説明

成膜装置および成膜方法

【課題】長尺な基板に、連続的な膜の形成を生産性を維持しつつ、異常放電を抑制することができる成膜装置および成膜方法を提供する。
【解決手段】本発明の成膜装置は、成膜室内で長尺の基板を所定の搬送方向に搬送しつつ、スパッタリングを行い基板の表面に所定の膜を形成する。成膜室内を所定の真空度にする真空排気部と、搬送方向に沿って配置された複数の金属ターゲットと、各金属ターゲットに負の電圧を印加する第1の電源部と、搬送方向の最上流側に配置された金属ターゲットに正の電圧を印加する第2の電源部と、基板の表面と各金属ターゲットとの間にスパッタガスを供給するスパッタガス供給部と、成膜時に、各金属ターゲットに負の電圧を所定の時間間隔で所定時間印加させるとともに、最上流側に配置された金属ターゲットに負の電圧が印加されていないとき、正の電圧を印加させる制御部を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、長尺の基板を所定の搬送方向に搬送しつつ、スパッタリングを行い前記基板の表面に所定の膜を形成する成膜装置および成膜方法に関し、特に、成膜の生産性を維持しつつ、異常放電を抑制することができる成膜装置および成膜方法に関する。
【背景技術】
【0002】
現在、基板の表面に金属膜を形成する場合において、真空チャンバ内に、形成する金属膜の組成を有する金属ターゲットを用い、この金属ターゲットの裏面にマグネットを配置する。
さらに、真空チャンバ内に、アルゴンガス(Arガス)を導入し、金属ターゲットに交流電圧を印加して放電させ、イオン化したアルゴンガスを金属ターゲットの表面に衝突させて、金属ターゲットから飛び出した金属原子を、基板の表面に堆積させるマグネトロンスパッタ法と呼ばれる方法が用いられている。
【0003】
また、金属化合物の膜を形成する場合には、金属原子と反応ガスとを反応させて、化合物を得て、金属化合物の膜を形成する反応性スパッタと呼ばれる方法が用いられている。
この場合でも、金属化合物の膜を構成する金属の組成の金属ターゲットを用い、この金属ターゲットの裏面にマグネットを配置する。そして、金属化合物の膜の組成を得るために反応ガスを含んだ雰囲気下、例えば、酸化物を形成する場合には酸素、窒化物を形成する場合には窒素を含んだ雰囲気下と真空チャンバ内をする。
さらに、真空チャンバ内に、アルゴンガス(Arガス)を導入し、金属ターゲットに交流電圧を印加して放電させて、イオン化したアルゴンガスを金属ターゲットの表面に衝突させて、金属原子を飛び出させて、これを反応ガスとを反応させて、化合物を得て、金属化合物の膜を形成する。
【0004】
スパッタ法においては、スパッタ中に、異常放電と呼ばれる現象が生じる。以下、異常放電について説明する。
マグネトロンスパッタでは、金属ターゲットに負電位を印加している。金属ターゲットのうち、磁場強度の強い部分の強くスパッタされ、その部分が深く削れ、エロージョンが形成される。
非エロージョン部には、スパッタされた粒子が散乱などで飛来し、これに酸素ガス、または窒素ガスなどの反応性ガスが取り込まれると、酸化被膜または窒化被膜が、高抵抗の被膜として形成される。スパッタの際、高抵抗の被膜(酸化被膜または窒化被膜)の表面に、Ar陽イオンが衝突すると電子の引き抜き、二次電子の放出が発生する。
【0005】
一方、金属ターゲットには、負電位が印加されているので、散乱で飛来する電子には斥力が働き、金属ターゲットへの入射が妨げられる。結果として、高抵抗の被膜(酸化被膜または窒化被膜)から電子が出る一方になり、被覆はプラスに帯電する。
印加電圧と被膜部の正電位との差が一定以上となると絶縁破壊が発生する。これが異常放電の原因となっている。
【0006】
異常放電は、金属ターゲットを構成する金属が比較的低抵抗で、それに比べ表面に生成される被膜(酸化被膜または窒化被膜)が高抵抗である場合に多く発生する。
異常放電が生じると膜質の変化、または膜にピンホールが発生し、膜の持つ特性が著しく損なわれる原因となる。そこで、異常放電の発生を抑制するための方法が提案されている(特許文献1参照)。
【0007】
特許文献1に開示されたバリヤー膜の成膜方法は、各ターゲットに一定の周期(数十〜数百回/秒)で交互に間欠的に負電圧を印加するデュアルマグネトロンスパッタ方式を用いるものである。通常、2つのターゲットを一組とする。
特許文献1において、2つのターゲットのうち、印加された側は負電位、されていない側はアース電位となる。これが2つのターゲットで周期的に入れ替わる。非印加の間は、正帯電した被膜部分がプラズマ中の電子を引き込み、チャージアップを中和することができる。
特許文献1には、正電位の中和の効果は、負の電位を印加していない時間に、正電位を投入することで、更に効果を上げることができることが記載されている。
【0008】
【特許文献1】特開2004−137531号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1のバリヤー膜の成膜方法を、有機物により構成される基板、または有機層が形成された基板を搬送しつつ成膜することに適用する場合、投入電力を上げていくほど異常放電の発生頻度が上昇するという問題点がある。
このため、特許文献1においては、有機物により構成される基板、または有機層が形成された基板を用いた場合、良好な膜を、効率良く形成することができない。
【0010】
