説明

機能調整能力を有する表面機能性電気−テキスタイル、それを製造する方法およびそれを含む利用形態

表面機能性 電気-テキスタイル ファブリックは、織られたもしくは編まれたテキスタイル ファブリック内のエネルギー活性の、電気的伝導性もしくは光学的伝導性ファイバーと非伝導性ファイバーを含む。織りもしくは編みパターンは、電気-テキスタイル ファブリックの少なくとも1つの表面上に電気的伝導性ファイバーのフロートを形成するように選択される。電気-テキスタイル ファブリックは、特に直流から100GHzまでの周波数範囲において高周波電磁放射と相互に作用するアンテナ構造の中へ含まれ得る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エネルギー活性(energy-active) 機能性(functional)フィラメント(filament)と電気的非導電性標準(dtandard)テキスタイル(textile:織物) フィラメントを含む電気-テキスタイル ファブリック(fabric)に関し、高周波電磁放射、特に無線通信の周波数範囲における放射と相互に作用するための、織られたテキスタイルの形態に作られた電気-テキスタイル アンテナ構造に関する。
【背景技術】
【0002】
A.電気-テキスタイル ファブリック
電子機能を提供する手段としてテキスタイルを利用することが知られている。高感度なテキスタイルもしくは電気-テキスタイルは柔軟性、構造および大面積という特徴を提供し、それゆえ機能属性を伴うための基体としての特有な利用を見つける。利用例は、着用可能なエレクトロニクス、人間の体、熱、検知およびエネルギー貯蔵との相互作用を通して生理学上のモニタリングを含む。
【0003】
従来のハード-ワイヤー電子回路および集積システムと比べると、テキスタイルはエネルギー活性機能を提供するための従来の基体とはみなされない。しかしながら、たくさんの研究努力がこれらのタイプの回路およびシステムの要求に高い効率で応答し得る適した電気-テキスタイル システムを作るために現在進行中である。
【0004】
電子デバイスによって発生されるどのような電磁干渉(EMI)放射エネルギーに対しても遮蔽を提供する手段としてテキスタイルを利用することが知られている。理想的なEMI遮蔽は非常に伝導性の材料を含むものである。一般に遮蔽有効性は、穴(aperture)の最大寸法が放射エネルギー波長に比較して小さい(例えば波長の1/20より小さい)とき高められる。典型的な材料と方法の遮蔽有効性は周波数の増加と共に減少する。直流から100GHzまでの周波数を含む低から高の周波数範囲において高伝導性を示すテキスタイルは、柔軟なファブリック アンテナの構造と同様に電磁遮蔽利用において用途を見つける。
【0005】
EMI遮蔽保護のための電気-テキスタイル ファブリックには3つの基本的タイプがある。
【0006】
(1)ファブリックを形成した後の被覆プロセスによって表面が金属被覆で覆われた電気-テキスタイル ファブリック、
(2)電気伝導性ヤーン(yarn)から全体が形成された電気-テキスタイル ファブリック、および
(3)典型的な非伝導性テキスタイルと電気伝導性ヤーンの組み合わせで形成された電気-テキスタイル ファブリック、である。
【特許文献1】WO 92/13352
【特許文献2】US 4572960
【特許文献3】US 5275861
【特許文献4】US 6399879B1
【特許文献5】US 5103504
【特許文献6】FR 2745690A1
【特許文献7】US 5968854
【特許文献8】US 6738265B1
【特許文献9】EP 1319741A1
【特許文献10】US 5503887
【特許文献11】US 2004/0235281 A1
【特許文献12】US 2004/0023576 A1
【特許文献13】US 2003/0224681
【特許文献14】US 5771027
【特許文献15】US 5906004
【特許文献16】US 6377216 B1
【特許文献17】WO 01/37366 A1
【特許文献18】WO 01/39326 A1
【特許文献19】US 6356238 B1
【特許文献20】US 6680707 B2
【特許文献21】US 6677917
【発明の開示】
【発明が解決しようとする課題】
【0007】
EMI遮蔽のためのタイプ1の電気-テキスタイル ファブリック(例えばWO 92/13352,US 4572960,US
5275861)は、表面被覆が機械的特性、柔軟性および美観のようなテキスタイル特性に消極的に影響を与え得るので理想的ではない。加えて表面被覆は、摩滅による使用の間もしくは動作の間破壊され得、そのような場合EMI遮蔽の手段としての電気-テキスタイルの能力が著しく低減する。
【0008】
Ueda他へのUS 6399879B1は、幾何学的なパターンからなる光学的ディスプレイのための電磁遮蔽板を開示する。幾何学的なパターンは、透明な基体の表面上に多角形もしくはn角形(例えば三角形、四角形、長方形等)の単一のパターンまたは単一のパターン(例えば円、楕円、星、三つ葉模様もしくは花弁)を繰り返すこと、あるいはこれらのパターンの2つもしくはそれ以上を組み合わせることによって形成される。パターンは、電気的伝導性ペースト、金属もしくは金属酸化物フィルムから形成された線からなる。パターンは、約50〜約250メッシュ(インチ当たりの線数)の(四角形パターンに変換された)線間隔と、約10μm〜約80μmの線幅を有する。上述の線特性の範囲は、ディスプレイ スクリーンの最適な視野を定義するのに役立つ。電磁遮蔽能力は、(i)線の太さ(好ましくは1μm〜30μmの間だが、1μmより小さくない)、および(ii)線幅(40μmもしくはそれより小)と線間隔の両方を減少させることによって高められることが開示される。
【0009】
EMI遮蔽のためのタイプ2の電気-テキスタイル ファブリックは、テキスタイル ファブリック構造内に伝導性ファイバーを含み、従ってタイプ1におけるように表面被覆を適用する次のプロセスを避ける。この範疇では、テキスタイルは100%の伝導性ファイバーからなるか、もしくは伝導性ファイバーはもう1つと接触するようになるようにテキスタイル ファブリックの全方向内に含まれる。
【0010】
電気的伝導性メッシュを基体に接着することによってEMI遮蔽板を提供することは一般に知られており、メッシュは電気的伝導性ファイバーを格子パターンに織ることによって構成される。しかしながら、この構造によってファブリックは製造中、収縮および拡張し得、それがその取り扱いを難しくし、さらに格子パターンを歪ませ得る。
【0011】
DordevicへのUS 5103504は、直交する経糸と緯糸からなる織られたファブリックを開示する。糸は、混合ヤーンにおけるスチール ファイバーの含有量が10-15wt%であるように、いっしょに混合され複合ヤーンに紡糸される直径6-10μmのステンレス スチール ファイバーとテキスタイル非伝導性ファイバー(例えばコットン)から作られる。ファブリックにおける経糸と緯糸の配分は同じで、cm当たり18-20糸を含む。ヤーンの細さは30-50texである。電気的相互接触は経糸と緯糸間に存在する。この開示は、この織られたファブリックによって10ギガヘルツ(GHz)の周波数で20-40dBの遮蔽が達成し得ることを示す。
【0012】
Busson他へのFR 2745690A1は、衣服の内側と外側の表面間で電気伝導性の織られもしくは編まれ、2mmより小さいステッチ穴を有し、数十μmのオーダーの直径を持つ銅ファイバーとカーボンを基体とするファイバーを含む電気伝導性ファイバー上に作られたファブリックの少なくとも1層を含む電磁遮蔽のための衣服を開示する。
【0013】
Akopian他へのUS 5968854は、ナイロン ヤーンを含む銀被覆された合成ファイバー ヤーンによって全体が形成されたEMI遮蔽ファブリックを開示する。銀被覆合成ヤーンは、好ましくは20重量%より少なくない銀の含有量と1.2オーム/cmより小さくない伝導性を持つように開示されている。これらのヤーンに基づく好ましいファブリックは、すべての伝導性ヤーンを、各ヤーンがその隣接するヤーンと電気的に接触するように、一連の連続するチェーン ステッチで組み合わせる経編みファブリックである。他のファブリックはまた、織られたファブリックのように開示される。
【0014】
Svarfvar他へのUS 6738265B1は、EMI遮蔽携帯用電子デバイスを作る方法を開示する。該デバイスは、相互に撚り合わせられた電気的伝導性ファイバーの織られた糸(thread)の与えられたパターンを含む、電気的伝導性の織られたファイバー メッシュ ネットを含む。さらに特にこれはインチ当たり6〜34の穴と10〜50g/mの比重量を有する3方向ファイバー メッシュ ネットを含む織られたボビネット(bobbinet) ファイバー メッシュ ネット構造を含む。開示された伝導性ファイバーは、伝導性金属層の薄い層(例えば10〜10000nmの厚さ)で被覆されたファイバー、フィラメントもしくはヤーンを含む。伝導性金属層は好ましくは銀、ニッケルもしくはアルミニウム層である。ファイバー メッシュ ネットの遮蔽有効性は、ファイバー材料と厚さもしくはファイバーの直径により、また1ギガヘルツ(GHz)で30dBの遮蔽有効性を生じる能力がある。
【0015】
Ward他へのEP 1319741A1は、レーダー位置探知のための電磁遮蔽に適したボビネット織りを開示する。ボビネット織りは、垂直に伸びるナイロン経糸と、2つの各傾向で提供される銀被覆ナイロン ヤーンで形成された2セットのボビン(bobbin)糸を有する。ボビン糸は、経糸の回りに互い違いに通される。
【0016】
これらのタイプ2の電気-テキスタイル ファブリックは、ある周波数範囲でEMI遮蔽するのに有用であるように示されるが、100%の伝導性ファイバーに基づくファブリックを提供することはいくつかの面において理想的ではない。例えば(a)金属ファイバーは重い、(b)伝導性ファイバーは、ファブリックに利用を越えて達成させないであろう機械的特性を有する、(c)そのような構造は、使用だけでもしくはテキスタイル適用の外側の表面における使用のため適さないであろう、(d)金属もしくは他の伝導性ファイバーはより高いコストを有し、そして(e)美観は、着用可能なテキスタイルにおけるそのような構造の使用を妨げる。
【0017】
タイプ3の電気-テキスタイル ファブリックは、非伝導性テキスタイル ファイバーとの組み合わせにおけるテキスタイル ファブリック内の伝導性ファイバーを含む。これらのタイプ3の電気-テキスタイル ファブリックは、表面被覆を適用する次のプロセスを要求しない。そしてまたそれらは100%の伝導性ファイバーを含まない。タイプ3のファブリックで、タイプ2のテキスタイル ファブリックのデメリットを避けると共に、タイプ2のテキスタイル ファブリックと同様のEMI遮蔽能力を達成することができる。
【0018】
Diaz他へのUS 5503887は、複数方向の範囲に渡って著しい伝導性、好ましくはすべての方向において等しい伝導性を有する伝導性織りファブリックを開示する。伝導性織りファブリックは、伝導性の緯糸もしくは経糸ファイバーのみで作られる。しかしながら、最終の伝導性織りファブリックを製造する方法は、ファブリックを経糸方向へ1つの角度でばらばらにカットし、カットされた部品を伝導性ファイバーがすべての方向において所定の角度で互いに交差するように所定の方法で組み立てることからなる。すなわち、この方法は複雑なプロセスを要求し、望まれる能力を達成するために伝導性ファイバー間の接触が求められる。
【0019】
Iwasaki他へのUS 2004/0235281 A1は、平行な方向に走る伝導性および非伝導性ヤーンからなる電磁波遮蔽被覆を開示する。伝導性および非伝導性ヤーンの両方は、1つの角度内で同じ一群(family)のヤーンと交差する。伝導性ヤーンは、金属箔がらせん状に巻かれる回りの細いファイバーの束である。その公報は30〜500メガヘルツ(MHz)の範囲における40dBもしくはそれ以上、および500〜1000メガヘルツ(MHz)の範囲における30dBもしくはそれ以上の遮蔽性を示す。
【0020】
Rock他へのUS 2004/0023576 A1は、電磁放射に対する遮蔽に使用する電気的伝導性ファブリックを開示する。伝導性ファブリックは、2つの対向する表面を有し、その1つはフリース(fleece)もしくは起毛(raised)表面からなる。ステッチ(stitch) ヤーンは伝導性ファイバーであり、ループ(loop) ヤーンは、弾性非伝導性ファイバーであり得る非伝導性ファイバーである。伝導性ファブリックは、標準の裏添糸丸編み(reverse plating circular knitting)を用いて構成される。この構造に基き、伝導性ファイバーが第1と第2表面の間にありかつ両者から一定の間隔に置かれる一方、フリースもしくは起毛表面を形成するために、非伝導性ファイバーが外側表面の少なくとも1つ上に表れる。伝導性ファイバーは10〜10Ω/cmの伝導性を有し、ファブリックの少なくとも部分に沿って左右対称もしくは非対称に一定の間隔に配置され、伝導性の1〜20ファイバー/cmを含み得る。該公報はファブリックの遮蔽能力を決めるのに伝導性ファイバー間の間隔が重要であることを示す。伝導性ファブリックはさらに伝導性ファイバー間の電気的接続を提供するために伝導性バス(bus)(例えば縫い付けられた伝導性ヤーンもしくは細いテープ)を有する。この開示によって作られたファブリックは遮蔽特性を有するけれども、開示されたテキスタイル プロセスは非常に制限的で、末端使用を越えて広く適用することができない。
【0021】
Koch, M.へのUS 2003/0224681は、テキスタイルが電磁界の周波数選択遮蔽を形成するように電磁遮蔽の基体としてテキスタイルを基体とする材料を開示する。特にこの公報は、電気的伝導性材料の連続的なフィラメントもしくは糸で、規則正しい左右対称の配列と同様に、左右対称の形状(例えば十字形)に縫い付けられもしくは刺繍されたテキスタイル ファブリックを開示する。十字形の場合、一直線に並べられた2つの腕の総計の長さが、反射される波の周波数の半波長に対応するように十字形の腕はすべて同じ長さを有する。各十字形は単一の連続的な刺繍されたフィラメントを含む。個々の十字形の配列は、(1)十字形間に何の電気的接続もない、および(2)十字形間の最小限の距離は、選択する周波数に何の影響もないように選択される。このテキスタイルは遮蔽特性を獲得するけれども、ファブリック構造それ自体を通して達成できない正確なパラメーター制御を必要とする必要以上のプロセス ステップを要求する。
【0022】
B.電気-テキスタイル アンテナ
