説明

対象物を位置特定するための方法およびシステム

本文書は対象物の位置特定のための方法およびシステムを説明する。対象物(1)は少なくとも一つの第1のタイプの信号を照射され、前記信号の反応を探知する方法を踏まえ。本発明によれば、前記対象物(1)は前記第1のタイプの信号を後方散乱するトランスポンダ(2,3)を取り付けられ、前記トランスポンダ(2,3)は、前記トランスポンダ(2,3)の後方散乱周波数に影響を与える第2のタイプの信号でも照射され、前記トランスポンダ(2,3)からの後方散乱信号は対象物を位置特定するために探知される

【発明の詳細な説明】
【技術分野】
【0001】
本発明は概ね対象物の位置特定および追尾に関する。
【0002】
本発明は特に、昆虫のような小さな対象物の位置特定および追尾に関する。
【背景技術】
【0003】
昆虫の位置特定および追尾には高調波レーダが用いられる。
【0004】
要求される高い送信電力と、機械的走査と、精度が制限を受けることと、が原因で、従来の高調波レーダには、屋内での昆虫追尾への適性を見いだせない。
【0005】
RFID技術もまた、昆虫の位置特定および追尾に用いられる。当該技術は能動型のタグを必要とし、それらのタグは重く、そしてそれゆえに、小さな昆虫には適していない。
【0006】
受動型RFIDタグの場合は、問題になるのは読取範囲の狭さである。
【0007】
リアルタイムでの昆虫の移動の精密な追尾は、異なる種毎の習性を研究する科学者にとって重要な手段である。極超短波RFID技術に基く追尾システムはすでに開発されている。
【0008】
リモートセンシングおよび遠隔測定のそれぞれの昆虫追尾技術は、生物学的および農学的研究の要望に対して開発されている。遠隔測定技術では昆虫にはトランスポンダが着けられるのに対して、リモートセンシング技術は、対象との物理的相互作用を全く必要としない。当該技術の説明は、非特許文献1に記載されている。
【先行技術文献】
【特許文献】
【0009】