本発明の目的は、前記従来技術に基づく問題点を解消し、長尺な基板、特に有機物により構成される基板、または有機層が形成された基板に対して、連続的な膜の形成を生産性を維持しつつ、異常放電を抑制することができる成膜装置および成膜方法を提供することにある。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明の第1の態様は、成膜室内で長尺の基板を所定の搬送方向に搬送しつつ、スパッタリングを行い前記基板の表面に所定の膜を形成する成膜装置であって、前記成膜室内を所定の真空度にする真空排気部と、前記基板の表面に対向し、かつ前記搬送方向に沿って配置された複数の金属ターゲットと、前記各金属ターゲットに負の電圧を印加する第1の電源部と、前記金属ターゲットのうち、前記搬送方向の最上流側に配置された金属ターゲットに正の電圧を印加する第2の電源部と、前記基板の表面と前記各金属ターゲットとの間にスパッタガスを供給するスパッタガス供給部と、成膜時に、前記第1の電源部により前記各金属ターゲットに負の電圧を所定の時間間隔で所定時間印加させるとともに、前記最上流側に配置された金属ターゲットに前記第1の電源部から負の電圧を印加していないとき、前記第2の電源部により前記最上流側に配置された金属ターゲットに前記正の電圧を印加させる制御部とを有することを特徴とする成膜装置を提供するものである。
【0012】
本発明において、さらに、前記基板の表面と前記各金属ターゲットとの間に反応性ガスを供給する反応性ガス供給部を有し、前記成膜時に、前記反応ガスを供給することが好ましい。
また、本発明において、前記各金属ターゲットには、それぞれマグネットが設けられていることが好ましい。
【0013】
さらに、本発明において、前記膜は、例えば、ガスバリア膜である。
また、本発明においては、前記ガスバリア膜は、例えば、酸化アルミニウム膜である。
また、本発明において、前記第1の電源部は、例えば、パルス電源または高周波電源である。
【0014】
本発明の第2の態様は、複数の金属ターゲットに対向して、長尺の基板を所定の搬送方向に搬送しつつ、スパッタリングを行い前記基板の表面に所定の膜を形成する成膜方法であって、前記基板と前記各金属ターゲットとの間にスパッタガスを供給する工程と、前記各金属ターゲットに負の電圧を所定の時間間隔で所定時間印加するとともに、前記最上流側に配置された金属ターゲットに負の電圧を印加していないとき、前記最上流側に配置された金属ターゲットに前記正の電圧を印加する工程とを有することを特徴とする成膜方法を提供するものである。
【0015】
本発明において、前記基板と前記各金属ターゲットとの間にスパッタガスを供給する工程においては、さらに、前記基板の表面と前記各金属ターゲットとの間に反応性ガスを供給することが好ましい。
また、本発明において、前記各金属ターゲットに負の電圧を印加する際、各金属ターゲットにおける電力密度の平均値が5.9kW/cm以上であることが好ましい。
さらに、本発明において、前記膜は、例えば、ガスバリア膜である。
さらにまた、本発明において、前記ガスバリア膜は、例えば、酸化アルミニウム膜である。
【0016】
本発明の第3の態様は、成膜室内で長尺の基板を所定の搬送方向に搬送しつつ、スパッタリングを行い前記基板の表面に所定の膜を形成する成膜装置であって、所定の搬送経路で、長尺の基板を搬送する第1の搬送手段と、前記成膜室内に設けられ、前記基板の搬送方向と直交する方向に回転軸を有し、前記第1の搬送手段により搬送された基板が、表面の所定の領域に巻き掛けられる回転可能なドラムと、所定の搬送経路で、前記ドラムに巻き掛けられた基板を搬送する第2の搬送手段と、前記成膜室内を所定の真空度にする真空排気部と、前記ドラムの表面に対向し、かつ前記ドラムの回転方向に沿って配置された複数の金属ターゲットと、前記各金属ターゲットに負の電圧を印加する第1の電源部と、前記金属ターゲットのうち、前記搬送方向の最上流側に配置された金属ターゲットに正の電圧を印加する第2の電源部と、前記基板の表面と前記各金属ターゲットとの間にスパッタガスを供給するスパッタガス供給部と、成膜時に、前記第1の電源部により前記各金属ターゲットに負の電圧を所定の時間間隔で所定時間印加させるとともに、前記最上流側に配置された金属ターゲットに前記第1の電源部から負の電圧を印加していないとき、前記第2の電源部により前記最上流側に配置された金属ターゲットに前記正の電圧を印加させる制御部とを有することを特徴とする成膜装置を提供するものである。
【発明の効果】
【0017】
本発明の成膜装置および成膜方法によれば、長尺な基板、特に有機物により構成される基板、または有機層が形成された基板に対して、連続的な膜の形成を生産性を維持しつつ、異常放電を抑制することができる。
【発明を実施するための最良の形態】
【0018】
以下に、添付の図面に示す好適実施形態に基づいて、本発明の成膜装置および成膜方法を詳細に説明する。
図1は、本発明の実施形態に係る成膜装置を示す模式図であり、図2は、図1に示す成膜装置の成膜部の要部を示す模式図である。
【0019】
図1に示す本発明の実施形態に係る成膜装置10は、ロール・ツー・ロール(Roll to Roll)タイプの成膜装置であり、基板Zの表面Zf、または基板Zの表面Zfに有機層が形成されていれば、その表面に、所定の機能を有する膜を形成するものであり、例えば、光学フィルムまたはガスバリアフィルム等の機能性フィルムFの製造に利用されるものである。
成膜装置10は、長尺の基板Z(ウェブ状の基板Z)に連続で成膜を行う装置であって、基本的に、長尺な基板Zを供給する供給室12と、長尺な基板Zに膜を形成する成膜室14と、膜が形成された長尺な基板Zを巻き取る巻取り室16と、真空排気部32と、制御部36とを有する。この制御部36により、成膜装置10における各要素の動作が制御される。