アンテナは信号伝達を要求するどの電子適用に共通する重要な構成要素である。最新のアンテナは「固く」かつ、テキスタイル適用におけるそれらの使用を制限するテキスタイルよりずっと柔軟ではない。
【0023】
テキスタイルによって提供される広い範囲の利点によると、電子とテキスタイルの両方の会社によって電気-テキスタイル アンテナを製造することに焦点を合わせるたくさんの研究努力がある。
【0024】
パッチ デザインの典型的なアンテナは、誘電体平板の回りに置かれる伝導性板の形態で、金属要素を含み得る。これらの金属要素はアンテナの潜在的な変形を防ぐ。しかしながらこれらの金属要素はまた、着用可能な電子もしくは柔軟なテキスタイル システム構造における構成要素としての使用を妨げるとても堅いアンテナを作る。
【0025】
Marks他へのUS 5771027は、複合多層積層の偏光性パラボラ デッシュ アンテナを開示する。アンテナの1層は樹脂で補強された布からなる偏光性格子である。この布は、経糸でかつ互いに平行に織られた電気的伝導体を有する織り構造である。加えて、樹脂で補強された布の少なくとも1層の経糸で織られた電気的伝導体の数は、該布の経糸ファイバーの数より少ない。織られたファブリックの残っている経糸と緯糸ヤーンは、Kevlar(登録商標)とファイバーグラスのような誘電体ヤーンである。銅ワイヤーは伝導性ヤーン/ファイバーのために使用し得る。
【0026】
さらに複合アンテナは、各層の電気的伝導性ファイバーが互いに予め決められた角度にあるように配置された樹脂で補強された布の1層より多く有するように形成し得る。しかしながら、このアンテナはファブリックの一部からのみからなりかつ大きい。全方向性能が要求される場合には適さない。
【0027】
さらにまたテキスタイルの経糸方向における伝導性ヤーンのような機能性ヤーンを含むのが必ずしも容易でない。すなわち経糸ヤーンは、経糸プロセスに耐える非常に機械的特性を要求する。さらに伝導性と非伝導性ヤーンの両方を持つ経糸ヤーンで代用することは、特に経糸ファイバーの間隔の制御が必要とされるとき、時間がかかりかつ簡単な努力ではない。
【0028】
Lebby他へのUS 5906004は、電磁放射を導くことができ、テキスタイル ファブリックと携帯電子デバイス間の有線もしくは無線カップリングを誘導できる、一体化された電気的伝導性ファイバーを有するテキスタイル ファブリックを開示する。この開示は、電気的伝導性ファイバーと電気的非伝導性ファイバーが直交する方向に織られる場合の織られたテキスタイルを引用し、それによって各電気的伝導性ファイバーの個々のアドレス指定を提供する。US 5906004は電気的伝導性ファイバーが直交する方向に織られる場合の織られたテキスタイルもまた開示し、それによって複数の交差点を定義する。加えてこのテキスタイル ファブリックは、電磁信号の伝達および受信のためのテキスタイル アンテナとしての使用のために開示される。
【0029】
Cheadle他へのUS 6377216 B1は、上層アンテナ、中間層、アンテナの接地面としての誘電および底層を含む、接着された3層ファブリック形態の全ファブリック性で、柔軟な長方形のパッチ アンテナを開示する。上層と底層は、金属メッキされた(metallized)ファブリックもしくは伝導性ファイバーといっしょに織られたファブリックのような、電磁的に伝導性のファブリックの部品からそれぞれ形成される。誘電体層は、電磁的に非伝導性のポリエステル、コットン、ウール、フェルト、ギャバン、Polartec(登録商標)、Gore-Tex(登録商標)、チノ、ブロードクロス、もしくはキャンバスの部品である。開示されたアンテナ デザインは、全ファブリック テキスタイル アンテナへ導き得るが、該開示はアンテナ能力の向上を導くことができる最適のファブリック特性について教示しない。
【0030】
Stephan他へのWO 01/37366 A1は、接地面、該接地面の表面上に配置された物理的変形後のその元の形状をそれに獲得させるための弾性特性を有する弾力のある誘電体層、および該誘電体層の上部表面に合わせられた伝導性層からなるアンテナを開示する。誘電体層は、エラストマー材料で軽量プラスチック フォームもしくはハニカムの形態に作られる。伝導性層は、物理的歪みがかかった状態でその元の形状を維持させ、かつ薄い伝導性布からなり得る。該布は、3M Corporation, Minneapolis, Minnesotaによって製造されたMetallized Fabric Shielding Tapeのような、金属メッキされたファブリックであると開示されている。
【0031】
Massey他へのWO 01/39326 A1は、着用可能な衣服内へ含み得るモバイル遠距離通信用途のためのファブリック パッチ アンテナを開示する。開示されたアンテナは、伝導層間に絶縁ファブリックの層と接続を有する、一定の間隔に置かれた電気的に伝導する第1と第2の層からなる。伝導層は、絶縁層の回りに折り重ねられた単一のストリップ(strip:細長い片)の形状をしたファブリックからなるか、または電気的伝導性糸での縫い付け、伝導性接着、もしくは類似の技術によって接続され得る。伝導層の1つは広い面積を有し、着用者を電界から遮蔽するようにアンテナの接地面として接続される。アンテナは同軸ケーブルもしくはマイクロストリップ(microstrip)もしくは他の適する供給線によって供給される。
【0032】
さらにWO 01/39326 A1は、200メガヘルツ(MHz)を越える3dBバンド幅を有する925メガヘルツ(MHz)の中心周波数でアンテナ動作を生じるのに要求される層の関連する寸法を開示する。該開示はファブリック パッチ アンテナの設計上中心をなす。そのような設計は、アンテナとしての用途のために適しているかもしれないが、該開示はアンテナの個々の層の最適な構造を教示しない。しかしながら、Shieldex(登録商標)の商標の元で、銅、銀もしくはニッケルの層でメッキされた(plated)織られたナイロンである、適する伝導性ファブリックが商業上利用可能なファブリックであり得ることが開示する。
【0033】
さらにまたWO 01/39326 A1は、適する絶縁ファブリックが、アクリル、馬の毛、コットン、ポリエステル、ウールおよびテーラーズ フォーム(tailor's foam)のような典型的なテキスタイル ファイバーであり得ることを開示する。さらにこれらの要素は利用可能なテキスタイル材料の組み合わせを説明し、理想的な構造を説明しない。
【0034】
Galnor他へのUS 6356238 B1は、ベスト上に形成されたアンテナ組立て品を開示する。該アンテナは、外側表面上に非伝導性ギャップによって分離された2つの伝導性範囲を有する。電気的伝導性部分間の電気的接続は、前部伝導性ストリップによって提供される。アンテナの伝導性および接地面と同様の金属メッキされ織られたファブリックのような金属メッキされた布からなる電気的伝導性材料は、非伝導性バンドを除くベストを覆う。
【0035】
Allen他へのUS 6680707 B2とVan Heerden他へのUS 6677917は、衣服内に着用されるファブリック アンテナを開示する。該アンテナは誘電体層によって分離された電気伝導性ファブリックから作られた上部層と接地層を有する。電気伝導性ファブリックについては、銅もしくは銀もしくはニッケルの層でメッキされた典型的な織られたナイロンが開示される。絶縁された層については、アクリル、馬の毛、コットン、ポリエステル、およびウール、あるいはテーラーズ フォーム、そして最も好ましくは呼吸能力の目的のためにオープン セル フォーム(open cell foam)のような典型的なテキスタル材料が開示される。GSM900メガヘルツ(MHz)適用での用途のためのこれらの開示により作られたパッチ アンテナの例は、880〜960メガヘルツ(MHz)範囲と70%から80%の効率における6dBの復帰損失より良いことを示した4分の1波長PIFAである。
【0036】
低損失伝導性ファブリックは、ファブリック アンテナの性能における要素である。衣服タイプもしくは3Dタイプのアンテナ適用における使用のための弾性ファブリック構造に高い関心もある。最新の技術状態は、ファブリックに部分的にもしくは完全に基づくアンテナの発展を含むけれども、これらの発展の何も、高効率アンテナもしくは高周波適用での利用操作を導く、電気的伝導性および電気的非伝導性ファイバーに基づく一体化されたファブリック構造を開示しない。さらに最新の文献には、伝導性ファイバー間の適切な間隔に関係する考慮を除いて、高周波範囲に対する低周波範囲における一体化された電気的伝導性テキスタイルの性能間のどのような相違もなかった。
【0037】
前述の点から見て、(1)機能性エレメントの部分的内包によって高効率レベルで望ましい機能を達成し得る、縫い目のない一体化された、エネルギー活性の機能性フィラメントを有する、そして(2)伝統的なテキスタイル手段を用いて処理され得る、電気-テキスタイルを提供する技術において必要性がある。さらにどのような形状もしくは弾性の要求にも適合し得る、弾性復元特性を有するそのような電気-テキスタイルを提供する必要性がある。さらにまた低コスト、プロセスの容易さ、製造規模の拡大性、耐久性、快適性の望ましい特徴を兼ね備えるこれらの原則に基づいて構成されたテキスタイルのための技術において必要性がある。
【課題を解決するための手段】
【0038】
A.電気-テキスタイル ファブリック
本発明は、エネルギー活性 機能性フィラメントと電気的非伝導性標準テキスタイル フィラメントを含む電気-テキスタイル ファブリックに向けられる。エネルギー活性 機能性フィラメントと非伝導性テキスタイル フィラメントは、ファイバー、ヤーン、スリット ストリップもしくはリボンの形態であり得る。これらのフィラメントは、編みもしくは織りを含むがそれに限定されないテキスタイル製造プロセスによってテキスタイル ファブリック内に一体化される。
【0039】
加えて本発明はまた、エネルギー活性 機能性フィラメントの「フロート」を有するエネルギー活性 機能性 電気-テキスタイル ファブリックを形成するための種々の方法にも向けられる。エネルギー活性 機能性フィラメントは、テキスタイルの表面上の非伝導性テキスタイル フィラメント内で機能性フィラメントのフロートを形成するような方法でテキスタイル ファブリック内に一体化される。
【0040】
本発明の1つの実施の形態は、エネルギー活性 機能性フィラメントの「フロート」が少なくとも電気-テキスタイル ファブリックの第1の表面上に形成されるように、テキスタイル ファブリック内に一体化された非伝導性テキスタイル フィラメントとエネルギー活性 機能性フィラメントを含む電気-テキスタイル ファブリックである。好ましくはエネルギー活性 機能性フィラメントのフロートは、平行にかつ水平と垂直方向の少なくとも1つに方向付けされて分布される。好ましくはエネルギー活性 機能性フィラメントのフロートは、互いに平行にかつ水平、垂直方向、もしくは対角線方向の少なくとも1つに分布される。あるいはエネルギー活性 機能性フィラメントのフロートは、互いに角度を成してもよい。好ましくはフィラメントは弾性と非弾性の少なくとも一方である。
【0041】
加えて本発明の電気-テキスタイル ファブリックは、テキスタイル内の電気的通路を分離するための容量性スイッチ、テキスタイル電極、ファイバー光学構造、電気機械的動作、変換器、抵抗加熱、機能性分子送付、高電気的伝導性テキスタイル、および直流から100GHzまでの電磁遮蔽を含むがそれに限定されない多様な利用に適用し得る。
【0042】
本発明の他の実施の形態は、非伝導性テキスタイル フィラメントがテキスタイル織機の経糸方向に供給され、エネルギー活性 機能性テキスタイル フィラメントが緯糸方向に供給される電気-テキスタイル ファブリックを形成するための方法である。フィラメントは、電気-テキスタイル ファブリックの少なくとも第1の表面上にエネルギー活性 機能性フィラメントのフロートが形成される、電気-テキスタイル ファブリックを形成するために少なくとも1/1の織り合わせ(interlacing)を有する織りパターンで織られる。
【0043】
本発明の他の実施の形態は、経糸方向に非伝導性テキスタイル フィラメントと緯糸方向にエネルギー活性 機能性フィラメントを含む織りファブリックを構成する方法である。織りファブリックの織り合わせのオーダー(すなわち織りパターン ダイヤグラム)は、織りパターン ダイヤグラムの単位セル内の経糸と緯糸ヤーン間の交差点で定義されるような、織りファブリックの表面上の経糸と緯糸ヤーン セグメントの非対称の数を有する構造を提供するように定義される。好ましくはこの実施の形態において使用に適する織りパターンは、サテン構造を含むがそれに限定されない。好ましくはサテン構造はサテン4、サテン5、サテン10とサテン16の少なくとも1つを含む。
【0044】
この方法によると織りファブリックの第1の表面は、織りパターン ダイヤグラム内の経糸ヤーン セグメントに比較して緯糸ヤーン セグメントのより大きい数を有する。このようにこの第1の表面は、エネルギー活性 機能性フィラメントの「フロート」を示す。織りファブリックの第2もしくは反対側の表面は、織りパターン ダイヤグラム内の緯糸ヤーン セグメントに比較して経糸ヤーン セグメントのより大きい数を有する。それゆえこの第2の表面は、非伝導性テキスタイル フィラメントの「フロート」を示す。
【0045】
本発明の他の実施の形態は、経糸方向に非伝導性テキスタイル フィラメントと緯糸方向にエネルギー活性 機能性フィラメントを含む織りファブリックを構成する方法である。織りファブリックの織り合わせのオーダー(すなわち織りパターン ダイヤグラム)は、織りパターン ダイヤグラムの単位セル内の経糸と緯糸ヤーン間の交差点で定義されるような、ファブリックの表面上の経糸ヤーン セグメントと緯糸ヤーン セグメントの非対称の数を有する構造を提供するように定義される。
【0046】
この方法によるとファブリックの両方の表面は、織りパターン ダイヤグラム内の経糸ヤーン セグメントに比較して緯糸ヤーン セグメントのより大きい数を有する。それゆえ両方の表面は、エネルギー活性 機能性フィラメントの「フロート」を示す。好ましくはこの実施の形態において使用に適する織りパターンは、2面(double-face)サテン構造を含むがそれに限定されない。好ましくはサテン構造は少なくとも2面サテン4を含む。
【0047】