【特許文献1】米国特許第3781879号
【特許文献2】米国特許第5180969号
【非特許文献】
【0010】

【非特許文献1】D.R.レイノルズ、J.R.ライリ共著、「昆虫の移動の調査のためのリモートセンシング、遠隔測定、およびコンピュータを使用する技術 既存および潜在的技術の概説」、コンピュータズ アンド エレクトロニクス イン アグリカルチャー誌、2002年発行、第35巻 第207頁〜第307頁
【非特許文献2】E.A.キャパルディ、A.D.スミス、J.L.オズボーン、S.E.ファールバッハ、S.M.ファリス、D.R.レイノルズ、A.S.エドワーズ、A.マーチン、G.E.ロビンソン、G.M.ポピー、J.R.ライリ共著、「高調波レーダによって露呈したミツバチの定位飛行の個体発生論」、ネイチャー誌、2000年発行、第403巻 第537頁〜第540頁
【非特許文献3】J.R.ライリ、A.D.スミス、D.R.レイノルズ、A.S.エドワーズ、J.L.オズボーン、I.H.ウィリアムス、N.L.カレック、G.M.ポピー共著、「高調波レーダによるハチの追尾」、ネイチャー誌、1996年発行、第379巻 第29頁〜第30頁
【非特許文献4】J.L.オズボーン、S.J.クラーク、R.J.モリス、I.H.ウィリアムス、J.R.ライリ、A.D.スミス、D.R.レイノルズ、A.S.エドワーズ共著、「高調波レーダを使用するマルハナバチの採餌域および恒常性の地勢規模研究」、ジャーナル オブ アプライド エコロジー誌、1999年発行、第36巻 第519頁〜第533頁
【非特許文献5】E.T.カント、A.D.スミス、D.R.レイノルズ、J.L.オズボーン共著、「高調波レーダによる地勢を越える蝶の飛行経路の追尾」、王立生物科学学会議事録、2005年4月発行、第272巻 第1565号 第785頁〜第790頁
【非特許文献6】O.オヴァスカイネン、A.D.スミス、J.L.オズボーン、D.R.レイノルズ、N.L.カレック、A.P.マーチン、K.ニィテポルド、I.ハンスキー共著、「高調波レーダによる蝶の移動の追尾が、居住年数の移動距離への影響を明らかにする」、全米科学アカデミー議事録、2008年12月発行、第105巻 第49号 第19090頁〜第19095頁
【非特許文献7】G.P.スヴェンソン、P.G.ヴァルール、D.R.レイノルズ、A.D.スミス、J.R.ライリ、T.C.ベーカー、G.M.ポピー、C.ルーステット共著、「高調波レーダにより監視されるカブラヤガにおける交尾阻害」、エントモロギア エクスペリメンタリス エト アプリケータ誌、2001年発行、第101巻 第111頁〜第121頁
【非特許文献8】G.L.ルーヴェイ、I.A.N.ストリンガー、C.D.デヴァイン、M.カンテリエリ共著、「高調波レーダ‐地上での無脊椎動物の移動を研究するための安価なタグを用いる方法」、ニュージーランド ジャーナル オブ エコロジー誌、1997年発行、第21巻 第2号 第187頁〜第193頁
【非特許文献9】R.D.ブラジー、E.S.ミラー、M.E.レディング、M.G.クライン、B.ニュッズ、H.ジュ共著、「行動研究でキンケクチブトゾウムシを追尾する高調波レーダのためのトランスポンダ」、米国農学会 英国議事録、2005年発行、第48巻 第2号 第831頁〜第838頁
【非特許文献10】J.R.ライリ、A.D.スミス共著、「低高度における昆虫の飛行の調査用の高調波レーダのための考察」、コンピュータズ アンド エレクトロニクス イン アグリカルチャー誌、オランダ アムステルダム エルゼビア出版 2002年発行、第3巻号 第151頁〜第169頁
【非特許文献11】E.T.カント、A.D.スミス、D.R.レイノルズ、J.L.オズボーン共著、「高調波レーダによる地勢を越える蝶の飛行経路の追尾」、王立生物科学学会議事録、2005年4月発行、第272巻 第1565号 第785頁〜第790頁
【非特許文献12】B.G.コルピッツ、G.ボワトー共著、「高調波レーダ送受信機の設計 昆虫追尾のための小型タグ」、電気電子技術者協会 アンテナズ アンド プロパゲーション議事録、2004年11月発行、第52巻 第11号 第2825頁〜第2832頁
【非特許文献13】D.E.N.デイヴィス、R.J.クレンシュ共著、「能動型トランスポンダ内蔵二周波数二次レーダ」、電気電子技術者協会 エレクトロニクス書簡、1973年12月発行、第9巻 第25号 第592頁〜第593頁
【非特許文献14】V.ヴィイカリ、J.サエボー、S.チェン、M.カンタネン、M.アル−ヌアイミ、T.ヴァープラ、A.ランミネン、P.ホールビョーナー、A.アラスタロ、T.マッティラ、H.セッパ、P.プルスラ、A.リュードベリ共著、「交通弱者検知用の自動車の相互変調レーダのための技術的解決法」、スペイン バルセロナ 電気電子技術者協会 第69回車両技術部会会議議事録、2009年4月26〜29日
【非特許文献15】V.ヴィイカリ、H.セッパ、T.マッティラ、A.アラスタロ共著、「無線強誘電体共振センサ」、電気電子技術者協会 ウルトラソニックス、フェロエレクトリック アンド フリークエンシー コントロール議事録、2009年投稿