また、成膜装置10においては、供給室12と成膜室14とを区画する壁15a、および成膜室14と巻取り室16とを区画する壁15bには、基板Zが通過するスリット状の開口15cが形成されている。
【0020】
成膜装置10においては、供給室12、成膜室14および巻取り室16には、真空排気部32が配管34を介して接続されている。この真空排気部32により、供給室12、成膜室14および巻取り室16の内部が所定の真空度にされる。
真空排気部32は、供給室12、成膜室14および巻取り室16を排気して所定の真空度に保つものであり、ドライポンプおよびターボ分子ポンプなどの真空ポンプを有するものである。また、供給室12、成膜室14および巻取り室16には、それぞれ内部の圧力を測定する圧力センサ(図示せず)が設けられている。
なお、真空排気部32による供給室12、成膜室14および巻取り室16の到達真空度には、特に限定はなく、実施する成膜方法等に応じて、十分な真空度を保てればよい。この真空排気部32は、制御部36により制御される。
【0021】
供給室12は、長尺な基板Zを供給する部位であり、基板ロール20、およびガイドローラ21が設けられている。
基板ロール20は、長尺な基板Zを連続的に送り出すものであり、例えば、反時計回りに基板Zが巻回されている。
基板ロール20は、例えば、駆動源としてモータ(図示せず)が接続されている。このモータによって基板ロール20が基板Zを巻き戻す方向rに回転されて、本実施形態では、時計回りに回転されて、基板Zが連続的に送り出される。
【0022】
ガイドローラ21は、基板Zを所定の搬送経路で成膜室14に案内するものである。このガイドローラ21は、公知のガイドローラにより構成される。
本実施形態の成膜装置10においては、ガイドローラ21は、駆動ローラまたは従動ローラでもよい。また、ガイドローラ21は、基板Zの搬送時における張力を調整するテンションローラとして作用するローラであってもよい。
【0023】
本発明の成膜装置において、基板Zは、特に限定されるものではなく、反応性スパッタリングによる膜の形成が可能な各種の基板が全て利用可能である。基板Zとしては、例えば、PETフィルム、PENフィルム等の各種の樹脂フィルム、またはアルミニウムシートなどの各種の金属シート等を用いることができる。
本発明の成膜装置は、基板としては、有機物を含む樹脂フィルムおよび有機層が形成された基板への成膜に特に有効である。
【0024】
巻取り室16は、後述するように、成膜室14で、表面Zfに膜が形成された基板Zを巻き取る部位であり、巻取りロール30、およびガイドローラ31が設けられている。
【0025】
巻取りロール30は、成膜された基板Zをロール状に、例えば、時計回りに巻き取るものである。
この巻取りロール30は、例えば、駆動源としてモータ(図示せず)が接続されている。このモータにより巻取りロール30が回転されて、成膜済の基板Zが巻き取られる。
巻取りロール30においては、モータによって基板Zを巻き取る方向Rに回転されて、本実施形態では、時計回りに回転されて、成膜済の基板Zを連続的に、例えば、時計回りに巻き取る。
【0026】
ガイドローラ31は、成膜室14から搬送された基板Zを、所定の搬送経路で巻取りロール30に案内するものである。このガイドローラ31は、公知のガイドローラにより構成される。なお、供給室12のガイドローラ21と同様に、ガイドローラ31も、駆動ローラまたは従動ローラでもよい。また、ガイドローラ31は、テンションローラとして作用するローラであってもよい。
【0027】
成膜室14は、真空チャンバとして機能するものであり、基板Zを搬送しつつ連続的に、基板Zの表面Zfに、例えば、反応性スパッタリング法によって、化合物の膜を形成す部位である。
成膜室14は、例えば、ステンレス、アルミニウムまたはアルミニウム合金など、各種の真空チャンバで利用されている材料を用いて構成されている。
【0028】
成膜室14には、2つのガイドローラ24、28と、ドラム26と、成膜部40とが設けられている。
ガイドローラ24と、ガイドローラ28とが、所定の間隔を設けて対向して、平行に配置されており、また、ガイドローラ24、およびガイドローラ28は、基板Zの搬送方向Dに対して、その長手方向を直交させて配置されている。
【0029】
ガイドローラ24は、供給室12に設けられたガイドローラ21から搬送された基板Zをドラム26に搬送するものである。このガイドローラ24は、例えば、基板Zの搬送方向Dと直交する方向(以下、軸方向という)に回転軸を有し回転可能であり、かつガイドローラ24は、軸方向の長さが、基板Zの長手方向と直交する幅方向における長さ(以下、基板Zの幅という)よりも長い。
なお、基板ロール20、ガイドローラ21、ガイドローラ24により、第1の搬送手段が構成される。
【0030】
ガイドローラ28は、ドラム26に巻き掛けられた基板Zを巻取り室16に設けられたガイドローラ31に搬送するものである。このガイドローラ28は、例えば、軸方向に回転軸を有し回転可能であり、かつガイドローラ28は、軸方向の長さが基板Zの幅よりも長い。
なお、ガイドローラ28、ガイドローラ31、巻取りロール30により、第2の搬送手段が構成される。
また、ガイドローラ24、ガイドローラ28は、上記構成以外は、供給室12に設けられたガイドローラ21と同様の構成であるため、その詳細な説明は省略する。
【0031】
ドラム26は、ガイドローラ24と、ガイドローラ28との間の空間Hの下方に設けられている。ドラム26は、その長手方向を、ガイドローラ24およびガイドローラ28の長手方向に対して平行にして配置されている。