本発明の他の実施の形態は、経糸方向に非伝導性テキスタイル フィラメントと緯糸方向にエネルギー活性 機能性フィラメントを含む織りファブリックを構成する方法である。ファブリックの織り合わせのオーダー(すなわち織りパターン ダイヤグラム)は、経糸もしくは緯糸ヤーン方向における非対称の織り合わせパターンを有する構造を提供するように定義される。この場合、織りパターン ダイヤグラムの単位セル内の経糸ヤーンと緯糸ヤーン間の交差点で定義されるようにファブリックの表面上の経糸ヤーン セグメントと緯糸ヤーン セグメントの数は、少なくとも同じ(すなわち1/1)である。しかしながら、織り合わせパターンは、1/1と異なる。好ましくはこの実施の形態において使用に適する織りパターンは、経糸うね織り(warp rib)、緯糸うね織り(filling rib)、バスケット織りおよびあや織り(twill)構造を含むがそれに限定されない。この方法によるとファブリックの両方の表面は、エネルギー活性 機能性フィラメントの「フロート」と非伝導性テキスタイル フィラメントの「フロート」を示す。
【0048】
さらに本発明の他の実施の形態は、弾性 非伝導性テキスタイル フィラメントと非弾性 エネルギー活性テキスタイル フィラメントを含む電気-テキスタイル ファブリックの機能性を調整する方法である。弾性 非伝導性テキスタイル フィラメントは、織りパターンを構成することによって伸張(tension)され、そしてその後、(例えば織機から電気-テキスタイル ファブリックを取り去ることによって)該伸張は弾性フィラメント上で解放される。あるいは各非伝導性テキスタイル フィラメントとエネルギー活性テキスタイル フィラメントは、弾性および非弾性の少なくとも1つである。
【0049】
本発明の他の実施の形態は、編機内に弾性 非伝導性テキスタイル フィラメントを入れ、編機内に非弾性 エネルギー活性 機能性フィラメントを入れ、ここで非伝導性テキスタイル フィラメントとエネルギー活性フィラメントの少なくとも1つは弾性で、弾性 非伝導性テキスタイル フィラメントを伸張させ、弾性 非伝導性テキスタイル フィラメントと非弾性 エネルギー活性テキスタイル フィラメントを織りパターンに従って織ることにより合体させ、編機から電気-テキスタイル ファブリックを取り出すことを含む電気-テキスタイル ファブリックの機能性を調整する方法である。
【0050】
さらに本発明の他の実施の形態は、編機内に非伝導性テキスタイル
フィラメントとエネルギー活性 機能性フィラメントを入れ、非伝導性テキスタイル フィラメントとエネルギー活性 機能性フィラメントを織りパターンに従って織ることにより合体させ、ここで非伝導性テキスタイル フィラメントとエネルギー活性 機能性フィラメントの少なくとも1つは弾性で、使用中は該ファブリックを伸張(stretch)および復元(recover)させることを含む電気-テキスタイル ファブリックの機能性を調整する方法である。
【0051】
本発明の他の実施の形態は、電気-テキスタイル ファブリックの一表面におけるエネルギー活性 機能性フィラメントの電気-テキスタイル ファブリックのもう1つの表面より高い集中状態のフロートを入れることを含む電気-テキスタイル ファブリックの機能性を調整する方法である。
【0052】
さらに本発明の他の実施の形態は、エネルギー活性 機能性フィラメントのフロート間の非伝導性テキスタイル フィラメントのフロートを入れることを含む電気-テキスタイル ファブリックの機能性を調整する方法である。
【0053】
B.電気-テキスタイル アンテナ
さらに本発明の他の実施の形態は、高周波電磁放射、特に無線通信の周波数範囲の放射と相互に作用するための電気-テキスタイル アンテナ構造である。電気-テキスタイル アンテナは非常な高性能を有し、(例えば衣服もしくはバンドのような)着用物と呼ばれるもの内もしくはどのような典型的なテキスタイル構造内へも容易に一体化される美的感覚のあるテキスタイルを具体化する。織りファブリックのそのような電気-テキスタイル アンテナは、経糸方向の非伝導性ファイバーと緯糸方向の伝導性ファイバーを含み得る。該アンテナは直流(低周波数)から100ギガヘルツ(GHz)(高周波数)までの周波数範囲における高伝導性を示す。
【0054】
さらに本発明の他の実施の形態は、電気的伝導性ファイバーからなる緯糸ヤーンは少なくとも40マイクロメーターの直径を有する電気的高伝導性の(例えば銅、銀もしくは銀メッキ銅を含むがそれに限定されない)金属ヤーンをさらに含む織りファブリックの電気-テキスタイル アンテナである。
【0055】
本発明の他の実施の形態は、電気的伝導性ファイバーからなる緯糸ヤーンは少なくとも40マイクロメーターの直径を有する(例えばその上にメッキされた銅もしくは銀を有するナイロンもしくはポリエステルのテキスタイル ヤーンを含むがそれに限定されない)金属メッキされたヤーンをさらに含む織りファブリックのファブリック アンテナである。さらに本発明の他の実施の形態は、電気的伝導性ファイバーからなる緯糸ヤーンは直流(低周波数)から100ギガヘルツ(GHz)(高周波数)までの電気的周波数で金属被覆のためにその上の被覆厚さが皮膚深さと等しいかもしくはそれよりも大きい金属被覆を有する電気的伝導性ファイバーをさらに含む織りファブリックのファブリック アンテナである。
【0056】
本発明の他の実施の形態は、電気的伝導性ファイバーからなる緯糸ヤーンはスパンデックスで弾性化された弾性 電気的伝導性ヤーンを含む織りファブリックのファブリック アンテナである。さらに本発明の他の実施の形態は、経糸と緯糸ヤーンの両方が弾性ヤーンである織りファブリックのファブリック アンテナである。
【0057】
さらに本発明の他の実施の形態は、電気的伝導性ファイバーからなる緯糸ヤーンは1000メガヘルツ(MHz)から15ギガヘルツ(GHz)の範囲においてメーター当たり少なくとも1×10シーメンスの電気的伝導性を示すスパンデックスで弾性化された弾性 電気的伝導性ヤーンをさらに含む織りファブリックのファブリック アンテナである。
【0058】
本発明の他の実施の形態は、ポリエステルと溶融石英の少なくとも1つのファイバーからなる誘電体テキスタイルをさらに含む織りファブリックのファブリック パッチ アンテナである。さらに本発明の他の実施の形態は、2.4ギガヘルツ(GHz)の周波数で少なくとも80%の効率を有するファブリック パッチ アンテナである。
【0059】
本発明の他の実施の形態は、少なくとも1つのマルチモード共振周波数を有するファブリック パッチ アンテナである。
【0060】
本発明の他の実施の形態は、織機上で織る間、織りファブリックの経糸ヤーンを伸張させ、織機から織りファブリックを取り出し、張力無しで織りファブリックを弛緩させるステップによって織りファブリックのファブリック アンテナの伝導性を増大させるための方法である。さらに本発明の他の実施の形態は、織りファブリックを蒸気で処理し、加熱セッティングと熱湯処理の少なくとも1つによって織りファブリックを加熱し、その後、処理された織りファブリックを張力無しで弛緩させるさらなるステップによって織りファブリックのファブリック アンテナの伝導性を増大させるための方法である。
【0061】
本発明の他の実施の形態は、経糸方向の電気的非伝導性ファイバーと緯糸方向の電気的伝導性ファイバーからなる織りファブリック アンテナの周波数応答を変化させるための方法である。この方法はさらに織りファブリックの伸長および復元の少なくとも1つのステップを含む。さらに本発明の他の実施の形態は、経糸方向の電気的非伝導性ファイバーと緯糸方向の弾性 電気的伝導性ファイバーからなり、織りファブリックの伸長と復元の少なくとも1つをさらに含む織りファブリック アンテナの周波数応答を変化させるための方法である。
【発明を実施するための最良の形態】
【0062】
本発明は、本願の一部および以下を形成する添付の図面に関してなされる以下の詳細な説明からより十分に理解されるだろう。
図1は導波空洞測定装置の概略図である。
図2はマイクロストリップ共振測定装置の概略描写である。
図3Aは平織りの織りパターンダイヤグラムの単位セルを示す。
図3Bはサテン4の織りパターンダイヤグラムの単位セルを示す。
図3Cはサテン5の他のバージョンの織りパターンダイヤグラムの単位セルを示す。
図3Dはサテン4のさらに他の織りパターンダイヤグラムの単位セルを示す。
図3Eは2面サテン4の織りパターンダイヤグラムの単位セルを示す。
図3Fはサテン10の織りパターンダイヤグラムの単位セルを示す。
図3Gはサテン16の織りパターンダイヤグラムの単位セルを示す。
図3Hは平織りと組み合わされたサテン16の他のバージョンの織りパターンダイヤグラムの単位セルを示す。
図3Iは本発明の1つの実施の形態に従う編み電気-テキスタイル ファブリックの概略図である。
図3Jは本発明の他の実施の形態に従う編み電気-テキスタイル ファブリックの概略図である。
図3Kは本発明のさらに他の実施の形態に従う編み電気-テキスタイル ファブリックの概略図である。
図3Lは本発明の1つの実施の形態に従う水平かつ平行に分布されたフロートを有する編み電気-テキスタイル ファブリックの概略図である。
図3Mは本発明の他の実施の形態に従う平行に水平にかつ平行に垂直に分布されたフロートを有する編み電気-テキスタイル ファブリックの概略図である。
図3Nは本発明のさらに他の実施の形態に従う平行に水平にかつ平行に交差して分布されたフロートを有する編み電気-テキスタイル ファブリックの概略図である。
図3Oは平織りの織りパターン ダイヤグラムを用いた織り 電気-テキスタイルを概略的に示す。
図3Pはサテン4の織りパターン
ダイヤグラムを用いたさらに他の織り 電気-テキスタイルを概略的に示す。
図3Qはサテン5の他のバージョンの織りパターン ダイヤグラムを用いた織り 電気-テキスタイルを概略的に示す。
図3Rはサテン4の織りパターン
ダイヤグラムを用いた織り 電気-テキスタイルを概略的に示す。
図3Sは2面サテン4の織りパターン ダイヤグラムを用いた織り 電気-テキスタイルを概略的に示す。
図3Tはサテン10の織りパターン ダイヤグラムを用いた織りテキスタイルを概略的に示す。
図3Uはサテン16の織りパターン ダイヤグラムを用いた織り 電気-テキスタイルを概略的に示す。
図3Vは平織りと組み合わされたサテン16の他のバージョンの織りパターン ダイヤグラムを用いた織り 電気-テキスタイルを概略的に示す。
図4Aは実施例18のサンプルの織り構造を示す。
図4Bは実施例19のサンプルの織り構造を示す。
図4Cは実施例20のサンプルの織り構造を示す。
図4Dは実施例21のサンプルの織り構造を示す。
図5は知られたパッチ アンテナと上層として比較実施例6のファブリックを有するアンテナのギガヘルツ(GHz)における周波数に対するデシベル(dB)における復帰損失のグラフである。
図6は本発明による実施例22のパッチ アンテナのギガヘルツ(GHz)の周波数に対するデシベル(dB)における復帰損失のグラフである。
図7は知られたパッチ アンテナの2つのサンプルに比較して、本発明による実施例11のパッチ アンテナの2つのサンプルのギガヘルツ(GHz)の周波数に対するデシベル(dB)における復帰損失のグラフである。
図8は本発明による実施例24のファブリック パッチ アンテナのギガヘルツ(GHz)の周波数に対するデシベル(dB)における復帰損失のグラフである。
図9は図2に示されるマイクロストリップ共振測定装置を用いてマイクロストリップ共振測定方法によって測定されたQ値からの電気-テキスタイル ファブリックの実際の伝導性のグラフである。
図10はサテン5とサテン10の織り構造の機械(すなわち織機)上で測定されたppiにおける緯糸ヤーン密度に対する2.6GHzでのQuのグラフである。
図11はサテン5とサテン10の織り構造の織機からファブリックが取り出された後、測定されたppiにおける緯糸ヤーン密度に対する2.6GHzでのQuのグラフである。
図12は「S」方向に第1の被覆でかつ「Z」方向に第2の被覆で巻き付けられた2重被覆されたヤーンを示す。
【0063】
A.電気-テキスタイル ファブリック
本発明によると、編みもしくは織り製造プロセスを用いてエネルギー活性 機能性フィラメントと非伝導性テキスタイル フィラメントを含む縫い目なく一体化された電気-テキスタイル ファブリックを製造することが可能である。本発明は、電気-テキスタイル ファブリックは機能性フィラメントで全体が構成され、機能性フィラメントは互いに接触しないが、望まれる機能を有する高効率低コストの電気-テキスタイル ファブリックを提供する。この電気-テキスタイル ファブリックの構成要素は以下のセクションで論じられる。
【0064】
I.エネルギー活性 機能性フィラメント
エネルギー活性 機能性フィラメントは、少なくとも1つの特性機能を有し、もしくは電/光/磁 場のようなエネルギー場と相互に作用する少なくとも1つの特性を示すフィラメントを引用する。そのような要素と関連された機能性もしくは特性は、電気、光学、磁気、機械、化学、もしくは熱エネルギー形態を含み得るエネルギーの他の形態における応答を制御するために1つのエネルギーの形態を変換するもしくは使用するためにこれらの要素の能力を引用する。
【0065】
そのような機能性フィラメントの例は、電気的機能(例えば電気的伝導性、加熱、圧電気(piezoelectric)、電歪(electrostrictive)、エレクトロクロミック(electrochromic) 運動)、光学機能(例えば光ガラス ファイバー、光ルミネセンス、ルミネセンス、光通信、反射)、磁気機能(例えば磁歪(magnetostrictive) 運動)、熱応答機能(例えば形状記憶ポリマーもしくは合金)、およびセンサー機能(例えば化学、バイオ、容量)を示すフィラメントを含むがそれに限定されない。
【0066】
エネルギー活性 機能性フィラメントは、1つもしくはそれ以上のフィラメントを含み得る。エネルギー活性 機能性フィラメントは、ファイバー、ヤーン、スリット ストリップもしくはリボンの形態のフィラメントを含み得るがそれに限定されない。該フィラメントは絶縁され得もしくは絶縁され得ない。これらのフィラメントはまた弾性 エネルギー活性 機能性フィラメントでもあり得る。弾性は、それらのすべてがそれらの全体における引用によって含まれる、2003年4月25日に提出されたUS 2004/0237594 A1「電気的伝導性ヤーン、それを作る方法およびそれを含む物品」、2004年11月25日に提出されたUS仮出願60/627,168「弾性複合ヤーン、それを作る方法、およびそれを含む物品」、および2004年11月25日に提出されたUS仮出願60/627,169「機能性 弾性複合ヤーン、それを作る方法、およびそれを含む物品」の特許出願で教示される方法により得られる。
【0067】
II.非伝導性テキスタイル フィラメント
