説明

放射線照射システム

【課題】照射対象の移動に起因して生じる有限幅の呼吸位相領域でのイオン線照射の偏在を解消し、照射対象に対して計画にあった線量分布の放射線を照射システムを提供する。
【解決手段】放射線を生成する放射線生成装置1と、放射線生成装置から出射された放射線の線量を計測する線量計測装置と、照射対象の位置を計測する変動計測装置212と、放射線生成装置1からの放射線の出射開始及び出射停止を制御する制御装置を備え、この照射装置が、目標照射位置情報,線量計測装置からの線量情報及び変動計測装置からの照射対象の位置情報に基づいて、照射対象の照射位置を複数に分割した分割領域ごとに目標線量に達したかを判定し、目標線量に達していない層領域に対して放射線を照射するように出射開始及び出射停止を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、X線等の電磁波,電子線,中性子線,陽子線,炭素線等の粒子線を照射目標に照射する放射線照射システムに関する。
【背景技術】
【0002】
放射線治療では、癌などの患者の患部にイオン線(陽子線,ヘリウム線,炭素線等の荷電粒子ビーム),X線等の電磁波,電子線,中性子線等を照射する。どの放射線を用いる場合でも、基本的には正常細胞への線量を抑えつつ、標的となる患部のがん細胞に集中的に線量を与え、がん細胞を集中的に死滅させることで治療効果を得る。
【0003】
イオン線を例にとり、放射線照射システムによる線量分布の形成方法を述べる。
【0004】
この種の治療に用いるイオン線照射システムは、イオン加速器,ビーム輸送系、及び回転ガントリーに搭載された照射野形成装置を備える。イオン加速器で加速されたイオン線は、ビーム輸送系を経て照射野形成装置に輸送される。イオン線は照射野形成装置で患部形状に形成される。回転ガントリーにより、標的に対して360°どの方向からでもイオン線を照射可能となっている。以下、イオン線を照射し体内の患部に向う方向を深部方向、それに対して直角な方向を横方向と呼ぶ。
【0005】
患部の典型的な3次元の大きさは数cm立方である。加速器から取り出されるイオン線の
典型的な太さは数mmである。すなわち、横方向にイオン線を照射できる範囲も数mmであり
、大概、患部の横方向の大きさと比べて小さい。
【0006】
イオン線が物質に入射すると、停止する直前に運動エネルギーの大部分が放出されブラッグピークと呼ばれる極大を持つ線量分布を形成する物理特性がある。イオン線のエネルギーを調整し、ブラッグピークを患部の深部方向の位置に概一致させ、患部に集中的に線量を付与する。イオン種やエネルギーによるが、ブラッグピークも典型的に深さ方向に数mmの大きさである。すなわち、大概、患部の深部方向の大きさと比べて小さい。
【0007】
そこで、患部に満遍なくイオン線を照射するためには、横方向にも深部方向にも線量分布を拡大する必要がある。
【0008】
イオン線の線量分布を横方向に拡大する方法として、スキャニング照射法や散乱体照射法が知られている。スキャニング照射法とは、照射野形成装置内に走査電磁石を備え、標的となる患部と比べて相対的に細いイオン線を横方向に偏向し、イオン線を離散的、もしくは連続的に並べ、標的を塗りつぶすように照射する方法である(図1(a))。散乱体照射法とは、照射野形成装置にイオン線散乱体を備え、イオン線を散乱させ、典型的には十数cmに拡大し、標的の横方向形状に合致するコリメータを用いてイオン線を照射する方
法である。散乱体のイオン線拡大性能を超えるほど横方向に大きな標的にイオン線を照射する場合は、イオン線を照射しては標的の横方向の位置を変更し、再びイオン線を照射し線量分布を形成するという手順を繰り返し、複数の線量分布を並べて繋ぎ合わせるようにして、1つの所望の大きさの線量分布を形成する方法も知られている。これは、パッチ照射法して知られている(図1(b))。
【0009】
深部方向に標的大に線量分布を形成するためには、複数のエネルギーのイオン線を照射する方法がある。すなわち、イオン加速器で所望エネルギーまで加速したイオン線を標的に照射しては、別のエネルギーまで加速したイオン線を再度標的に照射し、深さの異なるブラッグピークを形成し、それらを適切な比率で重ね合わせてSOBP(Spread Out Bragg Peak)や、計画した深部線量分布を形成する(図1(c))。なお、イオン加速器から出射するイオン線のエネルギーを変更するかわりに、ビームライン上にエネルギー吸収体を備え、その厚みを変化させてイオン線のエネルギーを変えることも可能である。イオン加速器での加速エネルギーと、エネルギー吸収体を組み合わせてもよい。なお、一定エネルギーのイオン線の入射であっても、リッジフィルターや、RMW(Range Modulation Wheel)を透過することで、複数のエネルギー成分のイオン線を生成し、SOBPを形成することもできる。
【0010】
回転ガントリーを用い、深部方向の線量分布を標的大に拡大することもできる。例えば対向する2方向からイオン線を照射し、各々の線量分布の終端を繋ぎ合わせるようにすると、深さ方向に大きな高線量領域を形成できる(図1(d))。この際、各々の方向について、イオン加速器やエネルギー吸収体を用いてエネルギーを変更してもよい。また、リッジフィルターやRMWを用い、深部方向に線量分布を拡大してもよい。
【0011】
上記では、便宜上、横方向と深部方向それぞれ独立させて標的大への線量分布の拡大について述べた。しかし、両者を同時に拡大する事もある。例えば、ディスクリートスポットスキャニング照射として知られているように、立体状の標的をスポットと呼ばれる微少領域に分割し、スポットそれぞれの位置に、それぞれの計画線量のイオン線を照射する場合は、横方向にも深部方向にも個々の小さな線量分布を組み合わせて、標的大に線量分布を拡大している。
【0012】
さらには、両者を組み合わせることもできる。例えば、多門照射と呼ばれて知られるように、回転ガントリーを用い、複数の方向から標的にイオン線を照射し、それらを合わせて所望の線量分布を形成する方法がある。IMRT(強度変調放射線治療Intensity Modulated Radiation Therapy),IMPT(強度変調陽子線治療Intensity Modulated Proton Therapy)、のように、強度を変えながら、複数の方向からX線やイオン線を照射し、最終的に所望の線量分布を形成する方法がある。これらも、横方向と深部方向の混ざり合った個々の線量分布を組み合わせ、標的大に線量分布を拡大していることに他ならない。
【0013】
以下では、最終的に形成する標的大の線量分布を構成するための、上記に示した個々の線量分布のことを線量分布要素と呼ぶことにする。
【0014】
上記のような種々の手法で標的大に線量分布を拡大する。しかし、標的となる患部が肝臓などの場合、患部は呼吸,心拍等の生理的な運動により、不規則に動くことがある。このため、標的の動きを考慮せずに放射線を照射してしまうと、所望量の放射線が照射されず、計画した線量分布が形成されない可能性がある。そこで、呼吸同期照射と呼ばれるように、レーザー距離計等の呼吸位相検出装置を用い、体表までの距離を測定する等し、呼吸の位相を検出し、許容される範囲に呼吸位相があるときのみイオン線を照射することで計画通りに線量分布を形成する。便宜上、呼吸の位相の検出に限定して記述したが、心拍等の生理的な運動の位相を検出してもよい。以下も同様に、呼吸の位相に限定して記述するが、生理的な運動の位相を検出してもよい。
【0015】
特許文献1は、粒子線を所定のエネルギーまで加速して出射する加速装置と、この加速装置から出射された粒子線を複数回に分けて照射する照射装置と、加速器から出射する粒子線の強度を変調する加速器強度変調装置と、照射対象の呼吸性変動を監視する呼吸性変動監視装置を備える粒子線照射システムを開示している。この粒子線照射システムは、照射対象をビーム進行方向に分割し、分割されたスキャン領域ごとに粒子線を照射する。特許文献1では、呼吸性変動監視装置で検出した呼吸性変動に基づいて加速器から出射する粒子線の強度を変調させたり、照射対象の周期変動の変位量が所定位相内にあるゲート期間でスキャニング照射することで、計画に沿った粒子線の照射を実現している。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特開2008−154627号公報