このドラム26は、例えば、円筒状を呈し、軸方向に回転軸を有し、回転方向ωに回転可能なものである。ドラム26は、軸方向における長さが基板Zの幅よりも長い。
ドラム26は、その表面26a(周面)に基板Zが巻き掛けられて、回転方向ωに回転することにより、基板Zを所定の成膜位置に保持しつつ、搬送方向Dに基板Zを搬送するものである。
なお、ドラム26の回転方向ωの進行方向側、すなわち、基板Zが搬送される側が、下流側Ddであり、この下流側Ddの反対側が上流側Duである。
【0032】
図1に示すように、成膜部40は、ドラム26が回転方向ωに回転して、基板Zを搬送方向Dに搬送しつつ、ドラム26の表面26aに巻き掛けられた基板Zの表面Zfに膜を形成するものである。
【0033】
成膜部40は、放電ユニット42a〜42d、パルス電源(第1の電源部)44a、44b、直流電源(第2の電源部)46と、検出器47a、47b、スパッタガス供給部48、反応ガス供給部49を有する。制御部36により、成膜部40のパルス電源44a、44b、直流電源(DC電源)46と、スパッタガス供給部48、反応ガス供給部49が制御される。
【0034】
成膜部40においては、放電ユニット42a〜42dが、ドラム26の表面26aに対して所定の距離の隙間Sをあけて、回転方向ωの上流側Du側から下流側Ddに沿って配置されている。
成膜装置10において、ドラム26の表面26aと放電ユニット42a〜42dとの隙間SがプラズマPの発生空間となる。
放電ユニット42a〜42dは、平面視長方形状に形成されており、その長手方向をドラム26の軸方向と一致させて配置されている。この放電ユニット42a〜42dは、ドラム26に巻き掛けられる基板Zの幅方向の長さよりも長い。
【0035】
放電ユニット42a〜42dは、基本的に同じ構成であり、放電ユニット42aだけ直流電源46が接続されている。
以下、図2に基づいて、放電ユニット42aを例にして説明する。
図2に示すように、放電ユニット42aは、電極板50と、金属ターゲット52と、マグネット54とを有する。電極板50の表面50aにターゲット52が設けられており、裏面50bにマグネット54が配置されている。
【0036】
電極板50は、金属ターゲット52にパルス電源44a、44bまたは直流電源46から所定の電圧を印加するものであるとともに、金属ターゲット52を保持するターゲットフォルダを兼ねる。電極板50に、例えば、ボルトなどで金属ターゲット52が固定される。
【0037】
金属ターゲット52は、形成する膜の原料となるものであり、基板Zの表面Zfに形成する膜の組成に応じた金属により形成されている。例えば、Al膜を形成する場合、金属ターゲット52には、アルミニウム(Al)を用いる。また、SiO膜またはSiN膜を形成する場合には、金属ターゲット52には、シリコン(Si)を用いる。この金属ターゲット52は、スパッタリングに用いられる一般的なものである。
【0038】
マグネット54は、プラズマ放電を高密度に維持するために設けられるものであり、金属ターゲット52の表面52aに一定の磁力を発生させる。このマグネット54は、電極板50の裏面50b側に、間隔をあけて、例えば、3個、平行に設置されている。このマグネット54は、公知のマグネトロンスパッタリング装置で利用されているマグネットが用いられる。
金属ターゲット52の表面52aにおいて。マグネット54の間に整合する領域がエロージョン領域となる。
【0039】
成膜部40においては、放電ユニット42aと放電ユニット42bとが組みにされており、パルス電源44aが放電ユニット42aの電極板50と放電ユニット42bの電極板50に接続されている。また、放電ユニット42cと放電ユニット42dとが組みにされており、パルス電源44bが放電ユニット42cの電極板50と放電ユニット42dの電極板50とに接続されている。成膜部40は、いわゆるデュアルマグネトロンスパッタ方式の構成である。
【0040】
パルス電源44a、44bは、矩形波状に電圧を周期的発生するとともに、電圧値および電圧発生時間を調節する機能を有する。このパルス電源44a、44bにより、電極板50を介して各金属ターゲット52に、例えば、−Vの負の電圧を所定の時間間隔で所定時間印加することができる。このように、パルス電源44a、44bにより、所定負の電圧を、1周期のうち、一方の金属ターゲット52に所定時間印加し、他方の金属ターゲット52に所定時間印加することができる。
なお、このパルス電源44a、44bには、例えば、公知のDCパルススパッタリング装置または公知のデュアルマグネトロンスパッタリング装置で利用されているパルス電源が用いられる。
【0041】
パルス電源44aにより、放電ユニット42aと放電ユニット42bとに、負の電圧(−V)を所定の時間間隔で所定時間、交互に印加することにより、隣接する放電ユニット42a、42bが、交互にカソード、アノードとして作用する。
また、パルス電源44bも、放電ユニット42cと放電ユニット42dとに、負の電圧(−V)を所定の時間間隔で所定時間、交互に印加することにより、隣接する放電ユニット42c、42dが、交互にカソード、アノードとして作用する。
また、パルス電源44a、44bに限定されるものではなく、例えば、公知のRFスパッタリング装置で利用されている高周波電源を用いることもできる。
【0042】
直流電源46は、直流電圧または直流パルス電圧(DCパルス電圧)を発生させる機能と、電圧値および電圧発生時間を調節する機能を有する。