【非特許文献16】V.ヴィイカリ、H.セッパ共著、「相互変調歪みに基く無線MEMSセンサ構想」、電気電子技術者協会 センサーズ ジャーナル誌、2009年発行
【非特許文献17】D.サイコーダキス、W.モルダー、C.チーチー、Z.ヘピン、J.L.ヴォラキス共著、「携帯型低出力高調波レーダシステム及び昆虫追尾用共形タグ」、電気電子技術者協会 アンテナズ アンド プロパゲーション書簡、2008年発行、第7巻 第444頁〜第447頁
【非特許文献18】http://www.recco.com
【非特許文献19】J.ローランド、G.マッキノン、C.バックハウス、P.D.テイラー共著、「昆虫上のより小型のレーダタグ」、ネイチャー誌、1996年発行、第381巻 第120頁
【非特許文献20】D.マスカンツォニ、H.ウォーリン共著、「高調波レーダ 野外での昆虫追尾の新しい方法」
【非特許文献21】http://www.massa.com/datasheets/E-188-220%20Datasheet%20090427.pdf
【発明の概要】
【発明が解決しようとする課題】
【0011】
使用される前記リモートセンシング技術は、例えばレーダ、ビデオグラフィックや他の光学技術、エックス線画像化、そして、受動型および能動型の音響技術を包含する。レーダ信号の地面や植物からの激しいクラッタのせいで、レーダは飛行中の昆虫か群れをなしている昆虫を追尾するためにのみ使用できる。
【0012】
光学的リモートセンシング技術は一般的に、ビデオカメラと、自動的にターゲットを識別しその位置を計算するパターン認識ソフトウェアと、に基く。3次元追尾は3Dビデオカメラか、或いは立体視カメラを必要とする。ビデオグラフィック技術は、可視波長に加えて、赤外線や熱波長においても実現される。赤外線や熱波長は暗視能力を提供する。ビデオグラフィック技術の欠点は、比較的小さな観測量、信頼できないパターン(ひいては昆虫)探知、および、測距や立体視カメラに伴う技術的障害である。
【0013】
昆虫の動作はまた光センサでも監視される。最も簡単なシステムでは、特定の明度で発光し、透過光或いは散光を評価する。当該透過光或いは散光は昆虫の存在時に変化する。より洗練された技術では、散光によって昆虫の羽音を検出できる。
【0014】
音響技術は能動型と受動型のものに分類可能である。能動型の技術はソーダ(音響探知及び測距)を用いる。ソーダは電磁波の代わりに音波を利用する以外はレーダの動作原理を共有する。ソーダは飛んでいる或いは動いている昆虫だけを探知することができる。受動型の音響追尾技術は空間的に分布する各マイクで、追尾される昆虫の立てる音を記録し、異なる位置で記録される音を相互の関係を比較することによって昆虫の位置を求める。
【0015】
リモートセンシング技術は昆虫への物理的な接触を必要としない。そして、それ故に、昆虫の習性に影響を与えない。しかしながら、遠隔測定技術と比較すると、リモートセンシング技術は通常、狭い探知範囲と信頼できないターゲットの識別とで劣っている。
【0016】
遠隔測定技術は、無線自動識別(RFID)と高調波レーダを包含する。RFIDでは、追尾される昆虫には受動型RFIDタグか能動型トランスポンダが取り付けられる。受動型RFIDタグは能動型のものよりも小型であるが、より狭い範囲とより低い追尾精度が提供される。ほとんど全部の他の追尾技術を上回る、RFID追尾原理の利点は、多数のターゲットを同時に追尾し識別するために使用できることである。
【0017】
前記の高調波レーダの構想は高調波レーダと、レーダ信号によって発光する時の調和振動数においてレーダ反射を生じるトランスポンダと、に基く。従来のレーダを上回る高調波レーダの利点は、例えば地面或いは植物等のクラッタを生じる物体に近接する、小さなターゲットを追尾できることである。
【0018】
したがって、本発明の目的は対象物の位置特定と追尾のための新しい方法および装置を提供することである。
【課題を解決するための手段】
【0019】
本発明は超音波或いは光検知と、対象物で生じるマイクロ波後方散乱と、に基く軽量トランスポンダを主として使用することを基礎とする。
各前記対象物に取り付けられる各前記トランスポンダは、マイクロ波によって、そして超音波か光のどちらか一方によって発光し、後方散乱マイクロ波信号が検知される。
【0020】
本発明に従って、前記技術は無線超音波マイクを活用し、当該無線超音波マイクはマイクロ波トランスポンダとして使用される。超音波パルスは、ターゲットからそれぞれの様々な位置の超音波拡声器までの距離を測定することに使用される。
【0021】
適切なアンテナを有する光センサもまたトランスポンダとして使用されるかもしれない。
【0022】
より詳細には、本発明の方法は請求項1の特徴部の記載によって特徴づけられる。
【0023】
一方、本発明のシステムは請求項10の記載によって特徴づけられる。
【0024】
一方、本発明の利用法は請求項18の記載によって特徴づけられる。
【0025】
重要な利点が本発明の助けによって得られる。
【0026】
既存の高調波レーダやRFIDに基く昆虫追尾方法と比較すると、双方の技術は、屋内或いは野外の檻での昆虫追尾のための高い性能を提供することができる。
【0027】