本発明の電気-テキスタイルの非伝導性テキスタイル フィラメントは、非伝導 非弾性合成ポリマー ファイバーもしくはコットン、ウール、シルクおよびリネンを含むがそれに限定されない天然テキスタイル ファイバーから作られ得る。合成ポリマー ファイバーは、ナイロン、ポリエステルもしくはフィラメント ヤーン ブレンドから選ばれる、マルチフィラメント フラット ヤーン、一部方向付け(partially oriented)ヤーン、テクスチャード ヤーン、2成分(bicomponent)ヤーンから選ばれる連続的フィラメントもしくはステープル ヤーンであり得る。
【0068】
もし非伝導性テキスタイル ヤーンがナイロンの場合、ナイロン6、ナイロン66、ナイロン46、ナイロン7、ナイロン9、ナイロン10、ナイロン11、ナイロン610、ナイロン612、ナイロン12およびそれらの混合物およびコポリアミドのような合成ポリアミド
コンポーネント
ポリマーからなるナイロン ヤーンが好ましい。コポリアミドの場合、それぞれ商標DYTEK A(登録商標)とDYTEK EP(登録商標)の元でE. I. Du Pont de Nemours and Company, Inc.(Wilmington, Delaware)から入手できるジアミンのグループから脂肪族ジアミン コンポーネントが選ばれる、ポリアジパミドの40モル パーセントまでのナイロン66を含むものが特に好ましい。
【0069】
もし非伝導性テキスタイル ヤーンがポリエステルの場合、好ましいポリエステルは、ポリエチレン テレフタレート(2GT, a.k.a. PET)、ポリトリメチレン テレフタレート(3GT,
a.k.a. PTT)もしくはポリテトラブチレン テレフタレート(4GT)のいずれかである。加えて非伝導性テキスタイル フィラメントはまた、伝統的なヤーン被覆プロセスに基づくナイロン被覆Lycra(登録商標)スパンデックス ヤーン、もしくはポリエステル被覆Lycra(登録商標)スパンデックス ヤーンのような弾性でもあり得る。
【0070】
III.フロート
本発明による電気-テキスタイル ファブリックは、テキスタイルの表面から見えるような非伝導性テキスタイル フィラメント内のエネルギー活性 機能性フィラメントの「フロート」を含む。
【0071】
フィラメントの「フロート」は、ファブリックを構成する他のヤーンとの少なくとも2つの交点にわたるファブリックの表面上の機能性フィラメントの存在を引用する。本発明の文脈において、そのようなフロートは、非伝導性テキスタイル フィラメントもしくはその反対と比較して、機能性フィラメントのより高い集中状態を有する領域を示す非対称のファブリック表面を生じる。該フロートは、ファブリック全体もしくはファブリックの部分においてのみの至るところに集中される。
【0072】
さらに本発明は、エネルギー活性 機能性フィラメントの「フロート」の位置もしくは集中が、電気-テキスタイルへ特有の属性を提供する、電気-テキスタイル ファブリックの用途を提供する。本発明の電気-テキスタイルは、機能性運動が基体表面に大きく依存する領域における適用を見つけ得る。
【0073】
エネルギー活性 機能性フィラメントの「フロート」の位置と集中は、電気-テキスタイル ファブリックへ特有の属性を提供し、高効率機能を伴う基体として動作する能力を有するテキスタイルを提供する。本発明から利益を得うる機能性は、表面領域特性に依存するどの機能性も含むがそれに限定されない。これらの機能性のいくつかの例は、以下を含むがそれに限定されない。
【0074】
1.電磁遮蔽
2.電気-テキスタイル アンテナ
3.容量性スイッチ
4.さらなる分離を提供するため、ファブリック内での電気的通路の絶縁
5.得られるだけの皮膚とテキスタイル間の金属接触の増加、生理学上の信号(例えば心拍数)モニターのためのテキスタイル電極
6.ファイバー光学構造の上部表面への光の最大化
7.平織りによる一様な収縮よりむしろファブリックのカールもしくは曲げを獲得するためのサテン構造における形状記憶ワイヤーの使用
8.抵抗加熱適用におけるファブリックの一表面上の熱集中
9.電気機械的動作
10.(例えば光、エネルギー)変換器、および
11.(例えばマイクロカプセル、ドラッグ等)機能性分子送付
上記項目4の電気的通路を絶縁する機能は、経糸と緯糸方向の少なくとも1つにおいて選択的にフィラメントを取り去ることによって成し遂げられ得ることに注目されたい。加えて経糸と緯糸方向の少なくとも1つにおけるフィラメントの選択的取り去りは、フロートを形成するための代わりの方法である。
【0075】
電気-テキスタイル ファブリックを形成するための機能性および非機能性フィラメントの相対的な総計と的確な選択は、望まれた機能性と獲得された効率のレベルにより選択される。これらの要素はまた、エネルギー活性 機能性フィラメントの「フロート」の数、密度および集中状態を決定する。
【0076】
本発明の方法によって、伝統的なテキスタイル編みもしくは織りプロセスは、余分なプロセス ステップの必要無しに、本発明の電気-テキスタイル ファブリック内に機能性エレメントのフロートを移動させもしくは集中させるのに適していることが分かった。ほとんどの場合、機能性フィラメント間の重なり部分の必要性はなく、それゆえそれは電気-テキスタイル ファブリック内の1つ(例えば水平もしくは垂直)の方向に含まれ得る。
【0077】
「フロート」は、「経糸もしくは2つ以上の隣接するフィリング ピック上に伸びるフィリング(緯糸) ヤーンもしくはあるデザインを形成する目的で織られる経糸端部の部分」または「編みファブリックにおいては、編み込まれること無しにある長さに伸びるヤーンの部分」であり得る。ここで論じたテキスタイルの編みもしくは織りプロセスを用いるとき、「フロート」は、電気-テキスタイル ファブリックの表面にそれらを持っていくためにフィラメントがいくつかのヤーンを横切ってフロートする、ある織りパターンによって生成され得る。
【0078】
図3Aから3Hは以下に論じる実施例において引用される織り構造の単位セルの図である。図3Aは平織りパターン ダイヤグラム30を示す。図3Bと図3Cはサテン5の織りパターン ダイヤグラム32a、32bを示す。同じ表面領域について、平織りパターン ダイヤグラム30は経糸と緯糸ヤーン間の1:1の比を示す両方の面を有する一方、サテン5構造32a、32bは4:1の比を有する。図3Cに示されるように、サテン5構造はファブリックの一側上の緯糸ヤーンのフロートとファブリックのもう一側上の経糸ヤーンのフロートを示す。これは、もう一方と比較してファブリックの一面における緯糸もしくは経糸ヤーンにおいてより高い集中状態を有するサテン5織り構造を提供し、それゆえファブリックの2つの面間で対称を示す平織りパターンと比較して2つのファブリック面間で非対称を示す。
【0079】
図3Dはサテン4織りパターン ダイヤグラム34を示す。図3Eは2面サテン4織りパターン ダイヤグラム36を示す。図3Fはサテン10織りパターン ダイヤグラム37を示す。サテン5織りと類似のサテン4織りパターンは、ファブリックの各面における経糸と緯糸ヤーン セグメントの非対称の数を提供し、それゆえファブリックの一側上の緯糸ヤーンのフロートとファブリックのもう一側上の経糸ヤーンのフロートを示す。ヤーンは、サテン4織りにおける3ヤーン セグメントのフロートに比較してサテン5織りにおける4ヤーン セグメントのフロートを示すので、サテン5構造は、サテン4構造と比較してより長いフロートを有する。
【0080】
図3Eは2面サテン4織りパターン ダイヤグラム36を示す。この織りパターンにおいては、経糸と緯糸ヤーンの非対称の数がある。しかしながら織り合わせパターンは1/1とは異なる。それゆえファブリックの各面は緯糸のフロートと経糸のフロートを示す。図3Eに示される2面サテン織りパターンはさらに、その可能性のためにファブリックの一表面のみにおけるエネルギー活性 機能性フィラメントのフロートの集中状態を調整することを可能にする。一例として、これは奇数の緯糸ヤーンとしてのエネルギー活性フィラメントを、また図3Eに示される織りパターンにおける経糸および偶数の緯糸ヤーンとして非伝導性テキスタイル フィラメントを挿入することによって達成し得る。この場合、ファブリックの一面は、エネルギー活性および非伝導性フィラメントのフロートを示す一方、ファブリックのもう一面は独自に非伝導性フィラメントのフロートを示す。
【0081】
図3Fはサテン10織りパターン ダイヤグラム37を示す。これはサテン5もしくはサテン4織りパターンと類似する。しかしながら、それはより高いオーダーのサテン織りパターンを示す。サテン10織りにおいては、4ヤーン セグメントのフロートを有するサテン5織りに比較して9ヤーン セグメントのより長いフロートを示す。
【0082】
図3Gはサテン16織りパターン ダイヤグラム38を示す。それはサテン10織りパターン内の9に比較して15ヤーン セグメントのフロートを示すので、これはサテン10織りよりもさらに高いオーダーのサテン パターンである。
【0083】
図3Hは平織りパターン ダイヤグラム39を組み合わせたサテン16を示す。この図では奇数の緯糸ヤーンがサテン16織り構造に続く一方、偶数の緯糸ヤーンが平織りパターンをフォローする。この構造は、緯糸ヤーン セグメントのフロート間において分布された図3Gに示されるサテン16織りパターンに比較して、織りの緯糸面において経糸ヤーン セグメントのより高い数を加える。この構造は、従来のサテン織りパターンと類似して、ファブリックの一面上の緯糸ヤーンのフロートとファブリックのもう一面上の経糸ヤーンのフロートをさらに示す一方、サテン織りと平織りパターンの組み合わせは、ファブリックの一面上の緯糸ヤーンの離れた長いフロートを作る一方、ファブリックのもう一方の側で緯糸ヤーンの数が増加し、経糸ヤーンのフロートの長さが減少する。
【0084】
図3Iから3Kは、非伝導性フィラメントとエネルギー活性 機能性フィラメントを有する編まれた電気-テキスタイル ファブリックを図示する。フロートは、望まれたパターンによる編みスティッチを運びもしくは抜かすことによって編む間、生成される。特にフロートは、エネルギー活性フィラメントが、それらを電気-テキスタイル ファブリックの表面へ持って行くためにいくつかの編みスティッチを横切ってフロートされるとき、結果として生じる。
【0085】
図3Iは、非伝導性フィラメント103とエネルギー活性 機能性フィラメント105を有する編まれた電気-テキスタイル ファブリック100の1つの実施の形態を示す。図3Iでは、一連のスティッチは、エネルギー活性 機能性フィラメント105が垂直方向に方向付けされるように、エネルギー活性フィラメント105を伴うセグメントを有する。あるいはエネルギー活性フィラメントもしくはセグメント105は、水平方向にもしくは互いに角度を成して方向付けされ得る。好ましくは複合的な(multiple)エネルギー活性フィラメント105はまた、平行に方向付けされる。
【0086】
図3Jは、非伝導性フィラメント103とエネルギー活性フィラメント105を有する編まれた電気-テキスタイル ファブリック107の他の実施の形態を示す。図3Jに示されるエネルギー活性フィラメント105は、編みパターンにおいて水平方向に方向付けられた一列(row)のスティッチを形成する。あるいはエネルギー活性フィラメント105は、水平方向にもしくは互いに角度を成す一連のフィラメントによって方向付けられ得る。好ましくは複合的なエネルギー活性フィラメント105は平行に方向付けられる。
【0087】
図3Kは、非伝導性フィラメント103とエネルギー活性フィラメント105を有する編まれた電気-テキスタイル ファブリック109のさらに他の実施の形態を示す。図3Kに示されるエネルギー活性フィラメント105は、非伝導性フィラメント105を電気-テキスタイル ファブリック109の表面に持って行くために、いくつかの非伝導性フィラメント103を横切るフロート スティッチを有する編み構造の一列において編まれる。好ましくは複合的エネルギー活性フィラメント105は、平行に方向付けられ、フロートとして表面に持って行かれる。複合的エネルギー活性フィラメント105は、垂直方向、水平方向および/または互いに角度を成して方向付けられ得る。
【0088】
図3Lから3Nはさらに電気-テキスタイル ファブリック内でフロートがいかに分布され、方向付けされるのかを図示する。図3Lは、平行に分布され水平方向に方向付けられたエネルギー活性 機能性エレメント112のフロートを示す。図3Mは、平行に分布され水平と垂直の両方向に方向付けられたエネルギー活性 機能性エレメント112、114のフロートを示す。図3Nは、平行に分布され水平と垂直の少なくとも一方向にかつ互いに角度を成して方向付けられたエネルギー活性 機能性エレメント112、116のフロートを示す。フロート116は斜めに方向付けられる。
【0089】
図3Oから3Vは、図3Aから3Gに参照された織り構造に従って織られた代わりの電気-テキスタイル ファブリックを図示する。それゆえ図3Aから3Gのために与えられた上記と同じコメントが図3Oから3Vにそれぞれ適用される。
【0090】
図3Oは織りパターン ダイヤグラム30から平織りを示す。図3Pと図3Qはサテン5織りパターン ダイヤグラム32a、32bの異なる実施を示す。同じ表面領域について、サテン5構造32a、32bは4:1の比を有するけれども、平織りパターン ダイヤグラム30は、経糸と緯糸ヤーン間の1:1の比を示す両方の面を有する。
【0091】
図3Rは図3Dの織りパターン ダイヤグラム34から形成されたサテン4織りである。図3Sは、図Eの織りパターン ダイヤグラム36からの2面サテン4を示す。図3Tは図3Fの織りパターン ダイヤグラム37から形成されたサテン10織りを示す。
【0092】
図3Uは図3Gの織りパターン ダイヤグラム38から形成されたサテン16織りの織られた実施を示す。図3Vは図3Hの織りパターン ダイヤグラム39から形成されたサテン16織りの織られた実施を示す。
【0093】
これらの電気-テキスタイルの望ましい特性は高表面機能性活性である。電気-テキスタイル ファブリックの第2もしくは反対側の表面は、単一層ファブリック上の機能性がかなり少ないけれども、要求により高機能性である第1の表面を有することは有用であり都合がよい。他の場合、単一層ファブリック上に高機能性の両方の表面を有することは有用であり都合がよい。
【0094】
そのような電気-テキスタイルは、緯糸方向に機能性フィラメントを有し、経糸方向に非伝導性フィラメントを有する織りファブリックであり得る。ファブリックの織り合わせのオーダー(すなわち織りパターン ダイヤグラム)は、オプションとしてファブリックの表面上に経糸と緯糸ヤーン
セグメント非対称の数を有する構造を提供するように定義され得る。この実施の形態における使用に適する織りパターンは、サテン構造を含むがそれに限定されない。
【0095】