この直流電源46は、最上流側に配置された放電ユニット42aの金属ターゲット52に所定の電圧を所定に時間印加するものである。この直流電源46には、例えば、公知のDCスパッタリング装置またはDCパルススパッタリング装置で利用されている各種電源を用いることができる。
【0043】
本実施形態の成膜装置10においては、成膜部40に、パルス電源44a、44bおよび直流電源46を設けて、成膜時に印加する印加電圧パターンを以下のようにしている。
放電ユニット42c、42dとの組においては、パルス電源44bにより、例えば、1周期Tにおいて、デューティー比100%で、印加電圧−Vが矩形波状に、放電ユニット42c、42d(カソード(電極板50、金属ターゲット52))に交互に印加される。
【0044】
最上流に位置する放電ユニット42aと、放電ユニット42bとの組における印加電圧のパターンは、図3を用いて説明する。
パルス電源44aにより、図3に示すように、1周期Tのうち、先に放電ユニット42aに負の電圧(−V)を、時間ta印加し、次に、放電ユニット42bに負の電圧(−V)を、時間tb印加する。時間taと時間tbとは同じであり、いずれの放電ユニット42a(カソード(電極板50、金属ターゲット52))と、放電ユニット42b(カソード(電極板50、金属ターゲット52))にも印加していない時間を持っていない、すなわち、デューティー比100%である。
本実施形態においては、放電ユニット42bに負の電圧−Vが印加されているとき、すなわち、放電ユニット42aに負の電圧−Vが印加されていないとき、放電ユニット42aに、直流電源46により、パターン64に示すように、例えば、正の電圧Vを時間δ印加する。
なお、図3において、符号60は、放電ユニット42a(電極板50、金属ターゲット52)の印加電圧パターンを示し、符号62は、放電ユニット42b(電極板50、金属ターゲット52)の印加電圧のパターンを示す。
パルス電源44bによる放電ユニット42c、42dへの負の電圧印加、パルス電源44aによる放電ユニット42a、42bへの負の電圧印加、および直流電源46による放電ユニット42aへの正の電圧印加は、制御部36により、成膜時に制御される。
【0045】
図1に示すように、検出器47a、47bは、それぞれ放電ユニット42a〜42dの異常放電によるアークを検出するものであり、放電ユニット42aの上流側Duおよび放電ユニット42dの下流側Ddに設けられている。
各検出器47a、47bは、制御部36に接続されており、制御部36には、この検出器47a、47bからのアークの検出信号が入力される。このため、制御部36においては、アーク発生、すなわち、異常放電の有無を検知することができる。
本実施形態においては、常時、最上流の放電ユニット42aに正の電位を印加するのではなく、異常放電を検出したときに、直流電源46から、例えば、正の電圧Vを時間δ、最上流の放電ユニット42aの電極板50に印加をしてもよい。このため、最上流の放電ユニット42aに正の電位を常時印加していれば、この検出器47a、47bは、必ずしも必要ではない。
【0046】
スパッタガス供給部48は、配管48aを介して、各放電ユニット42a〜42dとドラム26の表面26aとの隙間Sに、アルゴンガス等のスパッタガスを供給するものである。このスパッタガス供給部48は、アルゴンガスなどのスパッタガスが充填されたボンベ(図示せず)、およびマスフローコントローラ(図示せず)、または流量調節用バルブ(図示せず)などを有するものであり、配管48aに、例えば、マスフローコントローラ、または流量調節用バルブを介してボンベが接続されている。
【0047】
反応ガス供給部49は、配管49aを介して、各放電ユニット42a〜42dとドラム26の表面26aとの隙間Sに、形成する膜の組成に応じた反応ガスを供給するものであり、酸化膜を形成する場合には、酸素ガスを供給し、窒化膜を形成する場合には、窒素ガスを供給する。この反応ガス供給部49は、酸素ガス、または窒素ガスなどの反応ガスが充填されたボンベ(図示せず)、およびマスフローコントローラ(図示せず)、または流量調節用バルブ(図示せず)などを有するものであり、配管49aに、例えば、マスフローコントローラ、または流量調節用バルブを介してボンベが接続されている。
【0048】
本実施形態において、例えば、基板Zの表面Zfに、Al膜を形成する場合、金属ターゲット52に、アルミニウム製のものを用い、反応ガスに酸素ガスを用いる。アルミニウム原子が金属ターゲット52から飛び出し、酸素ガスと反応して、Al原子となり、Al膜が形成される。
また、SiO膜を形成する場合、金属ターゲット52に、シリコン製のものを用い、反応ガスに酸素ガスを用いる。シリコン原子が金属ターゲット52から飛び出し、酸素ガスと反応して、SiO原子となり、SiO膜が形成される。
さらには、SiN膜を形成する場合、金属ターゲット52に、シリコン製のものを用い、反応ガスに窒素ガスを用いる。シリコン原子が金属ターゲット52から飛び出し、窒素ガスと反応して、SiN原子となり、SiN膜が形成される。
【0049】
本実施形態の成膜装置10においては、各放電ユニット42a〜42dとドラム26の表面26aとの隙間Sに、出入り自在にシャッター(図示せず)を設けることが好ましい。このシャッターは、ドラム26の表面26aおよび基板Zの表面Zfに膜が形成されないようにするためのものであり、各放電ユニット42a〜42dの金属ターゲット52から飛び出す金属原子を遮蔽する。シャッターは、例えば、各放電ユニット42a〜42dの全域を覆うように構成され、成膜時には、隙間Sから退避している。