本発明は緻密な(ミリ精度)屋内アリーナや檻での昆虫の位置特定を提供し、そして、それは比較的簡単なシステムで実施できる。本発明は軽量なトランスポンダもまた提供する。
【0028】
本発明はまた関連する利点を提供するいくつかの別の実施例を有する。
【0029】
本発明とその利点のより完璧な理解のために、本発明をここで実施例の助けと以下の図面を参照することで説明する。
【図面の簡単な説明】
【0030】
【図1】本発明における昆虫に追尾のために用いられる無線超音波マイクを取り付けた場合の状況を示す。
【図2】一般的な容量性のMEMSマイクの配置図を示す。マイクの電気的等価回路は可変コンデンサ(灰色)として表わされてもよい。
【図3】機械的に整合される超音波マイクの原理を示す。
【図4】無線超音波マイクの配置図(左)とその電気的等価回路(右)を示す。
【図5a】超音波トランスポンダの変換効率を音響距離の関数として評価したグラフを示す。
【図5b】超音波トランスポンダのマイクロ波探知範囲を音響距離の関数として評価したグラフを示す。
【図6a】本発明における、連続走査レーザとフォトダイオードトランスポンダによる追尾原理の概略図を示す。レーザ信号は連続レーザ(左図)或いはパルスレーザ(右図)であってもよい。
【図6b】本発明における、パルス走査レーザとフォトダイオードトランスポンダによる追尾原理の概略図を示す。
【図7】本発明における、トランスポンダ内のフォトダイオードの配線図(上)と、その等価回路(下)を示す。
【図8】本発明における、放射照度の関数としての接合キャパシタンスの変化に関するグラフを示す。
【図9】本発明における、異なる背景放射照度レベルでのトランスポンダ内のフォトダイオードのマイクロ波探知範囲のグラフを示す。
【図10】本発明における、放射照度の関数としての1.5GHzにおけるフォトダイオードの測定されたインピーダンス(マーカー)と計算されたインピーダンス(線)のグラフを示す。
【図11】本発明における光起動マイクロ波トランスポンダの写真を示す。
【図12】トランスポンダの測定変調レーダ断面積(RCS)のグラフを示す。各曲線は異なる各放射照度レベルに対するものである。
【発明を実施するための形態】
【0031】
以下に、本発明の理論と実施例をより徹底的に考察する。
【実施例1】
【0032】
複合超音波およびマイクロ波による追尾
本セクションでは、超音波によって起動するマイクロ波トランスポンダによる昆虫追尾技術について検討する。本出願の出願人は超音波MEMS装置を開発し、記載されたシステムの実施において役立ち得るいくつかの発明を有する。
【0033】
追尾原理
追尾の構想は図1に示される。追尾される昆虫1はとても小さい超音波マイク2を取り付けられ、当該超音波マイク2は、超音波パルスの拡声器4から前記超音波マイク2までの伝播時間を測定するために用いられる。前記超音波パルスの伝播距離は前記伝播時間と、既知の空中における音速と、に関係している。前記ターゲット2は既知の各位置におかれた3つの異なる拡声器4からの距離を測定するために取り付けられる。前記ターゲット(タグ)はマイクロ波放射に同時にさらされ、当該マイクロ波信号は、また超音波でタグを照らすことによって、前記タグにおいて変調される。前記変調マイクロ波信号はマイクロ波アンテナ5へと返される。前記マイクロ波は光速で伝播し、光速は超音波の速度よりも何ケタも大きいので、前記変調マイクロ波信号の到達時間は拡声器の既知の位置からのターゲットの距離を計算するために使用され得る。各前記拡声器4は異なる変調を使用することによって識別できる。
【0034】
超音波マイク要素
前記無線超音波マイク要素2は、既存の容量性MEMSマイクと同類であることもあり得、当該容量性MEMSマイクは例えば携帯電話に幅広く使用される。容量性MEMSマイクの配置図は図2に示される。
【0035】
前記MEMSマイクは、固体の壁に支えられ、後方に空洞を有する振動膜から成る。前記膜は電導性を有し、平行板コンデンサの一方の電極を形成する。前記コンデンサの他方の電極は固定され、前記空洞の底の上に位置する。音圧は前記膜を動かし、前記コンデンサのキャパシタンスを変化させる。
【0036】
容量性MEMSマイクに付随する欠点は、音波が振動膜と有効に対応しないことである。前記対応は、一つの空洞の代わりに二つ以上の空洞を用いることに基く機械的整合技術を利用することによって、改善されてもよい。整合超音波マイクの一例が図3に描写されている。
【0037】
上の空洞は、音圧が比較的大きな振幅を振動膜に引き起こすように、中濃度のガスで満たされている。上の振動膜は前記上の空洞内で超音波振動を引き起こす。この振動はその結果下の膜を作動させる。下の空洞は濃密ガスで満たされ、前記下の膜の振幅は前記上の膜の振幅よりも小さい。この構造はマイクの超音波対応を、マイクの帯域幅を犠牲にして改善する。
【0038】
図2に提示されるものと類似の微小超音波マイクは1×1×1mm程度の小ささで、2mgよりも軽いと想定する。
【0039】
無線マイクの理論上の電気音響反応
膜の動力学的反応
前記超音波マイクの膜の動力学的反応は、mを片持ち梁の有効質量、xを片持ち梁の変位、ηを減衰係数、kを有効バネ定数、Fを片持ち梁に作用する外力とすると、次式で与えられる。
【0040】
【数1】