本発明の1つの実施の形態に従って、電気-テキスタイル ファブリックの第1の表面はエネルギー活性 機能性フィラメントの「フロート」を有する。この実施の形態は、該ファブリックの第2もしくは反対側の表面は非伝導性テキスタイル フィラメントの「フロート」を有し低機能性活性を提供するが、第1の表面上に高機能性活性を提供する。
【0096】
本発明の他の実施の形態に従って、織りファブリックの織り合わせのオーダー(すなわち織りパターン ダイヤグラム)は、ファブリックの両方の表面上に経糸ヤーン セグメントと緯糸ヤーン セグメントの非対称の数を有する構造を提供するように定義され得る。しかしながらこの実施の形態では、織りファブリックの両方の表面は、エネルギー活性 機能性フィラメントの「フロート」を有する。この実施の形態における使用に適する織りパターンは、2面サテン構造、好ましくは2面サテン4を含むがそれに限定されない。
【0097】
本発明のさらに他の実施の形態に従って、織りファブリックの織り合わせのオーダー(すなわち織りパターン ダイヤグラム)は、経糸ヤーン方向もしくは緯糸ヤーン方向において非対称の織り合わせパターンを有する構造を提供するように定義され得る。この場合、ファブリックの表面上の経糸ヤーン セグメントと緯糸ヤーン セグメントの数は少なくとも等しくあり得る(すなわち1/1)。しかしながら織り合わせパターンは1/1とは異なる。この実施の形態において使用に適する織りパターンは、経糸うね織り、緯糸うね織り、バスケット織りおよびあや織り構造を含むがそれに限定されない。この実施の形態を構成するための方法によると、ファブリックの両方の表面は、エネルギー活性 機能性フィラメントの「フロート」と非伝導性テキスタイル フィラメントの「フロート」を有する。
【0098】
さらに本発明は、弾性復元特性を有する電気-テキスタイルとそのような電気-テキスタイルを製造する方法を提供する。機能性フィラメント、非機能性フィラメント、もしくは両方が弾性の場合、本発明の電気-テキスタイル ファブリックは伸長および復元特性がさらに弾性化される。そのようなテキスタイルの順応性に対してこれが持っている利点以外に、テキスタイル ファブリック内の機能性領域の集中状態を制御し、もしくは変える機構として活動し得る場合に弾性特性は比類なく有利になる。典型的な織りプロセスにおいては、テキスタイルは伸張状態の間に形成される。該ファブリックはそれが織機から取り外された後、弛緩する。
【0099】
そのような電気-テキスタイル ファブリックは緯糸方向に機能性フィラメントを、経糸方向に非伝導性フィラメントを有し得る。もし経糸ファイバーが弾性なら、織機からファブリックを取り外すと機能性フィラメントはいっしょに接近して集まる傾向があるだろう。そのような機能性フィラメントの集まりは、満足できる機能性フィラメントの密度を向上させる。このことは、集中状態の増加の付加的な結果とそのようなテキスタイルの機能性活性のこのような増加を有する。
【0100】
緯糸ファイバーが弾性である代わりの場合では、ファブリックを織機から取り出すと、非伝導性フィラメントは接近して集まり、満足できる非伝導性フィラメント密度が増加するだろう。加えて機能性活性は、(例えば着用物もしくは衣服適用における)使用の間またはファブリック内におけるテキスタイルの一体化の間、ファブリックを伸長および復元させることによって変え得る。
【0101】
本発明の技術はまた、高効率 電気-テキスタイル ファブリック アンテナおよびそのようなアンテナを作る方法を提供する。新規な電気-テキスタイル ファブリック アンテナは、(衣服のような、しかしそれに限定されない)いわゆる着用物内もしくはどのようなテキスタイル構造内へも容易に一体化される美的感覚のあるテキスタイルを具現化する。
【0102】
本発明の付加的な実施の形態および方法はさらに、特に無線通信の周波数範囲において高周波での高効率を示す電気-テキスタイル アンテナ構造のために述べられる。
【0103】
本発明では、直流(DC)範囲において特徴付けられるようなテキスタイルの伝導性が、交流(AC)適用におけるのと著しく異なり得ることが現在では知られている。周波数が増加するにつれて、電気的伝導性ファイバーの伝導性動作は変化し、電気-テキスタイルの性能も変化する。電気-テキスタイルは、直流もしくは低周波範囲においては申し分のない伝導体であり得るが、同じテキスタイルはRFもしくはマイクロ波範囲においては不十分な伝導体であり得る。
【0104】
本発明ではテキスタイルの表面上に金属被覆は必要ない。その周波数範囲内で高伝導性効率を持つためにテキスタイル ファブリック内で電気伝導性ファイバーが互いに交差する必要もない。
【0105】
ここで開示されているように電気-テキスタイル ファブリックの適切な設計は、電気的伝導性ファイバーがテキスタイルのただ1つの方向に導入されるとき、参照銅プレート タイプの材料と比較して同じくらい高いかなりの効率が結果として生じ得ることを示す。さらに柔軟で快適で順応性のあるファブリック アンテナは、本発明の電気-テキスタイルとともに形成され得る。そのようなアンテナは、100ギガヘルツ(GHz)のように高い周波数での遠距離通信デバイスで使用される、標準の堅いアンテナと類似する信号強度、パターンおよび効率を示す。
【0106】
本発明の他の実施の形態は、経糸方向における非伝導性ファイバー、緯糸方向における伝導性ファイバーを含み、DC(低周波数)から100ギガヘルツ(GHz)(高周波数)の周波数範囲における高い伝導性を示す、織りファブリックの電気-テキスタイル アンテナである。織りファブリック アンテナは、第2もしくは反対側のファブリック面に比較して電気的伝導性ヤーン セグメントのより高い集中状態を有する少なくとも第1のファブリック面が提供される。この実施の形態で使用されるのに適する織り構造は、サテン構造、2面、あや織り構造およびサテン5よりも高いオーダーのサテン構造を含むがそれに限定されない、経糸および緯糸ヤーン セグメントの非対称的パターンを修するそれらを含む。
【0107】
織りファブリック アンテナのために適した織り構造は、総ヤーン密度(緯糸+経糸)の数に対する緯糸ヤーン密度の比が少なくとも30%であるように提供される。織りファブリック アンテナのために適した織り構造はまた、経糸ファイバーが弾性ヤーンであるように提供される。良好な誘電体特性を有する組み合わせファイバーを含むがそれに限定されないスパンデックス(特にLycra(登録商標))で弾性化されたヤーンの弾性ファイバーが好ましい。誘電体損失に関して良好な誘電体特性を有する組み合わせファイバーを選択する際、我々はコットンやナイロンよりもポリエステルやファイバーグラスが好ましいことを発見した。
【0108】
本発明のさらに他の実施の形態は、電気的伝導性ファイバーからなる緯糸ヤーンが、少なくとも40マイクロメータの直径を有する電気的高伝導性の金属ヤーン(例えばー銅、銀もしくは銀メッキ銅を含むがそれに限定されない)をさらに含む織りファブリックの電気-テキスタイル アンテナである。
【0109】
本発明の他の実施の形態は、電気的伝導性ファイバーからなる緯糸ヤーンが、少なくとも40マイクロメーターの直径を有する金属メッキされたヤーン(例えばその上に銅もしくは銀メッキを有するナイロンもしくはポリエステルのテキスタイル ヤーンを含むがそれに限定されない)をさらに含む織りファブリックのファブリック アンテナである。本発明のさらに他の実施の形態は、電気的伝導性ファイバーからなる緯糸ヤーンが、DC(低周波数)から100ギガヘルツ(GHz)(高周波数)の電気的周波数で、被覆厚さが金属被覆のための皮膚深さと等しいかもしくはそれより大きい、その上に金属被覆を有する電気的伝導性ファイバーをさらに含む織りファブリックのファブリック アンテナである。
【0110】
皮膚深さは、メーターにおいて、δ=1/√(πfμσ)として定義され、fは周波数、μはH/mにおける透磁率、およびσはΩ−1m−1における電気的伝導性である。皮膚深さは材料と同様に周波数による。例えば銅についての皮膚深さは、50Hzで9.3mm、150KHzで0.17mm、30MHzで12μm、および1GHzで2.1μmである。同じ周波数範囲でスチールについての皮膚深さは、50Hzで1.0mm、150KHzで0.22mm、30MHzで41μm、および1GHzで7.1μmである。それゆえ高周波数(すなわち30MHzより高い)では皮膚深さは特に材料の実際の寸法に比較して著しく小さくなる。
【0111】
皮膚深さはAC適用において関係するようになり、RF適用において非常に著しくなる。周波数が増加するにつれて皮膚深さは劇的に減少する。実際、皮膚深さは1/e(約37%)にまで該電界を減衰させるのに要求される距離である。それゆえ、100%減少が達成されるように三皮膚深さが要求されることが一般に受け入れられる。
【0112】
高周波適用における他の重要な考察は、材料抵抗の定義である。材料抵抗は一般にR=L/(σA)として定義され、Lは長さ、σは電気的伝導性、およびAは断面積である。DCもしくは低周波数範囲で、Aは材料の実際の断面積である。ACもしくは高周波数範囲で、AはA=δPとして定義される有効領域であり、δは使用における周波数での皮膚深さ、Pは材料断面の周囲の長さ(perimeter)である。
【0113】
試験方法
高周波数での電気-テキスタイルの伝導性の説明は、金属伝導性の説明として知られる方法に基づく。次の2つの方法は、高周波数での電気-テキスタイルを説明するために展開される。
【0114】
1.導波空洞測定
高Q導波空洞方法は、電気-テキスタイルを通してのエネルギー漏れと同様の電気-テキスタイルにおける熱損失を含む該材料からのすべてのエネルギー損失メカニズムを説明するために提供された。マイクロ波共振器回路は、空洞に失われたエネルギーの総計に対する蓄えられたエネルギーの総計を定義する質を表す因子(quality factor)(Q)によって特徴付けられる。図1に概略的に示されるように、1つの長方形の金属導波空洞(15.8mm×7.9mm×47mm)が半空洞10、12内に分けられる。共振器を励起するために、図1における拡大図に示されるように半空洞の入力ポート9および/または出力ポート11の同軸フィードにおいて、エネルギーがカプリング プローブを介して共振器の中へ連結される。導波空洞を通しての波伝達は、図1の矢印18、18'に示されるように、波が伝わる方向に対して電場が垂直(すなわち横)であることにより横電気モード(Transverse Electric Mode)(TE)に従う。
【0115】
入力/出力負荷の影響を考慮に入れるため、マイクロ波空洞の質を表す因子は3つの異なる因子によって完全に説明される。すなわち、負荷があるときのQ(Q)、負荷がないときのQ(Q)および外部のQ(Qext)である。測定の間、Qのみが測定し得る一方、QとQextが外挿によって求められる。そのような推定は、波の振幅と位相についての情報を含み、それゆえ、システムのふるまいを説明する、B=SAによる第1の入力ポート9での入力波Aと第2の出力ポート11での出力波Bとの間の関係を定義する、散在するマトリクス(S)の測定を要求する。パラメーターSijは散在するマトリクス(S)の構成要素であり、第2のポート11上の入力波による第1のポート9上の出力波の特性を示す。2ポート導波システムについて、後述の方法におけるように、Sマトリクスは4つのパラメーターS11、S12、S21およびS22からなる。
【0116】
測定手順において、1つの金属導波空洞を形成するために両半金属空洞10、12に弱く連結し、それらを共に整列させることによって、両半分10、12がまず較正する(calibrate)するのに使用される。第2に共振が電気-テキスタイルを特徴付けるために半金属空洞内で使用される。このステップにおいて、第2の半金属空洞の連結が臨界連結(critical coupling)へ変化し、電気-テキスタイルのサンプルのような試験材料14が、導波空洞の穴全体を覆うように2つの半空洞10、12間に挿入される。このことは導波共振器のロードしないQ(Q)を算出するのに使用される。半金属空洞10、12のQから、電気-テキスタイル14における伝導損失およびそれゆえ有効表面抵抗並びに試験 電気-テキスタイル14の伝導性が算出し得る。
【0117】
電気-テキスタイル試験材料14は、互いに平行に、電場に垂直に平行に、そして波伝達の方向に対して横に伸びる伝導性ファイバー16と共に示される。伝導性ファイバー間の間隔は、織りファブリック内に一体化されるとき、ファイバーの間隔をシミュレートするために選ばれる。
【0118】
II.マイクロストリップ共振器測定
上述の導波空洞方法は、100%の伝導性ファイバーからなるテキスタイルを試験するのに使用され得る。しかしながら、この方法は、本発明におけるように伝導性および非伝導性ファイバーの両方からなるテキスタイルに適し得ない。これは、電気-テキスタイルと導波穴間の良好な電気的接続を非伝導性ファイバーが妨げるからである。これらの問題に取り組むために、マイクロストリップ共振器測定の組み立て(set-up)が図2に示されるように実行された。
【0119】
幅4.12mm、長さ34.85mm、共振器周波数2.6ギガヘルツ(GHz)のマイクロストリップ共振器20がRogers DUROID(登録商標) RO3003誘電体材料(Rogers
Corporation Microwave Materials
Division)の厚さ60mil、ε=3およびtan δ=0.0013を有する基体25上に組み立てられた。マイクロストリップ共振器20は、図2に示されるように、該連結が供給線22、24から連結される電磁場の結果であることによる非接触方法によって与えられる。供給線22、24の幅はマイクロストリップ共振器20と同じ4.12mmであり、それは基体上の50Ω線の幅である。重ねられた銅層28は基体25の裏側上にマイクロストリップ共振器20の接地面として使用される。この測定方法では、電気-テキスタイル材料の断片は基体25の上部(図2には示されない)上に置かれ、共振器の負荷があるときのQ(Q)とS21が測定される。その後、これらの測定から電気-テキスタイル共振器の負荷がないときのQ(Q)が求められ得る。この方法はどのような電気-テキスタイル材料の伝導性の評価のために適する。
【0120】
図2に示されるのと類似した参照共振器は、電気-テキスタイルの効果的な伝導性を抽出するための組み立ておよび数値的シミュレーションにおけるバリエーションをもたらすために、基体の上部上に置かれた一片の銅箔(copper foil)に基づいて作られた。図9は、測定されたQ値に基づく数値的シミュレーションによって算出されるように(シーメンス/mにおける)ファブリックの効果的な伝導性を示す。該シミュレーションは、Agilent Technologiesによって設計されたAgilent Advanced Design Systemにおけるモーメンタム(Momentum) シミュレーション ソフトウェアを用いてなされた。