なお、シャッターには、金属原子が付着するため、その付着した金属原子を、例えば、プラズマ、薬品、研磨などを用いて取り除くことが可能な除去機構を有することがより好ましい。
【0050】
本実施形態においては、成膜時に、図2に示すように、ドラム26の表面26aに基板Zを巻掛けて搬送する。このとき、基板ZがプラズマPに曝されると基板Zが加熱されて、基板Zが含有する水分または基板Zの表面Zfに付着していた水分が蒸発し、この水分wがさらにプラズマPにより分解されて酸素が生じる。これにより、金属ターゲット52の表面52aに付着し、酸化物56が形成される。特に、基板Zのうち、最初にプラズマPに曝される部分は、放出される水分wが多く、最上流側に配置される放電ユニット42aの金属ターゲット52の表面52aには、酸化物56が優先的に形成される。成膜が進行すると酸化物56がプラスに帯電する。
【0051】
しかしながら、本実施形態においては、成膜時に、最上流側に配置される放電ユニット42aに、正の電圧Vを時間δ印加することにより、帯電した酸化物56を中和することができる。これにより、異常放電の発生を抑制することができる。
放出される水分wが多い、PETフィルム基板、PENフィルム基板などの有機物により構成される基板、または有機層が形成された基板に対しても、優先的に形成される酸化物56が帯電しても中和できるため、異常放電の発生を抑制することができる。
【0052】
しかも、本実施形態においては、印加電圧値が高く放出される水分wが多い場合でも、正の電圧を所定時間印加することにより、帯電した酸化物56を中和することができるため、印加電圧値を下げることなく成膜ができる。このため、成膜速度を下げることなく成膜することができる。このように、生産性を維持しつつ、異常放電を抑制することができる。
【0053】
また、本実施形態においては、高い電力密度で成膜する場合でも、高い電力密度を維持しつつ成膜速度を下げることなく成膜ができる。具体的には、パルス電源44a、44bから電極板50を介して各金属ターゲット52に負の電圧(−V)を印加する際、例えば、いずれの金属ターゲット52(放電ユニット42a〜42d)においても電力密度の平均値が5.9kW/cm以上である。
なお、電力密度の平均値は、上述のように、金属ターゲット52毎(放電ユニット42a〜42d毎)に算出されるものである。この電力密度の平均値とは、パルス電源から放電ユニットの電極板を介して金属ターゲットに負の電位を供給している時間内における電力の平均値を、金属ターゲットの面積で除した値、すなわち、(金属ターゲットに負の電位を供給している時間内における電力の平均値)/(金属ターゲットの面積)の値のことである。
【0054】
電力密度の平均値が5.9kW/cm以上であると、成膜の際のプラズマ生成密度が高く、基板Zからより多く水分が放出されて酸素が生じ、この酸素により、搬送方向の最上流側に配置された放電ユニット42aの金属ターゲット52に形成される酸化物56の局在化がより顕著となり、異常放電の発生の頻度も高くなる。しかしながら、成膜の際、酸化物の局在化が顕著になっても、最上流側に配置される放電ユニット42aに、正の電圧を所定時間印加することにより、局在化がより顕著な酸化物の帯電を中和でき、異常放電の発生を抑制することができる。
【0055】
さらには、本実施形態においては、複数ある放電ユニット42a〜42dのうち、最上流に位置する放電ユニット42aだけに、直流電源46を設けるだけであるため、設備コストの増加、および設置スペースの増加も抑制することができる。
【0056】
上記本実施形態の効果は、デュアルマグネトロン方式により、有機物により構成される基板、または有機層が形成された基板を搬送しながら成膜する場合に、異常放電が生じる理由について、本願発明者が鋭意検討して得られた知見に基づくものである。
【0057】
以下、本願発明者の知見について、図4(a)に示すように、2つの放電ユニット100a、100bが、パルス電源100に接続されている構成を例にして説明する。
2つの放電ユニット100a、100bは、構成が同じであり、放電ユニット100aは、電極102表面に金属ターゲット104が配置されており、電極100の裏面にはマグネット(図示せず)が配置されている。
金属ターゲット104の上方に、反応ガスおよびスパッタガスを供給し、パルス電源110により、各放電ユニット100a,100bに交互に電圧が印加されて、プラズマが生成されて、スパッタリングがなされる。この2つの放電ユニット100a、100bが成膜部分を構成する。
【0058】
印加電圧が高い場合(高電力印加時)においては、基板Zが搬送方向Dで搬送されて、放電ユニット100aの上方(成膜部分)に到達した瞬間、高電力による密度の高いプラズマPによって基板Zが加熱され、基板Zに含有される空気、水分が放出されて、水分wがプラズマPで分解されて酸素を生じる。このように、プラズマPによる基板の表面の分解などで酸素が生じ、この酸素が放電ユニット100aのターゲット102のうち、搬送方向D上流側の非エロージョン部分に集中して大きな酸化物106aを発生させる。このように、酸化物106aが局在化して発生し、これに起因して、異常放電が発生すると考えられる。
【0059】
酸化物が局在化することで異常放電が生じることについて、推定されるメカニズムは以下のとおりである。
酸化物の付着の初期状態では、ひとつひとつの酸化物の塊が独立しており、プラズマへの表面積が大きく、中和する電子の飛来量が大きい。また金属ターゲットとの接触面積が小さいため、すなわち、抵抗が大きい。このため、絶縁破壊による異常放電は起きない。
