ソースと、
電気化学的メッキならし剤を与える第2ソースと、
電気化学的メッキ抑制剤を与える第3ソースと、
を備えた、請求項2に記載の装置。
【請求項5】
上記第1の複数の添加剤ソースの各々は、
少なくとも1つのバルク添加剤容器と、
容積が上記バルク添加剤容器より小さく、且つ関連バルク添加剤容器及び上記計測ポンプに流体連通する少なくとも1つの緩衝容器と、
を更に備えた、請求項2に記載の装置。
【請求項6】
上記システムプラットホームに連通する少なくとも1つのアニールチャンバーを更に備えた、請求項1に記載の電気化学的処理セル。
【請求項7】
上記流体配送システムは、更に、上記メッキセルのアノードチャンバーにアノード溶液を、上記メッキセルのカソードチャンバーにカソード溶液を供給するように構成された、請求項1に記載の電気化学的処理システム。
【請求項8】
複数の処理セル位置を有する処理システムベースと、
2つの上記処理セル位置に位置決めされた少なくとも2つの電気化学的メッキセルと、
1つの上記処理セル位置に位置決めされた少なくとも1つのスピンリンス乾燥セルと、
1つの上記処理セル位置に位置決めされた少なくとも1つの基板ベベル清掃セルと、
上記少なくとも2つの電気化学的処理セルに流体連通する多化学物質メッキ溶液配送システムであって、計測ポンプ、該計測ポンプに流体連通する複数のメッキ溶液添加剤容器、上記計測ポンプに流体連通する少なくとも1つの第1バージン電解溶液容器、及び上記計測ポンプの出口に流体連通すると共に、前記少なくとも2つの電気化学的メッキセルの各々に選択的に個々に流体連通するメッキ溶液分配マニホールド、を含む、多化学物質メッキ溶液配送システムと、
を備えた電気化学的処理システム。
【請求項9】
上記複数のメッキ溶液添加物容器は、緩衝容器に流体連通するバルク容器を備え、上記緩衝容器は上記計測ポンプに流体連通する、請求項8に記載の電気化学的処理システム。
【請求項10】
上記計測ポンプは、複数の流体入口及び少なくとも1つの流体出口を有する高精度流体配送ポンプで構成され、更に、上記計測ポンプは、上記複数の流体入口で受け取られた流体成分を所定の比で混合して、上記流体成分の所定の比の混合物を上記少なくとも1つの流体出口から送出するように構成された、請求項8に記載の電気化学的処理システム。
【請求項11】
上記多化学物質メッキ溶液配送システムは、更に、上記計測ポンプと流体連通する第2のバージン電解溶液容器を備え、該第2のバージン電解溶液容器は、上記少なくとも1つの第1バージン電解液容器に収容された第1バージン電解液とは異なる第2バージン電解液を与えるように構成された、請求項8に記載の電気化学的処理システム。
【請求項12】
上記多化学物質メッキ溶液配送システムは、上記少なくとも2つの電気化学的メッキセルへ少なくとも2つの異なるメッキ化学物質を与えるように構成された、請求項8に記載の電気化学的処理システム。
【請求項13】
上記多化学物質メッキ溶液配送システムは、上記電気化学的メッキセルのカソード液領域にカソード液メッキ溶液を且つ上記電気化学的メッキセルのアノード液領域にアノード溶液を供給するように構成された、請求項8に記載の電気化学的処理システム。
【請求項14】
半導体基板上に少なくとも1つの層を電気化学的にメッキする方法において、
第1のメッキ操作に対して一体的メッキシステムプラットホーム上の第1電気化学的メッキセルに上記基板を位置決めするステップと、
第2のメッキ操作に対して上記一体的メッキシステムプラットホーム上の第2メッキセルに上記基板を位置決めするステップと、
上記システムプラットホームに連通して位置決めされた多化学物質の流体配送システムで上記第1メッキセルに第1の電気化学的メッキ化学物質を供給するステップと、
上記多化学物質の流体配送システムで上記第2メッキセルに第2の電気化学的メッキ化学物質を供給するステップであって、上記第1及び第2のメッキ化学物質が異なるものである、ステップと、
を備えた方法。
【請求項15】
上記第1及び第2の電気化学的メッキ化学物質は異なるメッキ溶液ベースを含む、請求項14に記載の方法。
【請求項16】
上記第1及び第2の電気化学的メッキ化学物質は異なる添加剤濃度を有する、請求項14に記載の方法。
【請求項17】
上記第1の電気化学的メッキ化学物質は、最適化されたギャップ充填化学物質であり、上記第2の電気化学的メッキ化学物質は、最適化されたバルク充填化学物質である、請求項14に記載の方法。
【請求項18】
上記第1の電気化学的メッキ化学物質は、最適化されたバリア上メッキ化学物質であり、上記第2の電気化学的メッキ化学物質は、最適化された特徴部充填平坦化化学物質である、請求項14に記載の方法。
【請求項19】
上記第1の電気化学的メッキ化学物質は、最適化され合金メッキ化学物質であり、上記第2の電気化学的メッキ化学物質は、最適化された銅メッキ化学物質である、請求項14に記載の方法。
【請求項20】
上記第1メッキ操作と第2メッキ操作との間に上記半導体基板をリンスするステップを更に備えた、請求項14に記載の方法。
【請求項21】
上記第1メッキ操作と第2メッキ操作との間に上記半導体基板をスピン乾燥するステップを更に備えた、請求項14に記載の方法。
【請求項22】
上記第1メッキ操作は銅メッキプロセスであり、上記第2メッキ操作は合金メッキプロセスである、請求項14に記載の方法。
【請求項23】
上記第1メッキ操作は欠陥減少メッキプロセスである、請求項14に記載の方法。

【図1】
image rotate

image rotate

image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2006−511717(P2006−511717A)
【公表日】平成18年4月6日(2006.4.6)
【国際特許分類】
【出願番号】特願2005−502657(P2005−502657)
【出願日】平成15年12月18日(2003.12.18)
【国際出願番号】PCT/US2003/040719
【国際公開番号】WO2004/057060
【国際公開日】平成16年7月8日(2004.7.8)
【出願人】(390040660)アプライド マテリアルズ インコーポレイテッド (1,346)
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【Fターム(参考)】