【0121】
以下の実施例において行われるようなマイクロストリップ共振器測定方法はQの評価を提供する。それから図9は電気-テキスタイルの伝導性の値を抽出するために用いられる。銅箔は参照材料であり、求める伝導性の上限である。電気-テキスタイルの伝導性の値が銅箔の伝導性の値に接近するほど、電気-テキスタイルの伝導性特性がよくなるだろう。Qは測定方法に依存し、それゆえ異なる試験方法間で比較するとき、一般に重要ではない。図9におけるシミュレーションは、ここで述べられるマイクロストリップ共振器測定方法により測定されたどのサンプルについても妥当であると信じられる。
【実施例】
【0122】
比較例1
織りファブリック(GVA-C-1)は平織り構造に基づいて作られた。該ファブリックは経糸ヤーンとしてコットンNe 100/2、緯糸ヤーンとしてELEKTRO-FEINDRAHT AG, Switzerlandから得られる直径40μmの銀メッキされた銅ワイヤーを有する。該ファブリックが織機上にまだある間、このファブリックについて測定されたヤーン密度は、経糸152エンド/インチおよび緯糸102ピック/インチであった。マイクロストリップ共振器測定によって測定されたこのファブリックのQ値は、該ファブリックの一面から14.4、該ファブリックの他面から14.4であった。この値は極端に低く、これは該ファブリックについて非常に低い電気的伝導性を示す。
【0123】
実施例1
織りファブリック(GVA-C-20)は平織り構造に基づいて作られた。該ファブリックは経糸ヤーンとしてCordura(登録商標)/Lycra(登録商標)弾性ヤーン、緯糸ヤーンとして比較例1の緯糸ヤーンと類似の直径40μmの銀メッキされた銅ワイヤーを有する。このファブリックについて測定されたヤーン密度は、経糸152エンド(ends)/インチ(in)および緯糸76ピック(picks)/インチ(in)であった。マイクロストリップ共振器測定によって測定されたこのファブリックのQ値は、該ファブリックの一面から84.5、該ファブリックの他面から84.1であった。
【0124】
この実施例の緯糸ヤーン密度が比較例1のそれより低いという事実にかかわらず、本発明によるこのファブリックは比較例1のファブリックに比較して驚くほど高い伝導性を示す。2つの例間で検討していない主な相違点は、経糸ヤーンにおいてである。実施例1で用いられた経糸ヤーンは弾性ヤーンであり、織り作業の間、選ばれるヤーンの張力に依存し、該ファブリックは織機から取り外され、弛緩させられるとき経糸方向に縮み得る。それからこのことはファブリックにおける実際の緯糸ヤーン密度をより高くするだろう。織機からのファブリック取り外し後の実施例1における実際の緯糸ヤーン密度が、ファブリックが織機上にあったときの76ピック/インチ(ppi)に比較して117ppiであったことが算出された。
【0125】
実施例1は、織りプロセスによってではなく経糸弾性ヤーンの導入によって電気的伝導性ファイバー間の間隔、ファブリック設計における臨界パラメーターを制御することが現在可能であることを明らかに示した。このことは、織りプロセスの間導入され得る最大限のヤーン密度に関して織機によって導入される限界があるので、非常に有用であり得る。ファブリック伝導性の能力を制御する目的のために、伸長によるヤーン密度におけるこの変化は著しく高く、伝導性におけるかなりの増加を引き起こすことは意外である。
【0126】
実施例2
織りファブリック(GVA-C-17)は、実施例1のファブリックと同じ経糸および緯糸ヤーンと同じ経糸および緯糸ヤーン密度に基づいて作られたが、実施例1のファブリックとは織り構造において異なる。このファブリックはサテン5構造を有した。マイクロストリップ共振器測定によって測定されたこのファブリックのQ値は、該ファブリックの一面から69.3、該ファブリックの他面から108.2であった。
【0127】
まず我々は、このファブリックは上記比較例と実施例1で示されたすべての他のファブリックと比較して驚くべき伝導性性能を示すことを観察した。すなわち、実施例2のファブリックは、該ファブリックの2つの面間の伝導性における非対称のふるまいを示す。これに対して、実施例1は、該ファブリックの両面について実験の誤差内で伝導性についての類似の値を示した。実施例1と比較例1において、ファブリックは平織り構造を有したが、一方、実施例2では、ファブリックはサテン織り構造を有する。この相違点は、(i)同じテキスタイル構造内での伝導性を変化させる、および(ii)伝導性ヤーンの間隔もしくは寸法によってよりもむしろファブリック構造によって伝導性を増加させることが現在可能であるということを明らかに示す。
【0128】
実施例1と実施例2間のQ値を比較することによって、ファブリックの一側(side)が著しくより高い伝導性を有する一方、ファブリックの他側が実施例2のファブリック上で測定された値よりも低い伝導性を有するということが観察された。平織り30とサテン5構造32bの概略が図3Aと図3Cにそれぞれ示される。上で論じたように同じ表面領域について、平織り構造30は経糸と緯糸ヤーン間で1:1の比を示す両面を有し、一方、サテン5構造32bは4:1の比を示すだろう。伝導性ヤーンに富む(yarn-rich)面についてこのことは観察されたQ値における大きな相違を説明し得るだろう。
【0129】
しかしながら、ファブリック側上により少ない金属含有量を有する経糸に富む(warp-rich)ファブリックが、特に比較例1と比較されるとき、そのような高いQ値を示すことは驚くべきである。実施例2のこのファブリックのために用いられる経糸ヤーンは弾性なので、該ファブリックが織機から取り外された後、該ファブリック上の実際の緯糸ヤーン密度を我々は測定した。これは、76ppiの緯糸ヤーン密度よりも著しく高く、また実施例1のファブリック上で測定された実際の緯糸ヤーン密度117よりも著しく高い173ppiの値を有する。
【0130】
実施例2は、サテン5構造(図3B、図3Cにおける32a、32b)を適用することによって、すべての他のパラメーターが一定に維持されるとき、該ファブリックが平織り構造(図3Aの30)に比較して著しくより高い伝導性を獲得する可能性を有することを示す。
【0131】
実施例3
織りファブリック(GVA-C-5)は、このファブリックの緯糸ヤーン密度が147ppiであったという相違を有するのみで実施例2におけるように作られた。この値は実施例2のファブリックの緯糸ヤーン密度のほとんど2倍である。マイクロストリップ共振器測定方法によって測定された、経糸ヤーンのより高い集中状態を有する該ファブリックの側のQ値は81.2であった。同じ方法に基づく緯糸ヤーンのより高い集中状態を有するファブリックの該側から測定されたQ値は114.9であった。
【0132】
同じファブリック構造に基づいた実施例2におけるように、この値は同じファブリックの反対側の側の値より著しく高い。このことは、ファブリックの伝導性は、織り構造によるファブリック側上の金属の含有量によって著しく増加し得ることを示す。Qが高くなるほど、材料の効果的な伝導性は高くなり、EMI遮蔽もしくはアンテナ適用のような高周波数適用のための材料の能力が良くなる。
【0133】
実施例2と3間の比較は、ファブリックの両側のための実施例3のために著しくより高いQを示す。2つのファブリック間の相違は緯糸ヤーン密度だけなので、伝導性ヤーン密度の増加もしくは伝導性ヤーン間の間隔の低減はさらにファブリックの伝導性を増し得ることが観察される。織機からのファブリックの取り外し後、実施例3における実際の緯糸ヤーン密度は、ファブリックが織機上にあったときの147ppiに比較して201であったことが算出された。
【0134】
実施例4
下記の表1は、実施例2の織りファブリックに類似するサテン5織り構造の7つの織りファブリック サンプルを示す。これらのサンプルは、緯糸ヤーン密度において実施例2と異なる。表3 1は、実施例2と3で論じられたファブリックを含み、さらに他のファブリックを含む。これらのサンプルにおいて、緯糸ヤーン密度は46ppiから157ppiに変化した。緯糸ヤーン密度が増加するとファブリックの伝導性が増加することが観察された。
【0135】
緯糸ヤーン密度を伴う伝導性の変化のふるまいは、図10に示されるように、金属およびファブリック面について類似する。図10は、ファブリックの両面について種々のサテン5織り構造に比較して、機械(すなわち、織機)上で測定されたような、緯糸ヤーン密度に対するQのグラフである。サテン5織り構造は、伝導性ヤーン密度によらないテキスタイルの2つの面間の伝導性における連続的な非対称のふるまいを示す。
【0136】
図11は、図10において適用可能なような同じ織り構造のためにファブリックが織機から取り外された後、ファブリック上で測定された実際の緯糸ヤーン密度に対するQのプロットを示す。約210ppiに至るまでの緯糸ヤーン密度についての伝導性において極端な増加がある。その後、伝導性は平坦値に達する。図11のグラフは、40μmの直径を有する銀メッキされた銅ワイヤーからなる伝導性ヤーンについて、最適の伝導性は、4:1の(伝導性ヤーン密度)/(非伝導性ヤーン密度)の比の元で、約210ppiの伝導性ヤーン密度のために獲得されることを示す。
【0137】
実施例5
織りファブリック(GVA-C-2)は、相違が経糸ヤーンのみにある実施例3のそれと類似して作られた。このファブリックは、実施例3の弾性であった経糸ヤーンと比較してコットンNe100/2を基体とする固い経糸ヤーンを有した。マイクロストリップ共振器測定によって測定されたこのファブリックのQ値は、該ファブリックの経糸ヤーンに富む側からは76.2、該ファブリックの他の側からは92.3であった。この実施例5と実施例3間のQ値を比較すると、実施例3のファブリックのどの側も、この実施例5のファブリック上で測定された値撚りも著しく高い。このファブリックは何の弾性も有しないので、その実際の緯糸ヤーン密度は機械上で定義された値に類似する。実際、図11から見てこれらの結果の比較は、このファブリックのQ値がこの緯糸ヤーン密度について期待されるであろう範囲内にあることを示す。どの相違点も、これが影響し得る経糸ヤーンの性質および誘電体損失のみに帰するだろう。
【0138】
実施例6
織りファブリック(GVA-C-4)は、織りパターンが2面サテン4構造(図3Eの36)であったこと以外は実施例3のように作られた。この構造によって、ファブリックの一面は緯糸ヤーンとして伝導性ヤーンに基づいて作られ、一方、他の面は同じ経糸および緯糸ヤーンに基づいて作られた。該ファブリックの一面からのQ値は72.6と測定され、より高い伝導性ヤーン集中状態を有したファブリックの他の面からは98.0と測定された。このファブリック上で測定された実際のヤーン密度は218ppiで、実施例3上で測定された201ppiのそれよりも高い値だけれども、これらの両方は実施例3のQ値よりも著しく低い。
【0139】
ファブリックの一面が非伝導性ヤーンに基づいて作られたことを考慮すると、測定されたQ値は著しく高く、良好な伝導性のふるまいを示したことは驚くべきことであった。この実施例6は、ファブリックの構造が、伝導性ヤーンのタイプ、寸法および間隔の変数以外に、伝導性のふるまいを制御するのに非常に重要であることを明らかに示した。
【0140】
実施例7
織りファブリック(GVA-C-13)は実施例6におけるように作られたが、2面サテン4構造(図3Eの36)の両面が同じで金属面を含むという相違を有する。このファブリックは、実施例6の金属面と類似した高い伝導性の値を示すが、このファブリックの伝導性は両方のファブリック側について非対称であるという相違点を有する。このことは、2面構造によって高い対称的伝導性を達成する可能性を示す。このことは、例えば半田付けおよび接地遮蔽適用のようなファブリックの両面における要求される高い金属含有量が存在する適用における可能性のある使用を有し得る。
【0141】
実施例8
織りファブリック(GVA-C-12)は実施例3におけるように作られたが、このファブリックはサテン10構造を有するという相違を有する。該ファブリックの金属面のQ値は100.5、一方、該ファブリック面のQは68.1であった。この実施例8はより高い実際の緯糸ヤーン密度を有するだけれども、該ファブリックの両面の伝導性は実施例3のファブリックに比較して著しく低かった。該ファブリックの金属面について測定された低い伝導性は、サテン5構造に比較してサテン10における該ファブリックのその面のためのより高い金属集中状態を考慮すると驚くべきことである。
【0142】
実施例9
表2は、緯糸ヤーン密度が異なる実施例8の織りファブリックに類似する3つの織りファブリック サンプルを示す。この表は実施例8で論じられたファブリックを含み、さらにより多くのファブリックを含む。これらのサンプルにおいて、機械上で定義されたような緯糸ヤーン密度は、76ppiから203ppiに変化した。ファブリックの伝導性は、緯糸ヤーン密度の増加とともに増加する。緯糸ヤーン密度を伴う伝導性の変化のふるまいは、伝導性ヤーン密度と独立した伝導性における連続的な非対称的ふるまいを提供する、図10に示されるように金属およびファブリック面について類似する。
【0143】
図11はファブリックが織機から取り外された後、ファブリック上で測定された実際の緯糸ヤーン密度に対するQのプロットを示す。図10と11に示されるようにサテン5織り構造に対するサテン10間の緯糸ヤーン密度を伴う伝導性における変化の比較は、伝導性における非対称性は予期されるようにサテン10構造においてより高いということを示す。
【0144】
しかしながら、サテン10構造はサテン5に比較してファブリックのどの面についてもより低い伝導性を示すことは非常に驚くべきことである。サテン10構造においてファブリックの伝導性が、400ppiより高い実際の緯糸ヤーン密度で増加し続け、一方、サテン5構造について伝導性は緯糸ヤーン密度について上記約210ppiの平坦値に達することも驚くべきことである。
【0145】
ファブリック構造の観察によって、サテン10構造における実際の緯糸ヤーン密度が、機械上にセッティングされた同じ緯糸ヤーンについてサテン5に比較して著しく高いことが見えてくる。サテン10内に形成されたより長い伝導性ラインに関連して、この事実は、ファブリックの伝導性に影響力を有し得る、ファブリックが弛緩された状態にあるとき、伝導性セグメント間の接触もしくは交差と同様に真っ直なラインからの伝導性部分の変形をもたらし得る。
【0146】
実施例10