酸化物の付着量が多くなり、酸化物の塊同士が接触し始めると、プラズマへの表面積が小さくなり、中和する電子の飛来量が減り、また金属ターゲットとの接触面積が大きくなり、すなわち、抵抗が減る。このため、異常放電が生じやすい。
【0060】
これに対して、印加電圧が低い場合(低電力時)においては、図4(b)に示すように、搬送される基板Zが、放電ユニット100aの上方(成膜部分)に到達しても、プラズマPの密度が小さく、基板Zが加熱される程度も小さい。このため、基板Zに含有される空気、水分が徐々に放出されて、水分wがプラズマPで分解されて徐々に酸素が生じる。このため、酸化物106は搬送方向Dに平均的に生成され、酸化物106aが局在化して発生することなく、異常放電が生じにくい。しかしながら、印加電圧が低い場合には、成膜速度が遅くなり、生産性が低下する。
【0061】
以上のように、高電力印加時には、成膜部分に差し掛かった瞬間に集中して酸素が発生し、またプラズマ密度も高く反応性が高いために、酸化の局在化が起きると考えられる。
このことから、搬送方向における最上流側に配置された放電ユニットにおいて、電子を中和するために正の電位を印加する手段を設けることにより、印加電圧値が高い場合でも、異常放電を抑制することができることを知見した。
【0062】
次に、本実施形態の成膜装置10の成膜方法について説明する。
成膜装置10は、供給室12から成膜室14を経て巻取り室16に至る所定の経路で、供給室12から巻取り室16まで長尺な基板Zを通して搬送しつつ、成膜室14において、基板Zに膜を形成するものである。
【0063】
成膜装置10においては、長尺な基板Zが、例えば、反時計回り巻回された基板ロール20からガイドローラ21を経て、成膜室14に搬送される。成膜室14においては、ガイドローラ24、ドラム26、ガイドローラ28を経て、巻取り室16に搬送される。巻取り室16においては、ガイドローラ31を経て、巻取りロール30に、長尺な基板Zが巻き取られる。長尺な基板Zを、この搬送経路で通した後、供給室12、成膜室14および巻取り室16の内部を真空排気部32により、所定の真空度(圧力)に保つ。
【0064】
成膜部40においては、成膜条件に基づいて、制御部36により、パルス電源44a、44bから放電ユニット42a〜42d(電極板50、金属ターゲット52)に印加する印加電圧(−V)、およびこの印加電圧を印加する時間(デューティー比)も決定されている。
【0065】
次に、スパッタガス供給部48から配管48aを介して、スパッタガスとして、アルゴンガスを所定の量供給するとともに、反応ガス供給部49から配管49aを介して、隙間Sに反応ガス(酸素ガス、窒素ガス等)を所定の量供給する。この場合、設定された成膜条件に基づいて、真空排気部32により、成膜室14内は、例えば、1Pa以下の成膜圧力に保持される。
【0066】
次に、パルス電源44a、44bから、成膜時に、負の電圧(−V)を各電極板50(金属ターゲット52)に印加し、プラズマPを生成させる。このプラズマPによりイオン化したアルゴンガスが金属ターゲット52の表面52aに衝突し、金属ターゲット52から金属原子が飛び出す。この金属原子が反応ガスと反応して金属化合物となり、金属化合物として基板Zの表面Zfに付着し、金属化合物の膜が形成される。
【0067】
本実施形態において、成膜時に、放電ユニット42c、42dとの組には、例えば、デューティー比50%で、印加電圧−Vを交互に印加する。
最上流に位置する放電ユニット42aと、放電ユニット42bとの組には、図3に示すように印加電圧パターン60および印加電圧パターン62で、印加電圧−Vを交互に印加するとともに、最上流の放電ユニット42aに負の電圧が印加されていないとき、正の電圧Vを時間δ(印加電圧パターン64)、最上流の放電ユニット42aに印加する。
このように、成膜時に、最上流側に配置される放電ユニット42aに正の電圧Vを時間δ印加することにより、酸化物56が形成されて帯電しても中和され、異常放電の発生が抑制される。
【0068】
そして、順次、長尺な基板Zが反時計回り巻回された基板ロール20をモータにより時計回りに回転させて、長尺な基板Zを連続的に送り出し、ドラム26を所定の速度で回転させつつ、成膜部40により長尺な基板Zの表面Zfに連続的に膜を形成する。これにより、表面Zfに所定の膜が形成された基板Z、すなわち、膜の性質または種類に応じて機能性フィルムFが製造される。表面Zfに所定の膜が形成された基板Zが、ガイドローラ28、およびガイドローラ31を経て、巻取りロール30に、成膜された長尺な基板Z(機能性フィルムF)が巻き取られる。
このようにして、本実施形態の成膜装置10の成膜方法においては、表面Zfに所定の膜fが形成された基板Z、すなわち、機能性フィルムFを製造することができる。
【0069】
本実施形態において、例えば、機能性フィルムとして、ガスバリアフィルム(水蒸気バリアフィルム)を製造する際には、ガスバリア膜として、窒化ケイ素膜、酸化アルミニウム膜、酸化ケイ素膜等の無機膜を成膜する。
また、機能性フィルムとして、有機ELディスプレイおよび液晶ディスプレイのような表示装置などの各種のデバイスまたは装置の保護フィルムを製造する際には、膜として、酸化ケイ素膜等の無機膜を成膜する。
さらに、機能性フィルムとして、光反射防止フィルム、光反射フィルム、各種のフィルタ等の光学フィルムを製造する際には、膜として、目的とする光学特性を有する膜、または目的とする光学特性を発現する材料からなる膜を成膜する。
【0070】