【0041】
前記膜がその機械的共振周波数で作動する時、振動の振幅は、調和力の振幅を
【0042】
【数2】

【0043】
とし、前記共振膜の機械的品質係数を
【0044】
【数3】

【0045】
とし、ωmを前記膜の機械的共振周波数とすると、次式で与えられる。
【0046】
【数4】

【0047】
音圧によるその力は、pを前記音圧、Aを前記膜の有効領域とすると、F=pAで与えられる。これを式(3.2)に代入すると次式が得られる。
【0048】
【数5】

【0049】
音源から距離racでの最大音圧は、音の音響出力をPacとし、空気中の音響インピーダンスをZac=cacρacとし、音速を
【0050】
【数6】

【0051】
とし、空気密度をρacとすると、次式で与えられる。
【0052】
【数7】

【0053】
電磁変調効率
前記無線超音波センサは、センサ要素に電気的に整合されるアンテナからなる。無線センサの配置図がその電気的等価回路と共に図4に示されている。
【0054】
前記超音波マイクの等価キャパシタンスは、(平行板コンデンサで微小変位のものを想定して)ε0を真空の誘電率、Aをコンデンサの表面領域、g0を初期間隔(そしてC0を初期キャパシタンス)、そしてxを前記膜の変位とすると、次式となる。
【0055】
【数8】

【0056】
前記無線センサはマイクロ波信号で照らされ、前記アンテナは、Raを前記アンテナの抵抗とすると、
【0057】
【数9】

【0058】
の最大電圧を生み出す電力Pr,transpを受取る。
【0059】
前記超音波は前記膜を作動させ、当該膜は、を最大振幅、ωacを前記超音波の角速度とすると、
【0060】
【数10】

【0061】
で振動するものと仮想する。前記アンテナと前記マイクの間の共役整合(Ra=Rm、ωrfL=1/(ωrf0))を仮想すると、前記アンテナの抵抗を越える変調電圧、すなわち放射電圧は次式となる。
【0062】
【数11】

【0063】
対応する電力は次式となる。
【0064】
【数12】

【0065】
変調後と受信された電力の間の比率、すなわち変換効率は次式となる。
【0066】
【数13】

【0067】
式(3.4)と式(3.7)を式(3.8)に代入すると次式が得られる。
【0068】
【数14】

【0069】
電磁的検出距離
前記トランスポンダは、読取装置によって連続して電磁的に照らされる。
【0070】
前記トランスポンダによるその受信電力は、Pt,readerを前記読取装置の送信電力、
Greaderを読取アンテナの増幅率、Gtranspをトランスポンダアンテナの増幅率、λrfを電磁波長、そして、rrfを読取装置とトランスポンダ間の距離とすると、次式で与えられる。
【0071】
【数15】

【0072】
前記トランスポンダは受信信号を変調し、それを読取装置へとまき散らし返す。
【0073】
前記トランスポンダによる前記受信電力は、Eを前記トランスポンダの変調あるいは変換効率とすると、次式となる。
【0074】
【数16】

【0075】
式(3.11)を検出距離について解くと、次式が得られる。
【0076】
【数17】

【0077】
式(3.9)を式(3.12)に代入すると次式が得られる。
【0078】
【数18】

【0079】
追尾分解能と速度
前記追尾システムの距離分解能は、大気中の音速を
【数19】

とし、パルスの継続時間をτとすると、次式で与えられる超音波パルスの物理長に比例する。
【0080】
【数20】

【0081】
経験則として、前記パルスの継続時間は信号帯域幅Bに反比例する。したがって、前記距離分解能は次式で与えられ得る。
【0082】
【数21】

【0083】
例えば、前記距離分解能は10kHzの帯域幅で、おおよそ3cmとなる。その距離測定精度は、信号雑音比に依存するものよりも良いかもしれない。
【0084】
パルスの反復周波数はスピーカと前記ターゲットの間の距離Lによって次式のように制限を受ける。
【0085】
【数22】

【0086】
追尾測定周波数はまたスピーカの数Nによって制限を受け、次式で与えられる。
【0087】
【数23】

【0088】
例えば、最大距離がL=33mでスピーカの数がN=10のとき、位置再読込レートは1kHz(1測定毎秒)となる。
【0089】
複数のターゲットの識別
複数のターゲットは、音響周波数の分割、電磁周波数の分割、あるいはその両方を用いて識別され得る。前記音響周波数の分割は、それぞれが異なる共振周波数を有するようにマイク要素を寸法決定することによって実現される。周波数の分割は、個別の読取システムを必要とするかもしれない、ひいては実行が困難であるかもしれない。
【0090】
3つの異なる電磁周波数帯域と3つの音響帯域の場合を想定すると、9つのトランスポンダを同時に追尾し識別することができる。
【0091】
実現可能な性能概算
実現可能な追尾範囲を概算してみよう。超音波周波数が40kHzで、超音波源の音響出力が1mWであると想定する。同等の性能の装置が非特許文献21に記載されている。大気中の音響インピーダンスは410Ns/m2である。
【0092】
大気中における40kHzの音波長は8mmである。前記膜の表面領域は400×400μmで、間隔は200μmである。前記膜の厚さは1μmで、その有効質量は0.3μgである。マイク要素の初期キャパシタンスはC0=ε0A/g0=14fFである。また、マイクの電気的品質係数は5GHzにおいて100であり、当該電気的品質係数は22Ωの直列抵抗をもたらす。超音波追尾システムの概算パラメータを表1に示す。前記トランスポンダの電気的変調効率はracの関数として図5aに示される。図5bは前記トランスポンダのマイクロ波探知範囲を超音波領域の関数として示す。例えば、音響的距離が6mで、マイクロ波周波数が2GHzな場合、前記トランスポンダは6mの距離から探知可能である。
【0093】
【表1】