【発明の概要】
【発明が解決しようとする課題】
【0017】
従来の呼吸同期照射では、以下のような課題が存在する。すなわち、呼吸同期照射する際は、ある有限幅の呼吸位相の領域を設定する。そして、すぐにイオン線を照射できる状態を維持すると共に呼吸位相も検出し、設定した呼吸位相の幅内に呼吸位相があるときのみ、イオン線を標的に照射する。しかし、呼吸は不規則なため、実際に照射されるイオン線は設定した吸位相領域内にはあるものの、その範囲内では呼吸位相について満遍なく照射されるとは限らず、例えば、設定した有限幅の呼吸位相の端に偏ってイオン線が照射される可能性がある。
【0018】
このように呼吸等に起因して移動する患部に対して、イオン線を照射した場合に得られる線量分布について、図2を用い説明する。
【0019】
呼吸に伴い標的が深部方向に動く場合、上記現象により有限幅の呼吸位相領域内でイオン線が偏って照射されたとすると、各瞬間に形成される線量分布の深さが変化するため、計画した線量分布よりも、深い側、もしくは、浅い側に偏在した線量分布が最終的に得られる。呼吸は不規則なため、標的大の線量分布の構成要素である1つ1つの線量分布それぞれについて、線量分布が深い側にずれるか、浅い側にずれるかはビーム照射時点の呼吸位相で決まるので、制御は困難である(図2(a))。
【0020】
呼吸に伴い標的が横方向に動く場合、上記事情により有限幅の呼吸位相領域内でイオン線が偏って照射されたとする。すると、各瞬間に形成される線量分布の横方向の位置が変化するため、計画した線量分布よりも、左側、もしくは右側に偏在した線量分布が最終的に得られる。この場合も同様に、標的大の線量分布の構成要素である1つ1つの線量分布それぞれについて、線量分布が左側にずれるか右側にずれるかはビーム照射時点での呼吸位相で決まるので、制御は困難である(図2(b))。
【0021】
このため、線量分布要素を組み合わせて標的大の線量分布を形成すると、深部方向,横方向、あるいは両者を組み合わせた境目で、実際に形成される線量分布は計画した線量分布と差が生じてしまう可能性がある。
【0022】
そこで本発明の目的は、標的大の線量分布を形成する際、線量分布要素の境目でも、計画通りの線量分布を得ることにある。
【課題を解決するための手段】
【0023】
上記目的を達成する本発明の特徴は、放射線を生成する放射線生成装置と、この放射線生成装置から出射された放射線の線量を計測する線量計測装置と、照射対象の位置を計測する変動計測装置と、放射線生成装置からの放射線の出射開始及び出射停止を制御する制御装置を備え、この制御装置が、目標照射位置情報,線量計測装置からの線量情報及び変動計測装置からの照射対象の位置情報に基づいて、照射対象の照射位置を複数に分割した分割領域ごとに、目標線量に達したかを判定し、目標線量に達していない分割領域に対して放射線を照射するように出射開始及び出射停止を制御することにある。このように、分割領域毎にあらかじめ放射線の目標照射量を設定し、放射線を照射中に呼吸位相を計測し、目標値に到達していない呼吸位相時にのみ放射線を照射するため、呼吸位相の領域毎に照射されたイオン線の偏在を解消し、線量分布要素の深さ方向,横方向、あるいは両方向の端部に生じる制御困難な線量分布領域を削減できる。線量分布要素毎にこの照射方法を適用することで、複数の線量分布要素を組み合わせた場合であっても、その境目で計画通りの線量分布を得られるようになる。
【発明の効果】
【0024】
本発明によれば、照射対象の移動に起因して生じる、有限幅の呼吸位相領域でのイオン線照射の偏在を解消することができ、照射対象に対して計画にあった線量分布を形成できる。
【図面の簡単な説明】
【0025】
【図1】種々の線量分布の拡大方法の模式図であり、(a)スキャニング照射法により得られる横方向の線量分布、(b)パッチ法で得られる横方向の線量分布、(c)イオン加速器から出射するイオン線のエネルギーを変化させて照射して得られる深部方向の線量分布、(d)回転ガントリーで2方向からイオン線を照射して得られる深部方向の線量分布を示す。
【図2】呼吸等に起因して患部が動くときの線量分布を表す模式図であり、(a)深部方向の線量分布、(b)横方向の線量分布を示す。
【図3】本発明の1実施例であるイオン線治療装置の全体構成を表す概念図である。
【図4】本発明の1実施例であるイオン線治療装置に備えられる照射野形成装置を示す概念図である。
【図5】本発明の1実施例であるイオン線治療装置に備えられる照射制御システムの構成をあらわす概念図である。
【図6】本発明の構成要素である位相領域判定装置メモリに格納されるデータテーブルの概念図である。
【図7】本発明の構成要素である目標値メモリに格納されるデータテーブルの概念図である。
【図8】本発明による初期のイオン線照射を示す図であり、(a)患者位置信号に対する出射許可信号および出射ビーム信号の関係を示す図、(b)呼吸位相領域ごとの目標線量と照射済み線量を示す図、(c)深部方向での線量分布を示す図である。
【図9】本発明による中期のイオン線照射を示す図であり、(a)患者位置信号に対する出射許可信号および出射ビーム信号の関係を示す図、(b)呼吸位相領域ごとの目標線量と照射済み線量を示す図、(c)深部方向での線量分布を示す図である。
【図10】本発明による後期のイオン照射を示す図であり、(a)患者位置信号に対する出射許可信号および出射ビーム信号の関係を示す図、(b)呼吸位相領域ごとの目標線量と照射済み線量を示す図、(c)深部方向での線量分布を示す図である。
【図11】本発明の1実施例であるイオン線治療装置を構成する装置の関係を示す図である。
【図12】本発明の第2実施形態であるイオン線治療装置に備えられる照射野形成装置を示す概念図である。
【図13】本発明の第2実施形態であるイオン線治療装置でイオン線を照射した場合の横方向の線量分布を示す図である。
【図14】本発明の第3実施形態であるイオン線照射装置に備えられる照射野形成装置を示す概念図である。
【図15】本発明の第3実施形態であるイオン線照射装置でイオン線を照射した場合の横方向の線量分布を示す図である。
【図16】本発明の第4実施形態であるイオン線照射装置に備えられる照射野形成装置を示す概念図である。
【図17】本発明の第4実施形態であるイオン線照射装置でイオン線を照射した場合の深部方向の線量分布を示す図である。
【図18】本発明の第5実施形態であるイオン線照射装置に備えられる照射野形成装置を示す概念図である。
【図19】本発明の第6実施形態であるイオン線照射装置に備えられる照射野形成装置を示す概念図である。
【図20】本発明の第6実施形態であるイオン線照射装置でイオン線を照射した場合の概念図を示し、(a)患部に対してイオン線を照射した場合の概念図、(b)横方向の線量分布を示す図、(c)深部方向の線量分布を示す図である。
【発明を実施するための形態】
【0026】
以下、本発明の好適な実施形態について詳細に説明する。
【0027】
(実施形態1)
図3は本実施形態の放射線治療装置であるイオン線治療装置の全体構成の概略図である。図4は実施例に記載する照射野形成装置200の内部構造の詳細を示す図である。図5は本実施例に記載する照射制御システム300の内部構造の詳細を示す図である。放射線生成装置の例として、イオン線治療装置を実施例として記述するが、X線等、そのほかの放射線を照射する装置としてもよい。
【0028】