織りファブリック(GVA-C-9)は実施例9およびファブリックGVA-C-11におけるように作られたが、このファブリックはサテン16構造(図3Gの38)を有するという相違を有する。より高いサテン構造は同じ機械セッティングについてより高い実際の緯糸ヤーン密度が結果として生じ、この場合、サテン10についての398ppiに対してサテン16において496ppiである。この結果は、実施例9においてなされたサテン10とサテン5構造間の比較における観察に類似する。ファブリックの金属側についてのQ値は68.6-95.7であり、一方、ファブリック面については62であった。これらの値の両方は、同じパラメーターのもとでファブリックGVA-C-11よりも著しく低く、このことはサテン構造のより高いオーダーがより低い伝導性へ導くように見える、実施例9の考察において到達した結論を補強する。
【0147】
実施例11
織りファブリック(GVA-C-8)は実施例3におけるように作られたが、このファブリックは緯糸方向においてサテン16+リネン(toile)構造(図3Hの40)および経糸方向においてリネン構造を有するという相違を有する。実施例11のこのファブリックのQ値は金属面上で94.9、ファブリック面上で73.7であった。類似のサテン5構造(実施例3、201ppi)およびサテン10構造(実施例8、335ppi)に対してこのファブリック(177ppi)の実際の緯糸ヤーン密度を比較することによって、サテン16構造によって与えられるように長い伝導性セグメントの可能性を有する一方、伝導性ヤーン間の間隔を制御することが可能であることが見えてくる。図11における実際の緯糸ヤーン密度に関してこのファブリックの測定されたQ値は、このサンプル(すなわち実施例11)が、同じ実際の緯糸ヤーン密度で比較するとき、サテン5構造に比較してより高い伝導性の値を示さないことを示す。しかしながら、このファブリック(実施例11)の伝導性は、サテン16構造の実施例10のそれに比較して改善されており、著しくより高い緯糸ヤーン密度を有する。
【0148】
サテン16+Toile織り構造の長い伝導性セグメントは、ファブリックがファブリックの伝導性能力において影響力を有する弛緩状態にあるとき、曲がったループを形成する。リネン構造の付加は、単純なサテン16構造に比較してこれらのループが著しく制御されるのを許す。ファブリックの一側上の金属と非金属の高い比が、使用されたヤーンの機械的特性および選ばれたファブリック張力に依存するであろうファブリックの伝導性に与える最適点が存在することが見える。
【0149】
比較例2
Sauqoit Industries
Inc., USAから入手したX-Static銀メッキ(silver-plated) ナイロン ヤーンを基体とするファイバーが互いに平行に設備内へ置かれた。ヤーンは34フィラメントを含む70denの2重(2-ply)ヤーンであり、個々のファイバーは約20-25μmの直径と約15%の銀含有量を有した。ファイバー間の間隔は0.508mmにセットされ、平行なファイバーの層数は40であった。高周波でのファイバーの伝導性は、測定技術に基づく高Q導波空洞(high-Q waveguide
cavity)によって測定された。11.4GHzの周波数でのファイバーの伝導性は、4.5e+4S/m(Q=2204.7)(表4)であると数値が求められた。
【0150】
実施例12
比較例2と類似の機構および測定技術がなされ、評価されたファイバーのみがPelikan Wire, USAから入手された銀メッキ銅ファイバーであった。これらは127μmの直径によって特徴付けられるモノ(mono)-フィラメントであった。11.4GHzの周波数でのファイバーの伝導性は、1.5e+7S/m(Q=5158)(表4)であると数値が求められた。この実施例12の伝導性ファイバーによって示された伝導性は、比較例2の金属メッキ合成ファイバーの伝導性よりはるかに優れている。この観察は、両方のファイバーがDCおよび低周波数範囲において優れた伝導性を示すことを考慮に入れてもまったく驚くべきことである。また、ヤーンのパターンおよび関連する総計の寸法はそのような大きな相違の理由を説明しないように類似している。
【0151】
比較例3
織りファブリック(TRL-C-1b)は、経糸ヤーンとしてナイロン70denファイバーの非弾性ヤーンを有する平織り構造に基づいて作られた。緯糸ヤーンは弾性電気的伝導性ヤーンであった。このヤーンは、比較例2で述べられたような、Lycra(登録商標)ファイバーで作られた弾性芯部材(core member)が2本のX-Static(登録商標)ヤーンで巻き付け(wrap)られた、2被覆のための従来のテキスタイル プロセスによって製造された。被覆はI.C.B.T.機械モデルG307上でなされた。このプロセスの間、78dtexのLycra(登録商標)スパンデックス ファイバーはその元の長さの3.8倍の値に引っ張られ、その後、電気的伝導性複合ヤーンを製造するために1本は「S」(すなわち第1の被覆)に他は「Z」方向(すなわち第2の被覆)に撚り合わせられ(twist)た、同じタイプの2本のX-Staticヤーンで巻き付けられた。
【0152】
用語「S」と「Z」は、2被覆プロセスによって作られた被覆されたヤーンにおける共通の用語である。2被覆プロセスでは、一方向(すなわち「S」方向)に巻き付けられた1本の撚り合わせられたフィラメントおよび反対の方向(すなわち「Z」方向)に芯フィラメントの回りに巻き付けられた第2の撚り合わせられたフィラメントによって取り囲まれ(surround)た、中心に真っ直な芯フィラメントがある。図12は、「S」方向に巻き付けられた第1の被覆と「Z」方向に巻き付けられた第2の被覆を有する2被覆ヤーンを示す。2被覆ヤーンを作るためにさらに1本のフィラメントが反対方向(すなわち「Z」方向)に巻き付けられ追加され得るだろう。
【0153】
このファブリックについての織機機械上で測定されたヤーン密度は、経糸102エンド/インチおよび緯糸80ピック/インチであった。マイクロストリップ共振器方法によって測定されたこのファブリックのQ値は該ファブリックの一側から32.1、該ファブリックの他側から39.7であった。
【0154】
実施例13
織りファブリック(TRL-C-2)は、緯糸ヤーンにおいてのみ相違を伴い、比較例3に開示されたファブリックに類似して作られた。このファブリックについての緯糸ヤーンは、細い銀メッキ銅金属で被覆されたシングルのLycra(登録商標)スパンデックスから作られた弾性芯を有する弾性電気的伝導性複合ヤーンであった。この弾性ヤーンはI.C.B.T.機械モデルG307上で製造され、それによって167dtexと34ファイラメントのLycra(登録商標)スパンデックス
ファイバー タイプT-400が、「S」方向に撚り合わされた直径40μmの1本の金属ワイヤーによって巻き付けられた。マイクロストリップ共振器測定によって測定されたこのファブリックについてのQ値は、該ファブリックの一側から83.1、該ファブリックの他側から83.5であった。
【0155】
測定されたQ値(すなわち図9参照)に基づく該ファブリックの伝導性の値の数値的シミュレーションによって、この電気-テキスタイル ファブリックの伝導性は、比較例3の電気-テキスタイル ファブリックの伝導性に比較したように著しく高い(すなわち1オーダーのマグニチュードより大によって)。
【0156】
2つのファブリックは伝導性ヤーンにおいて異なるので、このことは、金属ワイヤーを基体とするヤーンがX-Static(登録商標)を基体とするヤーンに比較して著しく高い伝導性をもたらすことを明らかに示す。これらの観察は、金属ワイヤーとX-Static(登録商標)を基体とする純粋なファイバー間の比較における実施例12とその比較例2間でなされた観察に類似する。このことは、この実施例13で使用された金属ワイヤーが実施例12のそれよりもさらに小さい直径であることは驚くべきことである。さらに比較例3の伝導性ヤーンは実施例12の伝導性ヤーンよりも大きい(bulky)。このより大きいヤーンは、実施例13のそれに対して比較例3の伝導性ヤーン間のより小さい間隔を確保し、それゆえ、より高い伝導性が期待されるだろう。そのような期待が直流もしくは低周波数範囲では真実であるだろが、この実施例13は高周波数範囲では真実でないことを示す。
【0157】
実施例14
織りファブリック(TRL-C-3)は、なお異なる緯糸ヤーンを持った比較例3と実施例13と類似して作られた。このファブリックについての緯糸ヤーンは、実施例2で使用されたもののような、直径40μmの細い銀メッキされた銅金属ワイヤーで2被覆された330dtexのLycra(登録商標)ファイバー タイプT-902Cであった。この弾性ヤーンはI.C.B.T.機械モデルG307上で製造され、それによってLycra(登録商標)ファイバーはその元の長さの5倍に引っ張られ、その後、「S」方向における金属ワイヤーおよび「Z」方向における22dtex/7フィラメントのナイロン ファイバーによって巻き付けられた。マイクロストリップ共振器測定によって測定されたこのファブリックについてのQ値は、該ファブリックの一側から64.8、該ファブリックの他側から63.2であった。これらのQ値は、比較例3のファブリックのQ値に比較して著しく高い。
【0158】
実施例13、14および比較例3間の比較は、ファブリック伝導性上の最も大きい衝撃が、X-Static(登録商標)ヤーンに対して金属ワイヤーの優先をさらに導く、複合ヤーン構造の伝導性部材の性質から生じることを示す。さらに実施例13と14間の比較は、実施例13のファブリックの伝導性が実施例14のファブリックのそれよりも著しく高いことを示す。両実施例は同じ緯糸ヤーン密度を有するけれど、実施例13のファブリックは、実施例14に比較してファブリックの表面上に著しくより高い金属含有量を有する。金属含有量におけるこの相違は、以下から生じる。(i)金属ワイヤーがヤーンの外側にまったくある一方、実施例14では金属ワイヤーがヤーン構成要素の中間に位置する、実施例13における緯糸ヤーンの構造、および(ii)実施例14の緯糸ヤーンは、ファブリックが織機から取り外されて弛緩されるとき、同じファブリック領域について経糸ヤーンのより高い名目上の密度を生じることが期待される、より高い伸び範囲を有する。これらの因子の両方は、それがファブリックの伝導性能力を示すような重要な設計パラメーターを導く。しかしながら、それらはまた、高い周波数範囲を含む周波数における高い伝導性を示す、弾性伝導性ヤーンを基体とする弾性ファブリックを構成することが可能であることを示す。このファブリックは、着用の間快適な高い柔軟性を導き得、また人間の体の特定の領域(例えば肩、腕等)もしくは家具(furniture)のような、不規則なもしくは3次元の物体についての快適さを与える。
【0159】
比較例4
織りファブリック(GVA-C-27)は、異なる緯糸ヤーンを持った実施例2と類似して作られた。このファブリックについての緯糸ヤーンは、比較例2において使用されたもののようなX-Static(登録商標)ヤーンであった。マイクロストリップ共振器測定によって測定されたこのファブリックのQは、該ファブリックの一側から35.0、該ファブリックの他側から35.7であった。これらの値は実施例2のファブリックのQ値と比較して著しく低い。
【0160】
伝導性ヤーンは比較例4と実施例2のファブリックと異なった。40μmの金属ワイヤーはマルチフィラメントの金属メッキ ヤーンに重要な利点をもたらす。たとえ実際のヤーン密度が考慮されるとしても(すなわち表5参照)、このファブリックは、同じ条件のもとでこの発明の実施例によって作られた他のどのファブリックよりもずっと低い伝導性を有する。他の驚くべき観察は、サテン5織りを基体とするその構造にもかかわらず、このファブリックが対称的な伝導性のふるまいを示すことである。
【0161】
比較例5
織りファブリック(GVA-C-28)は実施例2と類似して作られたが、異なる緯糸ヤーンを有した。このファブリックの緯糸ヤーンは、Sprint Metal, Franceから入手したポリエステル/ステンレス スチール紡糸(spun)ヤーンであった。該ヤーンは400dtexの紡糸ヤーンであり、80%のポリエステルと、8μmのステンレス スチール フィラメントを有する20%ステンレス スチールAISI 316Lで構成された。マイクロストリップ共振器測定によって測定されたこのファブリックのQは、該ファブリックの一側から10.5、該ファブリックの他側から17.0であった。このQ値は、実施例2のファブリックのQ値に比較して著しく低く、比較例4のQ値に比較してさえも著しく低かった。このファブリックの実際の緯糸ヤーン密度(すなわち106ppi)を考慮することによって、このファブリックは実施例2(173ppi)もしくは比較例4(130ppi)のいずれかと比較してより低い実際の伝導性ヤーン密度を有する。このヤーンの大きさは、高い伝導性ヤーン密度を許さず、ファブリックの実際の金属含有量およびそれゆえファブリックの伝導性を制限する。
【0162】
実施例15
織りファブリック(GVA-C-26)は実施例2と類似して作られたが、異なる緯糸ヤーンを有した。このファブリックの緯糸ヤーンはRea Magnet Wire Company, Inc., USAから入手された平坦な金属ワイヤーであった。該ヤーンは厚さ40μm×幅210μmの寸法を有した。マイクロストリップ共振器測定によって測定されたこのファブリックのQは、該ファブリックの一側から111.8、該ファブリックの他側から86.0であった。その実際の緯糸ヤーン密度(136ppi)は実施例2のそれ(173ppi)より低いが、このファブリックによって示された伝導性は、直径40μmの金属ワイヤーを基体とした実施例2のファブリックより著しく高い。実施例2の金属ワイヤーに比較してこのファイバーの平らな断面は、ファブリックの伝導性の著しい増加に寄与することが見える。
【0163】
実施例16
織りファブリック(GVA-C-23)は実施例2と類似して作られたが、異なる緯糸ヤーンを有した。このファブリックの緯糸ヤーンはE. I. du Pont de Nemours and Company, Wilmington, Delaware, USAから入手されたAracon(登録商標)ヤーン タイプXS0200E-025であった。これは780dtexの銀メッキされたKevlar(登録商標)ヤーンで、銀メッキの厚さは38μm、フィラメントの直径は25μmであった。マイクロストリップ共振器測定によって測定されたこのファブリックのQは、該ファブリックの一側から76.6、該ファブリックの他側から61.1であった。このファブリックは実施例2のファブリックより低い伝導性を示す。
【0164】
しかしながらそれはまた、より低い実際の伝導性ヤーン密度を示す。実施例1のような同じ実際のヤーン密度のもとに比較して、これらの結果は、40μmの金属ワイヤーによって得られた高周波数での伝導性ふるまいが、この実施例16の金属メッキされたヤーンから得られたそれより良好なことを示す。