【0094】
スキャンレーザとマイクロ波トランスポンダによる追尾
このセクションでは、昆虫追尾のためのフォトダイオードベースのトランスポンダシステムを検討する。図6aと図6bにしたがって、昆虫1は、走査レーザ14によって作動する光感知トランスポンダ3を取り付けられ、当該走査レーザ14は前記昆虫と前記トランスポンダ3を照らす。前記レーザ信号は変調され、前記トランスポンダ3を照らすときにマイクロ波周波数で変調後方散乱を引き起こす。
【0095】
前記変調レーザ信号はパルス(図6a)か連続(図6b)のどちらかであってもよい。連続信号が使用される場合は、ターゲットの位置は、変調マイクロ波信号が探知された瞬間における、少なくとも2つのレーザビームの交点である。パルスレーダ信号が使用される場合は、ターゲットへの距離を時間遅延から求めることができ、単発のレーザビームで十分である。連続とパルスレーダの双方の追尾原理は図6b(連続)と図6a(パルス)に示される。
【0096】
トランスポンダの光起電力応答
前記トランスポンダはアンテナに整合されるフォトダイオードからなる。トランスポンダの配置図は図7の上部に、図7の下部のその電気的等価回路と共に示される。
【0097】
フォトダイオードに取り込まれた光子はダイオード中に電子と正孔の対を生み出す。その手順は定電流源を使って説明でき、Rλを前記ダイオードの応答度(通常は〜0.5A/W)とすると、当該定電流源の電流は、取り込まれた光のパワーPLの関数として次式で与えられる。
【0098】
【数24】

【0099】
ダイオード電流は、ηを理想係数、k=1.38・10-23J/Kをボルツマン定数、Tを温度、e=1.60・10-19Cを電気素量、Isatを飽和電流、そして、VDをダイオードの両端電圧とすると、次式で与えられる。
【0100】
【数25】

【0101】
シャント抵抗と負荷抵抗、RshとZL(図7)は極めて大きいものと想定する。
前記ダイオードに流れる電流は取り込まれた光によって生み出される電流に等しい、そして、ダイオードの両端電圧は次式のように表せる。
【0102】
【数26】

【0103】
前記電圧は接合抵抗とキャパシタンスの両方に影響を及ぼす。前記ダイオードの小信号接合抵抗は次式となる。
【0104】
【数27】

【0105】
前記接合キャパシタンスは、Φiを接合部位電位、γを空乏容量で、均一にドープされた接合では0.5とすると、次式で与えられる。
【0106】
【数28】

【0107】
電磁的探知距離
負荷から見た前記ダイオード(図7)のインピーダンスは次式となる。
【0108】
【数29】

【0109】
前記接合抵抗は比較的低い照射量においては極めて大きく、無限であると想定してもよい。例えば、BPV10フォトダイオードチップ(ビシェイ・セミコンダクターズ社製)の接合抵抗は暗状態で25MΩ、1mW/cm2の照射下で5.8kΩである。加えて、前記シャント抵抗は一般的にMΩ規模であり、無視することができる。
【0110】
式(4.6)は次式になる。
【0111】
【数30】

【0112】
前記ダイオードは変調光源に照らされ、その負荷インピーダンスは直流に対して無限大である。前記変調光は前記ダイオードの順方向バイアスを変え、接合キャパシタンスを変化させる。交流接合キャパシタンスは変調後方散乱を引き起こす。
前記トランスポンダの変換効率は、ΔCj=Cj,max−Cj0とすると、次式となる。
【0113】
【数31】