図3に示すように、本実施形態のイオン線治療装置は、患者支持装置(ベッド装置)211に位置決めされた患者210の患部210aに対してイオン線を照射する。イオン線治療装置は、イオン線発生装置1,中央制御装置100,照射野形成装置200,照射制御システム300を備える。イオン線発生装置1ではイオンを生成し所望エネルギーまで加速し、照射野形成装置200にイオン線を供給する。照射野形成装置200は、供給されたイオン線を標的形状にあわせて形成する。照射制御システム300は、照射の進捗に応じ、イオン線発生装置1によるイオン線の照射を制御する。中央制御装置100は、それぞれの装置の連携制御をする。
【0029】
各々の装置の内部の構成と、それらの動作について、以下で詳細を述べる。
【0030】
イオン線発生装置1は、イオン源2,前段加速器3,低エネルギービーム輸送系4,シンクロトロン5,高エネルギービーム輸送系13を備える。
【0031】
イオン源2で生成されたイオンは、前段加速器3で前段加速され、低エネルギービーム輸送系4を通ってシンクロトロン5に供給される。シンクロトロン5ではイオン線を周回させながら加速し、その周回軌道上に、加速装置6,出射用高周波印加装置7,出射用デフレクタ12を備え、出射用高周波印加装置7は出射用高周波印加電極8(図示せず)を備える。出射用高周波印加装置7は、開閉スイッチ11を介して出射用高周波電源9から電力供給を受ける。開閉スイッチ11は中央制御装置100と照射制御システム300と接続されており、その指令で開閉する。加速装置6の備える高周波加速空胴に高周波を印加してイオン線を加速する。所望のエネルギー(例えば50〜250MeV)までイオン線が加速された後、出射用高周波電源9からの高周波電力が、閉じられた開閉スイッチ11を経て出射用高周波印加電極8によりイオン線に印加される。これにより、安定にシンクロトロン5内を周回していたイオン線は不安定な状態に移行され、出射用デフレクタ12を通って高エネルギービーム輸送系13へ出射される。イオン線の出射の際には、シンクロトロン5に設けられた4極電磁石、及び偏向電磁石に導かれる電流が一定の設定値に保持され、安定限界もほぼ一定に保持されている。
【0032】
高エネルギービーム輸送系13と照射野形成装置200は回転ガントリー14に搭載されている。回転ガントリー14の回転角度を調整することで、患者210に対して所望の方向からイオン線を照射可能になっている。シンクロトロン5から取り出されたイオン線は高エネルギービーム輸送系13に輸送され、照射野形成装置200を通過して標的に照射される。
【0033】
なお、イオン線発生装置1として、シンクロトロンを中心に構成した例を示したが、サイクロトロンを用いる方法も考えられる。
【0034】
図4を用い、照射野形成装置200の詳細を説明する。照射野形成装置200は、イオン線発生装置1により生成されたイオン線を、患者支持装置211に位置決めされた患者210の患部210aの形状に合わせて拡大する。照射野形成装置200はケーシング201を備え、ケーシング201内に、入射イオン線モニタ202,走査電磁石203,線量モニタ204,走査後イオン線位置モニタ205,レンジシフタ206,レンジシフタ挿入機構207,ボーラス208,コリメータ209を備える。治療室内に呼吸位相計測器212を設置する。呼吸位相計測器212は、患者210の呼吸の位相を計測し、標的の患部210aの変動を計測する。
【0035】
入射イオン線モニタ202は、照射野形成装置200に入射するイオン線の位置を計測し、許容位置内にあることを監視する。つまり、入射イオン線モニタ202は、イオン線の位置を計測すると、この位置情報を照射制御システム300に出力する。照射制御システム300は、受信したイオン線の位置が予め定められた許容値の範囲内であるかを判断する。入射イオン線のエネルギーはシンクロトロン5で調整する。部品の故障等、何らかの原因でイオン線位置が許容値を超えた場合は、照射制御システム300が中央制御装置100にイオン線照射中止信号を送信し(信号線は図では省略)、信号を受信した中央制御装置100は開閉スイッチ11を開いて直ちにイオン線の照射を中止する。
【0036】
次にイオン線は走査電磁石203に到達する。走査電磁磁石203が生成した励磁磁場により患部形状の横方向にあわせてイオン線は偏向される。照射制御システム300が走査電磁石203の励磁量を制御することで、イオン線の偏向量が変わり、横方向の照射位置が変更される。ここで、横方向とはイオン線の進行方向に対して垂直な方向を示す。
【0037】
次にイオン線は線量モニタ204,走査後イオン線位置モニタ205に到達する。線量モニタ204ではイオン線の照射量を、走査後イオン線位置モニタ205では偏向後のイオン線の位置をそれぞれ計測する。線量モニタ204は計測したイオン線の照射量情報を照射制御システム300へ出力する。また、走査後イオン線位置モニタ205は計測したイオン線の位置情報を照射制御システム300に出力する。照射制御システム300は、入射イオン線モニタ202と同様、イオン線の照射量及びイオン線の位置が許容範囲内であるかを判断する。受信したこれらの値が許容範囲外であった場合は、照射制御システム300は中央制御装置100にイオン線照射中止信号を送信する(信号線は図では省略)。中央制御装置100は、イオン線照射中止信号を受け取ると、直ちにイオン線の照射を中止する。
【0038】
次にイオン線はレンジシフタ挿入機構207に搭載されたレンジシフタ206を通過する。レンジシフタ挿入機構207の役割は、標的となる患部210aの深さにあわせた厚み分のレンジシフタ206を挿入し、イオン線のエネルギーを変更することである。中央制御装置100に従い(信号線は図では省略)、複数のレンジシフタ206をイオン線軌道上に配置し、シンクロトロン5による加速と合わせて、所望エネルギーでのイオン線の照射を実現する。図4では、複数の厚みの板状のレンジシフタ206を組み合わせて挿入するバイナリタイプを示したが、楔状のレンジシフタを複数重ね合わせ、イオン線が透過する厚みを変更してもよい。
【0039】
ボーラス208は、例えば樹脂製のブロック体を掘削加工したものであり、イオン線の入射位置に応じて樹脂通過厚が変化する構造を持つ。これにより、ボーラス208通過後のイオン線のエネルギーを入射位置ごとに変化させることが可能で、イオン線の到達深さを患部210aの深部方向形状と合致させる。これは、走査電磁石203で偏向量を変え、さらにシンクロトロン5によるイオン線の加速とレンジシフタ206によるエネルギー減衰を組み合わせたエネルギー変更で実現してもよく、この場合は、ボーラス208を省略可能である。
【0040】
コリメータ209は、板状のイオン線の遮蔽体に患部210aの横方向の輪郭に対応する穴を備えることにより、横方向に拡大されたイオン線のうち、その穴を通過したイオン線のみを患部210aに照射する。これにより、患部210aの横方向形状と照射するイオン線の横方向形状を合致させる。走査電磁石203でイオン線の偏向量を調整して横方向形状を一致させてもよく、この場合は、コリメータ209を省略可能である。コリメータ209は、通常、患部210aの横方向形状に合わせて加工され、患部210a毎に交換される。コリメータ209としてマルチリーフコリメータを用い、リーフを移動して患部210aの横方向形状に合わせることで、加工,交換の手間を省いてもよい。
【0041】
呼吸位相計測器212は、呼吸位相を計測し患部210aの変動を検知し、患者位置信号を照射制御システム300へ送信する。具体的には、X線や超音波を用いて撮影した写真を解析して患部位置を算出する方法,レーザー距離計を用い体表の変動を測定する方法,体表に加速度センサーを取り付けて体表の変動を測定する方法,患者の呼気と吸気の流量を測定する方法,患者の胸部にバンドを取り付け胸囲の変化を測定する方法,電極を用い胸部の筋力の収縮を電気信号で取り出す方法、なども考えられる。なお、呼吸位相の計測に代表させて実施例を記述したが、照射対象の変動を計測する変動計測装置であればよく、具体例に示したように、患部の変動を直接計測する方法や、患部と連動する部位の変動を計測して患部の変動を推定する方法が考えられる。