本実施形態において、成膜する膜は、特に限定されるものではなく、反応性スパッタリングによって成膜可能なものであれば、製造する機能性フィルムに応じて要求される機能を有するものが適宜形成することができる。また、膜の厚さにも、特に限定はなく、機能性フィルムに応じて要求される性能に応じて、必要な膜さを適宜決定すればよい。
さらに、成膜する膜は、単層に限定はされず、複数層であってもよい。膜を複数層形成する場合には、各層は、同じものであっても、互いに異なるものであってもよい。
【0071】
なお、本実施形態においては、放電ユニット42a〜42dを、2つの組みとしたが、本発明は、これに限定されるものではない。例えば、各放電ユニット42a〜42dに、パルス電源を設ける構成としてもよい。この場合でも、放電ユニット42aには、成膜のため(スパッタリングのため)の印加電圧(−V)を掛けていないときに、正の電圧VDを時間δ、印加させる。これにより、本実施形態と同様の効果を得ることができる。
【0072】
本実施形態の成膜装置10においては、反応性スパッタリング法を例にして、説明したが、これに限定されるものではない。基板Zが搬送された際に、基板Zに水分が含まれており、プラズマに曝されることにより、水分が放出されて酸化物が形成されるものであれば、スパッタリング法であっても、本実施形態と同様の効果を得ることができる。
【0073】
以上、本発明の成膜装置について詳細に説明したが、本発明は、上記実施形態に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのは、もちろんである。
【図面の簡単な説明】
【0074】
【図1】本発明の実施形態に係る成膜装置を示す模式図である。
【図2】図1に示す成膜装置の成膜部の要部を示す模式図である。
【図3】縦軸に電圧をとり、横軸に時間をとって、最上流に位置する放電ユニットと、それと組みをなす放電ユニットとに印加する印加電圧のパターンを示すグラフである。
【図4】(a)および(b)は、本発明の実施形態の効果を説明するための模式図である。
【符号の説明】
【0075】
10 成膜装置
12 供給室
14 成膜室
16 巻取り室
20 基板ロール
21,24,28,31 ガイドローラ
30 巻取りロール
32 真空排気部
36 制御部
40 成膜部
44a、44b パルス電源
D 搬送方向
Z 基板

【特許請求の範囲】
【請求項1】
成膜室内で長尺の基板を所定の搬送方向に搬送しつつ、スパッタリングを行い前記基板の表面に所定の膜を形成する成膜装置であって、
前記成膜室内を所定の真空度にする真空排気部と、
前記基板の表面に対向し、かつ前記搬送方向に沿って配置された複数の金属ターゲットと、
前記各金属ターゲットに負の電圧を印加する第1の電源部と、
前記金属ターゲットのうち、前記搬送方向の最上流側に配置された金属ターゲットに正の電圧を印加する第2の電源部と、
前記基板の表面と前記各金属ターゲットとの間にスパッタガスを供給するスパッタガス供給部と、
成膜時に、前記第1の電源部により前記各金属ターゲットに負の電圧を所定の時間間隔で所定時間印加させるとともに、前記最上流側に配置された金属ターゲットに前記第1の電源部から負の電圧を印加していないとき、前記第2の電源部により前記最上流側に配置された金属ターゲットに前記正の電圧を印加させる制御部とを有することを特徴とする成膜装置。
【請求項2】
さらに、前記基板の表面と前記各金属ターゲットとの間に反応性ガスを供給する反応性ガス供給部を有し、前記成膜時に、前記反応ガスを供給する請求項1に記載の成膜装置。
【請求項3】
前記各金属ターゲットには、それぞれマグネットが設けられている請求項1または2に記載の成膜装置。
【請求項4】
前記膜は、ガスバリア膜である請求項1〜3のいずれか1項に記載の成膜装置。
【請求項5】
前記ガスバリア膜は、酸化アルミニウム膜である請求項4に記載の成膜装置。
【請求項6】
前記第1の電源部は、パルス電源または高周波電源である請求項1〜5のいずれか1項に記載の成膜装置。
【請求項7】
複数の金属ターゲットに対向して、長尺の基板を所定の搬送方向に搬送しつつ、スパッタリングを行い前記基板の表面に所定の膜を形成する成膜方法であって、
前記基板と前記各金属ターゲットとの間にスパッタガスを供給する工程と、
前記各金属ターゲットに負の電圧を所定の時間間隔で所定時間印加するとともに、前記最上流側に配置された金属ターゲットに負の電圧を印加していないとき、前記最上流側に配置された金属ターゲットに前記正の電圧を印加する工程とを有することを特徴とする成膜方法。
【請求項8】
前記基板と前記各金属ターゲットとの間にスパッタガスを供給する工程においては、さらに、前記基板の表面と前記各金属ターゲットとの間に反応性ガスを供給する請求項7に記載の成膜方法。
【請求項9】
前記各金属ターゲットに負の電圧を印加する際、各金属ターゲットにおける電力密度の平均値が5.9kW/cm以上である請求項7または8に記載の成膜方法。
【請求項10】
前記膜は、ガスバリア膜である請求項7〜9のいずれか1項に記載の成膜方法。
【請求項11】
前記ガスバリア膜は、酸化アルミニウム膜である請求項10に記載の成膜方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−275251(P2009−275251A)
【公開日】平成21年11月26日(2009.11.26)
【国際特許分類】
【出願番号】特願2008−125965(P2008−125965)
【出願日】平成20年5月13日(2008.5.13)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】