【0114】
前記トランスポンダのマイクロ波探知距離は式(3.12)で与えられる。
【0115】
追尾分解能および速度
追尾分解能は前記走査レーザのビーム幅によって制限を受ける。実際には、前記レーザビーム幅はmmであってもよい。追尾速度は受信器の分解能帯域幅Bresに依存し、当該分解能帯域幅はレーザの変調周波数fmによって制限を受ける。Bres<fm/10であることが要求される場合、測定(再読込)レートはfm/10となる。例えば、追尾空間が10000のセルに分割され、変調周波数が1MHzの2つのレーザが追尾に使用されることを想定することが、5Hzの再読込レート(昆虫の位置が毎秒5回上書きされる)を生じさせる。
【0116】
複数のターゲットの識別
複数のターゲットは、光波長の分割、電磁周波数の分割、あるいはその両方を用いて識別され得る。光波長の分割は、異なる波長を感知する各フォトダイオードを使用して実現される。前記光波長の分割は、光フィルターを必要とするかもしれない、そして、3つの異なる波長帯域を可能にすることもあり得る。電磁周波数の分割は、異なる周波数に整合された各トランスポンダを使用して実現される。前記電磁周波数の分割もまた、識別可能なトランスポンダの数を9つにし得る、3つの異なる波長帯域を許容する。
【0117】
実現可能な性能概算
前記レーザの照射を1mW/cm2と想定する。この照射量は、通常の使用においては安全であるべきである。その安全性は、人の目により安全な140nm波長を使用することによって増大させることができる。
【0118】
前記トランスポンダは、ビシェイ・セミコンダクターズ社製のBPV10フォトダイオードチップに基き得る。当該フォトダイオードチップのパラメータを表2に示す。
【0119】
【表2】

【0120】
照射の関数としての接合キャパシタンスを図8に示す。
【0121】
変調効率は背景照射量に依存する。異なる背景照射量における、前記トランスポンダのマイクロ波探知範囲を図9に示す。マイクロ波関連量の各パラメータは表1に示されるそれに等しい。例えば、前記トランスポンダは0.8mW/cm2の背景照射において1GHzで10mの距離から探知し得る。オフィスにおける標準的な輝度レベルは500ルクスであり、当該輝度レベルは、使用スペクトルに依存するおおよそ0.1mW/cm2の照射に相当する。
【0122】
異なる各照射量における1.5GHzでのダイオードのインピーダンスの実部と嘘部の測定値を算出曲線と共に図10に示す。算出においては、ダイオードの理想係数をη=1、接合外形パラメータをγ=0.5と想定する。
【0123】
インピーダンスの算出値と測定値は十分に一致し、図7のフォトダイオードの単純モデルが無線光探知器を設計するために使用できることを示す。図10はまた、比較的低い照射量において極めて強い変調が達成されることを示す。したがって、レーザ出力が1mWに制限される、低出力なクラス1レーザスキャナでさえ、ターゲットの位置決めに使用さ
れ得る。
【0124】
前記トランスポンダの写真を図11に示す。むき出しのダイオードチップの入手困難のため、本実験においてはパッケージ化されたフォトダイオードが使用される。低重量に最適化されたアンテナを伴うむき出しのフォトダイオードチップは軽量で小型のトランスポンダを可能にするだろう。例えば、1mm×1mm×0.5mmサイズのシリコンダイオードチップはおおよそ0.5mgの重さである。同様に、ループアンテナは直径0.1mmの銅線で製造され、集中素子なしでダイオードに直接整合され得る。測定に使用されるループサイズと等しいループサイズのそのようなアンテナは、非特許文献9の標準的な高調波レーダトランスポンダ(3mg)の重量に匹敵するトランスポンダ重量を提供する3mgの重さである。また、トランスポンダのサイズと重量の減少は、測定のためにより高いマイクロ波の各周波数を使用することによって達成され得る。しかしながら、これはより小さい効果的なフォトダイオード領域ひいてはより強いレーザ照射を必要とする。
【0125】
図12は、0.1mW/cm2程度の低さの照射量において十分な変調が起きることを示す。パッケージ化されたフォトダイオードの代わりにむき出しのダイオードチップを使用する場合、照射量は20倍高いべきであり、クラス1レーザ(出力1mW)がサイズで
7×7mmまでのスポットを生み出すために使用されることもあり得る。また、1kHzの走査レート(市販のスキャナとして標準的である)のレーザスキャナが7×7mmのスポットで使用されると想定すれば、0.5mm2の領域が1秒でスキャンされることもあり得る。
【0126】
要約すると、本発明は対象物を位置特定するための方法およびシステムに関する。前記方法において、対象物1、主として昆虫は少なくとも一つの第1のタイプの信号で照らされ、前記信号の反応を探知する。前記対象物1は前記第1のタイプの信号を後方散乱するトランスポンダ2,3を取り付けられる。前記トランスポンダ2,3は、前記トランスポンダ2,3の後方散乱周波数に影響を与える第2のタイプの信号でも照らされる。そして、前記トランスポンダ2,3からの後方散乱信号は対象物を位置特定するために探知される。
【0127】
本発明の好適な解決策においては、前記トランスポンダ2,3は第2のタイプの信号としての超音波かまたは光で照らされる。
【0128】
本発明の別の好適な解決策においては、前記第1のタイプの信号はマイクロ波信号である。
【0129】
本発明の別の好適な解決策においては、少なくとも原則的に継続する信号が多数の送信器と共に第2のタイプの照射に使用される。
【0130】
本発明の別の好適な解決策においては、パルス信号源14’が第2のタイプの照射に使用される。
【0131】
本発明の別の好適な解決策においては、前記方法は昆虫の位置特定あるいは追尾に使用される。
【0132】
本発明の別の好適な解決策においては、前記方法は人の位置特定あるいは追尾に使用される。
【0133】
本発明の別の好適な解決策においては、前記方法は車両の位置特定あるいは追尾に使用される。