【0042】
上記の機器を通過したイオン線は患者支持装置211に位置決めされた患者210の患部210aに照射され、線量分布を形成する。本実施形態では、照射野形成装置200に備えられた走査電磁石203がイオン線の進行方向に対して垂直な平面内での線量分布を形成し、照射野形成装置200に備えられたレンジシフタ206がイオンビームの進行方向(体表面からの深さ方向)での線量分布を形成する。走査電磁石203がイオン線を横方向に偏向してビームを照射することで、ガウス分布状の線量分布を組み合わせて広範囲に線量分布を形成できる。なお、本実施形態において、走査電磁石203の励磁量を制御することで横方向の目標照射位置にイオン線を照射し、レンジシフタ206の厚みを制御することで深部方向の目標照射位置にイオン線を照射する。
【0043】
図5を用い、本実施例を実現し放射線の出射及び停止を制御する制御装置である照射制御システム300の詳細を説明する。照射制御システム300は、計画通りの線量分布を形成するため、呼吸位相計測器212で計測した呼吸位相と、線量モニタ204で計測したイオン線通過量の信号を用い開閉スイッチ11を開閉する。また、照射制御システム300は、位相領域判定装置301,振り分け装置303,マルチチャンネルカウンタ304,開閉信号生成装置309,照射完了信号生成装置310,インターロック信号生成装置311を備える。
【0044】
位相領域判定装置301は位相領域判定装置メモリ302を備えており、中央制御装置100,呼吸位相計測器212,照射中呼吸位相領域メモリ307と接続されている。位相領域判定装置メモリ302には、図6に示すように、呼吸位相をθとして、中央制御装置100から取得した呼吸位相範囲が保存されている。これを用いイオン線を照射中に、呼吸位相計測器212で計測した呼吸位相を呼吸位相領域に変換し(呼吸位相領域iに変換したとする)、その結果を照射中呼吸位相領域メモリ307に記録する。また、位相領域判定装置301が判定した領域番号を位相領域判定装置メモリ302に記憶し、振り分け装置303,比較装置312が適宜参照してもよい。
【0045】
振り分け装置303は、照射中呼吸位相領域メモリ307,照射中線量分布要素メモリ308,線量モニタ204とマルチチャンネルカウンタ304に接続している。照射中呼吸位相領域メモリ307は中央制御装置100と接続されており、照射中の線量分布要素が逐次記録される(線量分布要素jに照射しているとする)。振り分け装置303は、位相領域判定装置メモリ302と照射中呼吸位相領域メモリ307に記録されている呼吸位相領域iと線量分布要素jの情報を読み込み、これに従って線量モニタ204によって計測されたイオン線照射量を、対応するマルチチャンネルカウンタ304−i,jに加算する。また、それと並行してマルチチャンネルカウンタ304−S,jを備え、線量モニタ204で計測した照射量を、位相領域によらず線量分布要素jに対応させて独立にカウントしてもよい。
【0046】
開閉信号生成装置309は、照射中呼吸位相領域メモリ307,照射中線量分布要素メモリ308,マルチチャンネルカウンタ304,目標値メモリ305,開閉スイッチ11と接続されている。目標値メモリ305には、図7に示すように、中央制御装置100から取得した呼吸位相領域i,線量分布j毎のイオン線照射量の目標値C(i,j)が記録される。開閉信号生成装置309は、許容値ΔC(i,j)(図では省略。)も記録している。目標値,許容値自体は、治療計画装置102により計算され、中央制御装置100に記録される。詳細は後述するが、開閉信号生成装置309の基本動作は、照射中呼吸位相領域メモリ307から得た呼吸位相領域iと、照射中呼吸位相領域メモリ307から取得したイオン線照射中の線量分布jに従い、マルチチャンネルカウンタ304−i,j
と目標値305−i,jを比較する。その後、開閉信号生成装置309は、計測したカウント値が(目標値)+(許容値)を超えた場合、すなわち、C(i,j)+ΔC(i,j)を超えた場合に開閉スイッチ11を開いてイオン線の照射を停止する。また、開閉信号生成装置309は、(目標値)−(許容値)、すなわちC(i,j)−ΔC(i,j)に到達していない場合は開閉スイッチ11が閉じてイオン線を照射するように制御する。
【0047】
本実施例を用いたイオン線照射の進捗の詳細を、初期(図8),中期(図9),後期(図10)の3つの期間に分けて模式的に示す。説明のために呼吸位相領域を3分割した例を示したが、複数に分割してあればよい。線量分布として、ブラッグカーブのように、深さ方向の線量分布を例に示すが、横方向の線量分布を対象にしても本実施例と同様の効果が得られる。初期は、図8(b)に示すように、どの3つの呼吸位相でも目標値にイオン線の照射量が達していないので、呼吸位相計測器212で計測した呼吸位相が、出射許可位相領域にあればイオン線が照射される(図8(a))。イオン線の照射が続けられると、ある呼吸位相で目標量の照射が完了する。例えば、図9(b)に示すように、呼吸位相領域2で目標量のイオン線が照射されたとし、これを中期とする。中期では、目標量の照射が未達の位相領域、すなわち、呼吸位相領域1,3に呼吸位相があるときのみイオン線を照射することになる(図9(a))。さらにイオン線の照射が進展し、例えば、図10(b)に示すように、呼吸位相領域3でも目標量のイオン線が照射されたとして、これを後期とする。後期では、呼吸位相領域1になったときのみイオン線を照射する(図10(a))。この照射完了をもって、本線量分布におけるイオン線の照射を完了する。この手順をすべての線量分布要素に対して実施する。
【0048】
照射完了信号生成装置310は、照射中呼吸位相領域メモリ307,照射中線量分布要素メモリ308,マルチチャンネルカウンタ304,目標値メモリ305,開閉スイッチ11と接続されている。照射完了信号生成装置310は、全ての呼吸位相領域で目標量のイオン線照射が完了したか判定し、完了した際は、開閉スイッチ11を開き、イオン線の照射を完了する。
【0049】
インターロック信号生成装置311は、照射中呼吸位相領域メモリ307,照射中線量分布要素メモリ308,マルチチャンネルカウンタ304,目標値メモリ305,開閉スイッチ11と接続されている。インターロック信号生成装置311は、全ての呼吸位相領域で照射済みのイオン線量が許容される範囲かどうかを判定する。もし、何らかの原因で許容範囲を超えた場合は、開閉スイッチ11を開き、直ちにイオン線の照射を中止する。
【0050】
表示装置306は、呼吸位相領域ごとのイオン線照射量を表示する。表示装置306は、マルチチャンネルカウンタ304,目標値メモリ305と接続され、これらの値をイオン線照射中に逐次表示することで、イオン線照射の進捗を運転者に知らせる。また、表示装置306を中央制御装置100と接続し、照射パラメータを表示しても良い。また、呼吸位相領域ごとのイオン線照射量と全イオン線照射量との比を表示しても良い。これにより、照射が偏り無く進行していることをイオン線治療システムの運転者に知らせることができる。
【0051】
図11は、照射制御システム300を中心に、本実施例を構成する個々の装置の互いの関係を示す。
【0052】
中央制御装置100により治療開始信号が生成されると、シンクロトロン5,位相領域判定装置301,振り分け装置303,開閉信号生成装置309,照射完了信号生成装置310,インターロック信号生成装置311がそれぞれの動作を始め、イオン線の照射が開始される。照射中線量分布要素メモリ308には、中央制御装置100により、現在照射中の線量分布要素jが常に更新される。
【0053】
位相領域判定装置301の役割は、呼吸位相計測器212で計測した呼吸位相を照射中位相領域に変換することである。はじめに、位相領域判定装置301は中央制御装置100から位相領域判定装置メモリ302に、位相領域と照射中位相領域の関係、すなわち、位相領域番号,呼吸位相の両端のテーブルを取り込む。次に呼吸位相計測器212から入力される位相を上記テーブルに従い照射中位相領域に変換する。変換結果は照射中呼吸位相領域メモリ307に記録される。この手順を治療照射中に繰り返し、照射中呼吸位相領域メモリ307には常に現在照射中の呼吸位相領域が記録される。
【0054】
振り分け装置303の役割は、線量モニタ204で計測されるイオン線照射量を呼吸位相領域と、線量分布要素ごとにマルチチャンネルカウンタ304に振り分けることである。はじめに、振り分け装置303は照射中呼吸位相領域メモリ307に記録されたイオン線照射中領域を読み込む。次に照射中線量分布要素メモリ308より、現在照射中の線量分布要素jを取り込む。これらを用い、線量モニタ204からのイオン線照射量入力値をマルチチャンネルカウンタ304の対応する領域に積算する。この手順を繰り返し、マルチチャンネルカウンタ304には現在の位相領域毎,線量分布要素毎に照射が済んだイオン線の量がカウントされる。なお、これと並行して、線量モニタ204の信号は位相領域で分割せず、マルチチャンネルカウンタ304−S,jに入力し、当該線量構成要素のイオン線照射量をカウントしてインターロックに用いてもよい。
【0055】
開閉信号生成装置309の役割は、現在照射中の領域の照射済みイオン線量、つまり、マルチチャンネルカウンタ304−i,jと、それに対応する目標イオン線量305−i,jを比較し、開閉スイッチ11を開閉してシンクロトロン5からのイオン線出射ON/OFF制御を行うことである。はじめに、開閉信号生成装置309は目標値メモリ305から領域ごとの目標値を取り込む。なお、目標値メモリ305にはあらかじめ中央制御装置100から領域毎のイオン線照射量目標値と許容値を取り込んでおく。次に、開閉信号生成装置309は照射中呼吸位相領域メモリ307から現在イオン線が照射されているイオン線照射中領域iを、さらに照射中線量分布要素メモリ308より、現在照射中の線量分布要素jを取り込む。そして、当該領域における目標値とイオン線照射量を比較し、照射済みイオン線量が目標値に到達していれば開信号(イオン線OFF)を、未到達なら閉信号(イオン線ON)を生成,転送し開閉スイッチ11をON/OFFする。これにより、イオン線は目標値未達の領域のみに照射される。
【0056】
上記のように照射中呼吸位相領域メモリ307,照射中線量分布要素メモリ308を設けず、呼吸位相領域iと照射中の線量分布用をjを直接、個々の装置に入力してもよいが、それぞれの装置のデータ受け渡しのタイミングが複雑になる。
【0057】
照射が進むにつれ、目標量のイオン線が各領域に照射される。インターロック信号生成装置311の役割は、万が一に備え、患者210を不要なイオン線照射から防ぐことである。はじめに目標値メモリ305から領域ごとの目標値と許容値,全領域の目標値と許容値を取り込む。なお、目標値メモリ305にはあらかじめ中央制御装置100から前述したように領域ごとの目標値と許容値,全領域の目標値と許容値を取り込んでおく。次に、マルチチャンネルカウンタ304から領域ごと、全領域の照射済みイオン線照射量を取り込む。マルチチャンネルカウンタ304−S,jは線量分布要素毎にイオン線が照射された総量がカウントされる。ゆえに、マルチチャンネルカウンタ304−i,jとマルチチャンネルカウンタ304−S,jの比を取ると、領域iに照射されたイオン線の比率を算出できる。もし、マルチチャンネルカウンタ304−S,jのカウント値が目標値S+許容値S以下であることを確認し、万が一、超えた場合、イオン線照射停止信号を生成、中央制御装置100に転送する。個々の領域についても同様である。また、マルチチャンネルカウンタ304から得た各領域のイオン線照射量の比率が目標比率Ri±ΔRi内であることも確認し、もしも外れた場合は、イオン線照射量が偏っているので、この場合もイオン線照射停止信号を生成、中央制御装置100に転送してもよい。イオン線照射停止信号を受け取った中央制御装置100は、各機器にイオン線照射中止指令(信号線は省略)を生成する。マルチチャンネルカウンタ304から現在のイオン線照射量の取り込み、照射量自身とその比率が許容範囲内である確認を繰り返すことで、信頼性の高いイオン線照射を実現する。
【0058】
照射完了信号生成装置310の役割は、全領域で目標量のイオン線が照射されたか判定し、完了した場合は照射完了信号を生成することである。はじめに目標値メモリ305から位相領域,線量分布要素ごとの目標値を取り込んでおく。次にマルチチャンネルカウンタ304から照射済みイオン線量を取り込む。そして、各々の領域毎に目標値と照射済みイオン線量を比較する。もし、全領域で目標値に到達すれば照射完了信号生成装置310は照射完了信号を中央制御装置100に生成する。少なくとも1つの領域で目標値に未達の領域があれば、イオン線照射は未完であり、イオン線照射を続行する。照射完了信号を中央制御装置100が受け取ると、各機器にイオン線照射完了信号を生成し(信号線省略)終了処理を行う。これにより、イオン線照射が完了する。
【0059】
本実施形態によれば、標的が変動していても、呼吸位相領域でのイオン線照射の偏在を解消できる。このため、複数の線量分布要素を組み合わせて所望の線量分布を形成する際、その境目でも線量分布を制御可能になり計画通りの線量分布を形成できる。
【0060】
本実施形態によれば、呼吸等、標的の移動に起因して生じる、有限幅の呼吸位相領域でのイオン線照射の偏在を解消することにより、線量分布要素を組み合わせ、標的大の線量分布を形成する際の境目の線量分布を、計画通りに形成できる。ゆえに、より計画通りの線量分布を形成できるようになる。さらには、個々の線量分布要素を組み合わせる境目で計画通りの分布を得られるため、多数の線量分布要素を繋ぐことが可能なので大きな線量分布を形成しやすくなる。
【0061】
本実施形態では、横方向について照射対象が移動する場合、走査電磁石203の励磁量に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域(本実施形態では3つの領域)ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0062】
また、本実施形態では、深部方向について照射対象が移動する場合、エネルギー調整装置であるレンジシフタ206の厚み情報に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域(本実施形態では3つの領域)ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0063】
本実施形態では、照射野形成装置200のイオン線軌道上に備えられたレンジシフタ206の厚みを変更することでイオン線のエネルギーを変更して深部方向の線量分布を形成したが、イオン線軌道上に配置した複数のレンジシフタ206とシンクロトロン5による加速の組み合わせによるエネルギー変更も考えられる。シンクロトロン5を周回するイオン線の加速を変更してシンクロトロン5から出射するイオン線のエネルギーを調整し、このイオン線が通過するビーム軌道上にレンジシフタ2を配置してイオン線のエネルギーを変更する組み合わせによるエネルギー変更の場合、深部方向の目標照射位置はこれらの組み合わせによって決定される。この場合にも本実施形態と同様の効果を得ることができる。
【0064】
(実施形態2)
以下に、本発明の他の実施形態の放射線治療装置であるイオン線治療装置を、図12及び図13を用いて説明する。
【0065】
本実施形態のイオン線治療装置は、実施形態1のイオン線治療装置において、照射野形成装置200を照射野形成装置200Aに替えた構成を有する。照射野形成装置200Aは、図12に示すように、ビーム軌道上に走査電磁石203,線量モニタ204を備える。本実施形態では、照射野形成装置200Aに備えられた走査電磁石203がイオン線の進行方向に対して垂直な平面内での線量分布を形成し、シンクロトロン5から出射するイオン線のエネルギーを変更することによりイオン線の進行方向(体表面からの深さ方向)での線量分布を形成する。なお、本実施形態において、走査電磁石203の励磁量を制御することで横方向の目標照射位置にイオン線を照射し、シンクロトロン5を周回するイオン線のエネルギーを変更することで深部方向の目標照射位置にイオン線を照射する。