【特許請求の範囲】
【請求項1】
・対象物(1)は少なくとも一つの第1のタイプの信号を照射され、
・前記信号の反応を探知する、
対象物を位置特定するための方法において、
・前記対象物(1)は前記第1のタイプの信号を後方散乱するトランスポンダ(2,3)を取り付けられ、
・前記トランスポンダ(2,3)は、前記トランスポンダ(2,3)の後方散乱周波数に影響を与える第2のタイプの信号でも照射され、
・前記トランスポンダ(2,3)からの後方散乱信号は対象物を位置特定するために探知される
ことを特徴とする方法。
【請求項2】
前記トランスポンダ(2,3)は、第2のタイプの信号としての超音波で照射されることを特徴とする請求項1に記載の方法。
【請求項3】
前記トランスポンダ(2,3)は、第2のタイプの信号としての光で照射されることを特徴とする請求項1に記載の方法。
【請求項4】
前記第1のタイプの信号はマイクロ波信号であることを特徴とする請求項1〜3のいずれかに記載の方法。
【請求項5】
少なくとも原則的に継続する信号が多数の送信器と共に第2のタイプの照射に使用されることを特徴とする請求項1〜4のいずれかに記載の方法。
【請求項6】
パルス信号源が第2のタイプの照射に使用されることを特徴とする請求項1〜4のいずれかに記載の方法。
【請求項7】
昆虫の位置特定あるいは追尾目的に使用されることを特徴とする請求項1〜6のいずれかに記載の方法。
【請求項8】
人の位置特定あるいは追尾目的に使用されることを特徴とする請求項1〜7のいずれかに記載の方法。
【請求項9】
車両の位置特定あるいは追尾目的に使用されることを特徴とする請求項1〜8のいずれかに記載の方法。
【請求項10】
・対象物(1)を少なくとも一つのタイプの信号で照射する手段(4,14)と、
・前記第1のタイプの信号の反応を探知する探知手段(5,15)と、
を備える対象物を位置特定するためのシステムにおいて、
・前記第1のタイプの信号を後方散乱し、前記トランスポンダ(2,3)からの後方散乱周波数に影響を与えるような別のタイプの信号にも反応する前記対象物(1)に取り付けられるトランスポンダ(2,3)と、
・前記トランスポンダ(2,3)の後方散乱周波数に影響を与える第2のタイプの信号でも前記トランスポンダ(2,3)を照射する第2の照射手段(4,14,14’)と、
をさらに備え、
・前記トランスポンダ(2,3)からの前記後方散乱信号は対象物を位置特定するために探知される
ことを特徴とするシステム。
【請求項11】
前記第2の照射手段(4)は超音波送信器(4)であることを特徴とする請求項1に記載のシステム。
【請求項12】
前記探知手段はマイクロ波受信器(5,15)であることを特徴とする請求項1に記載のシステム。
【請求項13】
前記第2の照射手段(4,14)は連続送信器(14)であることを特徴とする請求項1〜12のいずれかに記載のシステム。
【請求項14】
前記第2の照射手段(4,14)はパルス送信器(14’)であることを特徴とする請求項1〜4のいずれかに記載のシステム。
【請求項15】
前記トランスポンダ(2)はマイクロ波後方散乱用のアンテナを有する容量性超音波トランスポンダであることを特徴とする請求項1〜14のいずれかに記載のシステム。
【請求項16】
前記トランスポンダ(3)はマイクロ波後方散乱用のアンテナを取り付けられたフォトダイオードであることを特徴とする請求項1〜15のいずれかに記載のシステム。
【請求項17】
昆虫の探知および追尾用の後方散乱送信器の使用方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5a】
image rotate

【図5b】
image rotate

【図6a】
image rotate

【図6b】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公表番号】特表2013−508713(P2013−508713A)
【公表日】平成25年3月7日(2013.3.7)
【国際特許分類】
【出願番号】特願2012−534734(P2012−534734)
【出願日】平成22年10月19日(2010.10.19)
【国際出願番号】PCT/FI2010/050814
【国際公開番号】WO2011/048267
【国際公開日】平成23年4月28日(2011.4.28)
【出願人】(512068592)
【Fターム(参考)】