【0066】
ケーシング201内に走査電磁石203,線量モニタ204が搭載されている。イオン線は走査電磁石203で偏向された後、線量モニタ204で照射量が計測され、患部210aに到達する。呼吸位相計測器212により呼吸信号が計測される。中央制御装置100からの指令に従い、スポット毎に目標となる走査量と照射量でイオン線が照射される。線量モニタ204による線量計測結果と呼吸位相計測器212による呼吸信号は、照射制御システム300に転送される。
【0067】
スポットjにイオン線を照射する場合に注目する。イオン線を照射する際、呼吸等の生理的な動きにより患部210aの位置は変化する。しかし、前述の照射制御システム300により呼吸位相毎にイオン線の照射量が管理されるため、呼吸パターンに依存せずに、横方向の線量分布の端部で一定の線量分布が得られる。例えば、図13に示すように、呼吸位相毎に一様な目標線量値を設定した場合は、標的が完全に静止したときに得られる線量分布より広がった分布になる。なお、図13では、点線が標的静止時の横方向の線量分布を示し、実線が本実施例を適用した場合に得られる横方向の線量分布を示す。
【0068】
隣のスポットによる線量分布とあわせてより大きな線量分布を形成する場合を考える。前述したように、各々の線量分布の端部であっても一定の線量分布が形成される。よって、隣り合うスポットの中間位置で、各々の形成する線量分布の端部が重ね合わせた場合も計画通りの線量分布が得られる。ゆえ、患部210a相当の大きさの線量分布を形成した場合も、スポット間の境界近辺で計画通りの線量分布が得られる。
【0069】
本実施形態によれば、図13に示すように、呼吸パターンに依存せずに特に端部にて一定の線量分布を形成できるようになる。
【0070】
本実施形態では、横方向については照射対象が移動する場合、実施形態1と同様、走査電磁石203の励磁量に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0071】
また、本実施形態では、深部方向について照射対象が移動する場合、シンクロトロン5で加速するイオン線のエネルギー情報に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0072】
本実施形態でも、実施形態1と同様の効果を得ることができる。
【0073】
(実施形態3)
以下に、本発明の他の実施形態の放射線治療装置であるイオン線治療装置を、図14及び図15を用いて説明する。
【0074】
本実施形態のイオン線治療装置は、実施形態1のイオン線治療装置において、照射野形成装置200を照射野形成装置200Bに替えた構成を有する。照射野形成装置200Bは、図14に示すように、ビーム軌道上に線量分布形成装置213,線量モニタ204を備える。本実施形態では、照射野形成装置200Bに備えられた線量分布形成装置213がイオン線の進行方向に対して垂直な平面内での線量分布を形成し、シンクロトロン5から出射するイオン線のエネルギーを変更することによりイオン線の進行方向(体表面からの深さ方向)での線量分布を形成する。また、本実施形態では、患者支持装置211を横方向に移動させることで、横方向の線量分布を形成する例を示す。本実施形態では、患者支持装置211の移動量(設置位置)を制御することで横方向での目標照射位置にイオン線を照射し、シンクロトロン5から出射するイオン線のエネルギーを変更することで深部方向での目標照射位置にイオン線を照射する。
【0075】
ケーシング201内に線量分布形成装置213,線量モニタ204が搭載されている。
線量分布形成装置213は、横方向の線量分布を形成できればよく、散乱体方式,ワブラー方式,スキャニング方式など、複数考えられる。患者210は患者支持装置211に位置決めされており、患者支持装置211は横方向に駆動する。イオン線は線量分布形成装置213により横方向に線量分布が形成された後、線量モニタ204で照射量が計測され、患部210aに到達する。呼吸位相計測器212により呼吸信号が計測される。イオン線は中央制御装置100からの指令に従い、患者支持装置211の位置j毎に目標となる照射量でイオン線が照射される。線量モニタ204による線量計測結果と呼吸位相計測器212による呼吸信号は、照射制御システム300に転送される。
【0076】
位置jでイオン線を照射する場合に注目する。イオン線を照射する際、呼吸等の生理的な動きにより患部210aの位置は変動する。しかし、前述の照射制御システム300により呼吸位相毎にイオン線の照射が管理されるため、呼吸パターンによらず、横方向の線量分布の端部でも計画通りの線量分布が得られる。例えば、図15に示すように、呼吸位相毎に一様な目標値を設定した場合は、標的が完全に静止したときに得られる線量分布より広がった分布になる。なお、図15では、点線が標的静止時の横方向の線量分布を示し、実線が本実施形態を適用した場合に得られる横方向の線量分布を示す。
【0077】
患者支持装置211を複数の位置まで駆動して形成した線量分布を組み合わせ、患部大の分布を形成する場合に注目する。前述した通り、各々の位置で形成された線量分布の端部は一定になる。よって、図14に示したように、隣り合う患者支持装置211の位置で形成される各々の線量分布の端部が重ねあわさる領域であっても、計画通りの線量分布が得られる。ゆえ、患部210aの大きさになるよう、患者支持装置211の移動とイオン線の照射を繰り返した場合も、各々の線量分布の境界近辺であっても計画通りの線量分布が得られる。
【0078】
本実施形態によれば、図15に示すように、呼吸パターンに依存せずに端部で一定の線量分布を形成できるようになる。
【0079】
本実施形態では、横方向について照射対象が移動する場合、患者支持装置211の横方向への移動量(横方向の設置位置)に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域(本実施形態では3つの領域)ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0080】
また、本実施形態では、深部方向について照射対象が移動する場合、シンクロトロン5で加速するイオン線のエネルギー情報に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0081】
本実施形態でも、実施形態1と同様の効果を得ることができる。
【0082】
なお、本実施形態では、照射野形成装置200Bに線量分布形成装置213を設置したが、この線量分布形成装置213を設置せずにイオン線の照射位置を固定し、患者支持装置211を横方向に移動することで横方向の線量分布を形成する方法であってもよい。
【0083】
(実施形態4)
以下に、本発明の他の実施形態の放射線治療装置であるイオン線治療装置を、図16及び図17を用いて説明する。
【0084】
本実施形態のイオン線治療装置は、実施形態1のイオン線治療装置において、照射野形成装置200を照射野形成装置200Cに替えた構成を有する。照射野形成装置200Cは、図16に示すように、ビーム軌道上に線量分布形成装置213,線量モニタ204,レンジシフタ206を備える。本実施形態では、照射野形成装置200Cに備えられた線量分布形成装置213がイオン線の進行方向に対して垂直な平面内での線量分布を形成し、照射野形成装置200Cに備えられたレンジシフタ206がイオンビームの進行方向(体表面からの深さ方向)での線量分布を形成する。なお、本実施形態において、線量分布形成装置213を制御(たとえば、ワブラー電磁石の励磁量を制御)することで横方向の目標照射位置にイオン線を照射し、レンジシフタ206の厚みを制御することで深部方向の目標照射位置にイオン線を照射する。
【0085】
ケーシング201内に線量分布形成装置213,線量モニタ204,レンジシフタ挿入機構207が搭載されている。レンジシフタ挿入機構207によって、粒子線軌道上に挿入するレンジシフタ206の厚みを変える。イオン線は線量モニタ204により照射量が計測され、レンジシフタ206の厚みに応じてエネルギーが減衰された後に患部210aに到達する。患部210aに入射するイオン線のエネルギーに応じ、線量分布はレイヤーjにまで到達する。呼吸位相計測器212により呼吸信号が計測される。イオン線は中央制御装置100からの指令に従い、レイヤー毎に決められた目標量のビームが照射され、線量モニタ204による線量計測結果と呼吸位相計測器212による呼吸信号は、照射制御システム300に転送される。
【0086】
レイヤーjまで到達するイオン線を照射する場合に注目する。イオン線を照射する際、呼吸等の生理的な動きにより、患者210の体内における患部210aの深さは変動する。しかし、前述の照射制御システム300により呼吸位相毎に照射が管理されるため、呼吸パターンによらず、特に深さ方向の線量分布のブラッグピークの近傍でも計画通りの線量分布が得られる。例えば図17に示すように、呼吸位相毎に一様な目標値を設定した場合は、標的が完全に静止したときに得られる線量分布を深さ方向に広げた分布になる。なお、図17では、点線が標的静止時の深部向の線量分布を示し、実線が本実施形態を適用した場合に得られる深部方向の線量分布を示す。
【0087】
レンジシフタ206の厚みを変えながらイオン線を照射し、複数の深さにブラッグピークを形成し、それらを組み合わせて線量分布を形成する場合に注目する。前述した通り、各々のレンジシフタ206の厚みで形成されるブラッグピーク近傍の線量分布は一定になる。このため、SOBPを形成する等、隣り合うブラッグピークを組み合わせて線量分布を形成する際、複数のブラッグピークの間の線量分布が重なり合わさる部分であっても滑らかに計画通りの線量分布が得られる。ゆえ、患部210aの大きさ分のレイヤーを組み合わせた場合も、その境界近傍で計画通りの線量分布が得られる。
【0088】
本実施形態によれば、図17に示すように、呼吸パターンに依存せず、特にブラックピークの近傍で一定の線量分布が形成できるようになる。
【0089】
本実施形態では、横方向について照射対象が移動する場合、線量分布形成装置213に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域(本実施形態では3つの領域)ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0090】
また、本実施形態では、深部方向について照射対象が移動する場合、エネルギー調整装置であるレンジシフタ206の厚み情報に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域(本実施形態では3つの領域)ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0091】
本実施形態でも、実施形態1と同様の効果を得ることができる。
【0092】
(実施形態5)
以下に、本発明の他の実施形態の放射線治療装置であるイオン線治療装置を、図18を用いて説明する。
【0093】
本実施形態のイオン線治療装置は、実施形態1のイオン線治療装置において、照射野形成装置200を照射野形成装置200Dに替えた構成を有する。照射野形成装置200Dは、図18に示すように、ビーム軌道上に走査電磁石203,線量モニタ204を備える。本実施形態では、照射野形成装置200Dに備えられた走査電磁石203がイオン線の進行方向に対して垂直な平面内での線量分布を形成し、シンクロトロン5から出射するイオン線のエネルギーを変更することによりイオン線の進行方向(体表面からの深さ方向)での線量分布を形成する。なお、本実施形態において、走査電磁石203の励磁量を制御することで横方向の目標照射位置にイオン線を照射し、シンクロトロン5を周回するイオン線のエネルギーを変更することで深部方向の目標照射位置にイオン線を照射する。
【0094】
イオン線発生装置1により所定のエネルギーまで加速されたイオン線は照射野形成装置200に輸送される。照射野形成装置200を構成する装置はケーシング201内に搭載されている。ケーシング201内には走査電磁石203,線量モニタ204が搭載されている。イオン線は線量モニタ204により照射量が計測された後に患部210aに到達し、イオン線発生装置1により加速されたにエネルギーに対応したレイヤーjにまで線量分布が形成される。呼吸位相計測器212により呼吸信号が計測される。イオン線は中央制御装置100からの指令に従い、レイヤー毎に決められた目標量のビームが照射される。
線量モニタ204による線量計測結果と呼吸位相計測器212による呼吸信号は、照射制御システム300に転送される。
【0095】
レイヤーjまで到達するイオン線を照射する場合に注目する。イオン線を照射する際、呼吸等の生理的な動きにより、患者210の体内における患部210aの深さは変動する。しかし、前述の照射制御システム300により呼吸位相毎に照射が管理されるため、特に深さ方向の線量分布のブラッグピークの近傍でも計画通りの線量分布が得られる。ゆえ、実施例4(図17)と同じ事情になり、患部210aの大きさ分のレイヤーを合わせた場合も計画通りの線量分布が得られる。
【0096】
本実施形態によれば、呼吸パターンに依存せず、特にブラックピークの近傍で一定の線量分布が形成できるようになる。
【0097】
本実施形態では、横方向については照射対象が移動する場合、走査電磁石203の励磁量に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0098】
また、本実施形態では、深部方向について照射対象が移動する場合、シンクロトロン5で加速するイオン線のエネルギー情報に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0099】
本実施形態でも、実施形態1と同様の効果を得ることができる。
【0100】
(実施形態6)
以下に、本発明の他の実施形態の放射線治療装置であるイオン線治療装置を、図19及び図20を用いて説明する。
【0101】
本実施形態のイオン線治療装置は、実施形態1のイオン線治療装置において、照射野形成装置200が回転ガントリー14に設置された構成を有する。本実施形態では、線量分布を組み合わせる装置として回転ガントリー14を用い、複数のガントリー角度からビームを照射して線量分布を組み合わせて計画通りの線量分布を形成する例を示す。なお、本実施形態において、イオン線を照射する回転ガントリー14の角度を変更して制御することで、目標照射位置にイオン線を照射する。
【0102】
照射野形成装置200は、図19に示すように、回転ガントリー14に搭載されている。回転ガントリー14の回転により、患部210aに対して複数の方向からイオン線を照射できる。照射野形成装置200はケーシング201を備えており、線量分布形成装置213,線量モニタ204が搭載されている。イオン線は線量分布形成装置213により線量分布が形成され、線量モニタ204により照射量が計測された後に患部210aに到達する。回転ガントリー14の回転角度jに対応したイオン線入射角に対応した線量分布が形成される。呼吸位相計測器212により呼吸信号が計測される。イオン線は中央制御装置100からの指令に従い、回転ガントリー14の回転角度毎に決められた目標量のビームが照射される。線量モニタ204による線量計測結果と呼吸位相計測器212による呼吸信号は、照射制御システム300に転送される。
【0103】
回転角度jでイオン線を照射する場合に注目する。イオン線を照射する際、呼吸等の生理的な動きにより患部210aの位置は変動する。しかし、前述の照射制御システム300により呼吸位相毎にイオン線の照射が管理されるため、呼吸パターンによらず、横方向、及び深さ方向の線量分布の端部でも計画通りの線量分布が得られる。例えば、図20に示すように、呼吸位相毎に一様な目標値を設定した場合は、標的が完全に静止したときに得られる線量分布を広がった分布になる。
【0104】
回転ガントリー14を回転し、複数の角度からビームを照射した場合の線量分布を組み合わせ、線量分布を形成する場合に注目する。前述した通り、各々の角度で形成された線量分布の端部は前述したように一定になる。よって、各々の線量分布の端部が重ねあわさる領域であっても、計画通りの線量分布が得られる。ゆえ、患部210aの大きさの線量分布を形成するよう、回転ガントリー14の回転とイオン線の照射を繰り返した場合も、各々の線量分布の境界近辺であっても計画通りの線量分布が得られる。
【0105】
本実施形態では、横方向及び/又は深部方向に照射対象が移動する場合、回転ガントリー14の角度情報に基づく目標照射位置情報,線量計測装置からの線量情報及び変動計測装置である呼吸位相計測器212からの照射対象の位置情報に基づいて、目標照射位置内を複数に分割した細かい分割領域での積算照射量を求める。照射制御システム300は、この分割領域ごとの積算照射量と目標値メモリ305に記憶される目標照射量とを比較し、この分割領域での照射量が目標照射量に達したかを判定する。目標照射線量に達していない分割領域に対してイオン線を照射し、目標照射線量に達した分割領域にはイオン線の照射を停止するように制御することで、より計画通りのイオン線の照射が可能となる。
【0106】
本実施形態でも、実施形態1と同様の効果を得ることができる。
【0107】
なお、本実施形態では、回転ガントリー14の回転角度を変更することで目標照射位置を変更して線量分布を形成しているが、シンクロトロン5から出射するイオン線のエネルギーを変更したり、イオン線のビーム軌道上にレンジシフタを設置してその厚みを変更することでイオン線のエネルギーを変更する組み合わせによるエネルギー変更をしてもよい。
【0108】
実施形態1乃至6では、走査電磁石203又は線量分布形成装置213を用いて、イオン線の進行方向に垂直な方向に対してガウス分布状の線量分布を重ね合わせて所定の線量分布を形成したが、ワブラー法や散乱体照射法により、横方向に一様な高線量領域を形成してもよい。この場合は照射野形成装置を用いて1度に形成するのと比べて大きな線量分布を形成できる。
【符号の説明】
【0109】
1 イオン線発生装置
2 イオン源
3 前段加速器
4 低エネルギービーム輸送系
5 シンクロトロン
6 加速装置
7 出射用高周波印加装置
8 出射用高周波印加電極
9 出射用高周波電源
10 信号合成装置
11 開閉スイッチ
12 出射用デフレクタ
13 高エネルギービーム輸送系
14 回転ガントリー
100 中央制御装置
101 中央制御装置メモリ
102 治療計画装置
200 照射野形成装置
201 ケーシング
203 走査電磁石
204 線量モニタ
205 走査後イオン線位置モニタ
206 レンジシフタ
207 レンジシフタ挿入機構
208 ボーラス
209 コリメータ
210 患者
210a 患部
211 患者支持装置
212 呼吸位相計測器
300 照射制御システム
301 位相領域判定装置
302 位相領域判定装置メモリ
303 振り分け装置
304 マルチチャンネルカウンタ
305 目標値メモリ
306 表示装置
307 照射中呼吸位相領域メモリ
308 照射中線量分布要素メモリ
309 開閉信号生成装置
310 照射完了信号生成装置
311 インターロック信号生成装置

【特許請求の範囲】
【請求項1】
放射線を生成する放射線生成装置と、
前記放射線生成装置から出射された前記放射線の線量を計測する線量計測装置と、
照射対象の位置を計測する変動計測装置と、
前記放射線生成装置からの前記放射線の出射開始及び出射停止を制御する制御装置を備え、
前記制御装置は、
目標照射位置情報,前記線量計測装置からの線量情報及び前記変動計測装置からの照射対象の位置情報に基づいて、前記照射対象の照射位置を複数に分割した分割領域ごとに目標線量に達したかを判定し、目標線量に達していない分割領域に対して前記放射線を照射するように前記出射開始及び出射停止を制御することを特徴とする放射線照射システム。
【請求項2】
前記制御装置は、
前記目標照射位置情報,前記線量計測装置からの線量情報及び前記線量計測装置からの位置情報に基づいて、前記分割領域ごとの前記放射線の積算線量を求め、前記積算線量が目標線量に達した前記分割領域では前記放射線の出射を停止し、前記目標線量に達していない前記分割領域では前記放射線を出射するように制御することを特徴とする請求項1に記載の放射線照射システム。
【請求項3】
前記線量計測装置からの照射対象の位置情報が許容範囲外となったときに前記放射線生成装置からの前記放射線の出射を停止する安全装置を備えることを特徴とする請求項2に記載の放射線照射システム。
【請求項4】
前記分割領域ごとの前記放射線の積算線量が許容範囲外となったときに前記放射線生成装置からの前記放射線の出射を停止する安全装置を備えることを特徴とする請求項2又は3に記載の放射線照射システム。
【請求項5】
前記制御装置は、
分割領域ごとの目標線量を記憶する記憶装置を備えることを特徴とする請求項1乃至4のいずれか1項に記載の放射線照射システム。
【請求項6】
前記記憶装置は、前記照射対象の全領域に対する目標線量を記憶し、
前記制御装置は、前記全領域に対する目標線量及び前記層領域ごとの前記積算線量に基づいて、前記層領域ごとに線量比率を求め、前記線量比率が許容値を超えたときに前記放射線生成装置からの前記放射線の出射を停止することを特徴とする請求項2に記載の放射線照射システム。
【請求項7】
前記目標照射位置情報は、前記放射線のエネルギーに基づく前記放射線の進行方向に対する目標照射位置情報であることを特徴とする請求項1に記載の放射線照射システム。
【請求項8】
通過する前記放射線のエネルギーを変更するために前記放射線の軌道上に配置されるエネルギー調整装置を備え、
前記目標照射位置情報は、前記エネルギー調整装置の厚み情報に基づく前記放射線の進行方向の目標照射位置情報であることを特徴とする請求項7に記載の放射線照射システム。
【請求項9】
前記放射線を加速して出射する加速器を備え、
前記目標照射位置情報は、前記加速器から出射された放射線のエネルギー情報に基づく前記放射線の進行方向の目標照射位置情報であることを特徴とする請求項7に記載の放射線照射システム。
【請求項10】
通過する前記放射線を偏向する走査電磁石を備え、
前記目標照射位置情報は、前記走査電磁石への励磁量に基づく前記放射線の進行方向に直行する方向の目標照射位置情報であることを特徴とする請求項1に記載の放射線照射システム。
【請求項11】
前記放射線の照射対象をのせるベッド装置を備え、
前記目標照射位置情報は、設置された前記ベッド装置の位置情報に基づく前記放射線の進行方向に直行する方向の目標照射位置情報であることを特徴とする請求項1に記載の放射線照射システム。
【請求項12】
前記放射線の照射角度を変更する回転ガントリーを備え、
前記目標照射位置情報は、前記回転ガントリーの角度情報に基づく前記放射線の目標照射位置情報であることを特徴とする請求項1に記載の放射線照射システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2010−253000(P2010−253000A)
【公開日】平成22年11月11日(2010.11.11)
【国際特許分類】
【出願番号】特願2009−105805(P2009−105805)
【出願日】平成21年4月24日(2009.4.24)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】