【0165】
実施例17
織りファブリック(GVA-C-25)は、異なる緯糸ヤーンを有した46ppiの緯糸ヤーン密度のもとで実施例4と類似して作られた。このファブリックの緯糸ヤーンはElektro-Feindraht AG, Switzerlandから入手されたLitzワイヤーであった。このワイヤーは直径40μmの60金属ワイヤーによって構成された。マイクロストリップ共振器測定によって測定されたこのファブリックのQは、該ファブリックの一側から62.0、該ファブリックの他側から44.3であり、実施例4の伝導性より著しく低い。実施例4の単線の金属ワイヤーに比較してこの実施例のLitzワイヤーのより大きな厚さの結果、このファブリックの実際の緯糸ヤーン密度(67ppi)は、実施例4のそれ(145ppi)よりも著しく低い。しかしながらこの低い伝導性ヤーン密度でさえ、このファブリックは、130ppiと106ppiのヤーン密度をそれぞれ有した比較例4もしくは5のいずれかと比較してより高い伝導性をもたらす。
【0166】
実施例18
織りファブリック(C5)は平織り構造を基体として作られた。このファブリックは経糸としてコットンNe40/1ヤーン、緯糸として直径127μmの銀メッキされた銅ワイヤーを有した。このファブリックについて機械上で測定されたヤーン密度は経糸96エンド/インチ、緯糸45ピック/インチであった。マイクロストリップ共振器測定によって測定されたこのファブリックのQ値は、該ファブリックの一側から66.53、該ファブリックの他側から77.9であった。この値は、伝導性ヤーン密度(すなわちピック/インチにおける)が比較例1のファブリックのそれの半分より小さいけれども、比較例1のファブリックのQ値より著しく高い。たとえ該ファブリックの((緯糸ヤーン密度)/(緯糸ヤーン密度+経糸ヤーン密度)として定義される)表面積当たりのヤーン比が算出されるとしても、この実施例18のファブリックは、比較例1のファブリックの40.2%と比較して31.9%の伝導性ヤーン比を有する。このことは、金属ワイヤーの直径が大きくなるほど、同じ伝導性を得るのにより小さいヤーン密度が要求されることを示す。
【0167】
実施例19
実施例18の織りファブリックを基体として、該ファブックの経糸(すなわちコットン
ヤーン)は、該ファブリックの緯糸(すなわち伝導性ヤーン)のみを残す機械的手段によって除去された。すなわち、図4Bにおける52との図4Aにおける50の比較は、除去された経糸ヤーンを示す。マイクロストリップ共振器機構で測定されたQ値は112.8であった。これは該ファブリックについて測定された77.9のQ値よりも著しく高く、経糸ヤーンの存在が伝導性の上に著しい影響を有することを示す。これは、上記実施例において論じられた平織りとサテン織り構造間で見つけられた驚くべき結果に類似した、経糸ヤーン(すなわちこの場合コットン)の性質および特性、もしくは織り合わせられたヤーンの除去によりもたらされたより高い金属含有量の結果であり得る。
【0168】
実施例20
実施例18の織りファブリックを基体として、該ファブックの経糸(すなわちコットン
ヤーン)は、図4Cにおける機械的手段54によって測定されるように該ファブックの中央の部分において除去された。マイクロストリップ共振器機構で測定されたQ値は83.1であった。これはファブリック全体について測定された77.9のQ値よりもわずかに高く、該ファブリック部分の2端での経糸ヤーンの存在が、伝導性の上にわずかな影響を有することを示す。緯糸(すなわち伝導性)と経糸(すなわちコットン)ヤーン間の数の比に基づく簡単な計算は、実施例18が緯糸ヤーンの約50%を含む一方、実施例9が緯糸ヤーンの約70%を含み、このファブリックのわずかにより高い伝導性を説明し得ることを示す。
【0169】
実施例21
実施例18の織りファブリックを基体として、該ファブックの経糸(すなわちコットン
ヤーン)は、測定されるように該ファブリックの中央部分において緯糸(図4Dの56)のみを残す該ファブリックの左および右側から機械的手段によって除去された。マイクロストリップ共振器機構で測定されたQ値は107.9であった。これはファブリック全体について測定された77.9のQ値よりも著しく高く、該ファブリック部分の中央での経糸ヤーンの存在が、純金属ヤーンを基体とするファブリックに対して伝導性の上にわずかな影響を有することを示す。簡単な計算は、このファブリックにおける緯糸ヤーンの数の比が83%であり、実施例18と20の両方より著しく高く、本発明の実施例19に非常により近いことを示す。実施例20と21は、該ファブリックの伝導性が、該ファブリックの表面上の金属ヤーンの含有量を増加させるような経糸ヤーンの選択およびファブリック構造の設計によって著しく増加し得ることをさらに示す。
【0170】
比較例6
簡単なパッチ アンテナが、接地板として銅板、Duroid5880から作られた中間誘電体層、およびマイクロストリップ共振器測定方法に基づく26.29のQを伴う非常に低い伝導性を持ったファブリックの上部伝導性層を有して作られた。該ファブリックは平織り構造であった。該アンテナの設計は2.4ギガヘルツ(GHz)の中心周波数を有するように作られた。
【0171】
このアンテナ構造と、ファブリックの代わりに上部層として銅板を有する標準のアンテナ間の比較が図5のグラフに示される。比較例6のこのアンテナは、該標準パッチ アンテナのような類似の回帰損失(return loss)を示し、各アンテナは5.7%の帯幅を有した。しかしながら比較例6のアンテナは、標準アンテナについての0dBに比較して2-3dBの帯回帰損失のまったく高い出力を示し、約80%の効率(efficiency)を有する標準アンテナに約40%の低い効率を示した。
【0172】
実施例22
比較例6のような簡単なパッチ アンテナが作られたが、上部伝導性層は本発明の実施例5で述べられたファブリックGVA-C-2であった。このファブリックはサテン5織り構造であった。このファブリックは比較例6で用いられたファブリックと比較して著しく高い伝導性を有した。図6は2.4GHzでの操作のために設計された実施例22のファブリック アンテナについての応答特性を示す。加えてファブリック アンテナは2.4と3GHz間の周波数範囲において2つの追加の共振周波数を示す。それゆえ無線通信信号が2.4GHzより上の周波数範囲内に設定されたとすると、このファブリック アンテナはなおこの周波数範囲においてアンテナとして働き得るだろう。実施例22のこのアンテナは、比較例6について測定されたそれより著しく低い、約0.3dBの帯域外の回帰損失および2%の帯幅を示した。それは、2.7ギガヘルツ(GHz)より上の重要な共振モードを含む、2.4ギガヘルツ(GHz)の中心周波数に続くいくつかの共振もまた示した。
【0173】
実施例23
比較例6のような簡単なパッチ アンテナが作られたが、上部伝導性層は本発明の実施例3で述べられたファブリックGVA-C-5であった。このファブリックはサテン5織り構造であった。このファブリックは比較例6で用いられたそれと比較して著しく高い伝導性を有し、また実施例22で用いられたファブリックと比較してより高い伝導性も有した。このアンテナの応答特性は図7のグラフに示される。実施例23のこのアンテナは、比較例6で測定されたそれと実施例22と比較してより著しく低い、約0.3dBの帯域外の回帰損失および2.6%の帯幅を示した。それは、実施例22の観察と類似して、2.7ギガヘルツ(GHz)より上の重要な共振モードを含む、2.4ギガヘルツ(GHz)の中心周波数に続くいくつかの共振もまた示した。標準パッチ アンテナのアンテナ利得は7.07dBであり、この実施例23のパッチ アンテナの2つのサンプルはそれぞれ6.69と6.07dBの利得を示した。99%の効率を有する標準パッチ アンテナと比較することによって、この実施例23のアンテナの効率は90.7%であった。
【0174】
この実施例23のアンテナは、標準パッチ アンテナと非常に類似するパターンを示した。これは、本発明のファブリックが、電子工学産業において用いられる標準の「固い」アンテナと同等である、高周波範囲におけるアンテナとして高い効率を示したという驚くべき事実の非常に優れた証明である。
【0175】
実施例24
完全なファブリック パッチ アンテナが、上部および接地の伝導性層として実施例5で述べられたファブリックGVA-C-2、中間誘電体層として100%ポリエステル織りファブリックを有して作られた。図8は周波数に対する回帰損失のグラフである。図8は完全なファブリック アンテナの回帰損失を示す。実施例24のアンテナは約0.8dBの帯域外の回帰損失および5.9%の帯幅を示した。中心周波数よりも高い周波数で観察された小さな他の共振がある。実施例24のアンテナの効率は少なくとも60%である。
【0176】
参照を容易にするために、下記の表3、4および5は、様々な実施例の織りもしくは編み構造および構成を要約する。
【0177】
この明細書の何も本発明の範囲を限定するものとして考慮されるべきではない。提示されたすべての実施例は代表であり非限定である。本発明の上述の実施例は、上記の教示を考慮して当該技術に熟練した当業者によって理解されるように、本発明から離れることなく、修正もしくは変化され、要素が追加もしくは省略され得る。それゆえ本発明が特許請求の範囲によって推測されるべきことが理解されるべきであり、当該明細書で明確に述べられたものの代わりの方法で実施し得る。
【0178】
【表1】

【0179】
【表2】

【0180】
【表3】

【0181】
【表4】

【0182】
【表5】

【図面の簡単な説明】
【0183】
【図1】導波空洞測定装置の概略図である。
【図2】マイクロストリップ共振測定装置の概略描写である。
【図3】図3Aは平織りの織りパターンダイヤグラムの単位セル、図3Bはサテン4の織りパターンダイヤグラムの単位セル、図3Cはサテン5の他のバージョンの織りパターンダイヤグラムの単位セル、図3Dはサテン4のさらに他の織りパターンダイヤグラムの単位セル、図3Eは2面サテン4の織りパターンダイヤグラムの単位セル、図3Fはサテン10の織りパターンダイヤグラムの単位セル、図3Gはサテン16の織りパターンダイヤグラムの単位セル、図3Hは平織りと組み合わされたサテン16の他のバージョンの織りパターンダイヤグラムの単位セルを示し、図3Iは本発明の1つの実施の形態に従う編み電気-テキスタイル ファブリックの概略図、図3Jは本発明の他の実施の形態に従う編み電気-テキスタイル ファブリックの概略図、図3Kは本発明のさらに他の実施の形態に従う編み電気-テキスタイル ファブリックの概略図、図3Lは本発明の1つの実施の形態に従う水平かつ平行に分布されたフロートを有する編み電気-テキスタイル ファブリックの概略図、図3Mは本発明の他の実施の形態に従う平行に水平にかつ平行に垂直に分布されたフロートを有する編み電気-テキスタイル ファブリックの概略図、図3Nは本発明のさらに他の実施の形態に従う平行に水平にかつ平行に交差して分布されたフロートを有する編み電気-テキスタイル ファブリックの概略図であり、図3Oは平織りの織りパターン ダイヤグラムを用いた織り 電気-テキスタイル、図3Pはサテン4の織りパターン ダイヤグラムを用いたさらに他の織り 電気-テキスタイル、図3Qはサテン5の他のバージョンの織りパターン ダイヤグラムを用いた織り 電気-テキスタイル、図3Rはサテン4の織りパターン ダイヤグラムを用いた織り 電気-テキスタイル、図3Sは2面サテン4の織りパターン ダイヤグラムを用いた織り 電気-テキスタイル、図3Tはサテン10の織りパターン ダイヤグラムを用いた織りテキスタイル、図3Uはサテン16の織りパターン ダイヤグラムを用いた織り 電気-テキスタイル、図3Vは平織りと組み合わされたサテン16の他のバージョンの織りパターン ダイヤグラムを用いた織り 電気-テキスタイルを概略的に示す。
【図4】図4Aは実施例18のサンプルの織り構造、図4Bは実施例19のサンプルの織り構造、図4Cは実施例20のサンプルの織り構造、図4Dは実施例21のサンプルの織り構造を示す。
【図5】知られたパッチ アンテナと上層として比較実施例6のファブリックを有するアンテナのギガヘルツ(GHz)における周波数に対するデシベル(dB)における復帰損失のグラフである。
【図6】本発明による実施例22のパッチ アンテナのギガヘルツ(GHz)の周波数に対するデシベル(dB)における復帰損失のグラフである。
【図7】知られたパッチ アンテナの2つのサンプルに比較して、本発明による実施例11のパッチ アンテナの2つのサンプルのギガヘルツ(GHz)の周波数に対するデシベル(dB)における復帰損失のグラフである。
【図8】本発明による実施例24のファブリック パッチ アンテナのギガヘルツ(GHz)の周波数に対するデシベル(dB)における復帰損失のグラフである。
【図9】図2に示されるマイクロストリップ共振測定装置を用いてマイクロストリップ共振測定方法によって測定されたQ値からの電気-テキスタイル ファブリックの実際の伝導性のグラフである。
【図10】サテン5とサテン10の織り構造の機械(すなわち織機)上で測定されたppiにおける緯糸ヤーン密度に対する2.6GHzでのQuのグラフである。
【図11】サテン5とサテン10の織り構造の織機からファブリックが取り出された後、測定されたppiにおける緯糸ヤーン密度に対する2.6GHzでのQuのグラフである。
【図12】「S」方向に第1の被覆でかつ「Z」方向に第2の被覆で巻き付けられた2重被覆されたヤーンを示す。

【特許請求の範囲】
【請求項1】
電気-テキスタイル ファブリックを形成するように、非伝導性テキスタイル フィラメント、および上記非伝導性テキスタイル フィラメントで織られもしくは編まれたエネルギー活性 機能性フィラメントで構成される電気-テキスタイル ファブリックを含んでなり、
上記エネルギー活性 機能性フィラメントのフロートが上記電気-テキスタイル ファブリックの第1の表面上および上記電気-テキスタイル ファブリックの反対側の表面上に形成されるように、また、上記非伝導性テキスタイル フィラメントのフロートが上記電気-テキスタイル ファブリックの第1の表面および反対側の表面上に形成されるように、上記エネルギー活性 機能性フィラメントが上記電気-テキスタイル ファブリック内に一体化され、
両上記表面上に非対称な数の上記エネルギー活性 機能性フィラメントのフロートと上記非伝導性テキスタイル フィラメントのフロートが存在し、
両上記表面上において上記エネルギー活性 機能性フィラメントのフロートの数が、上記非伝導性テキスタイル
フィラメントのフロートの数より大きいテキスタイル電極。
【請求項2】
上記機能性フィラメントがファイバー、ヤーン、細長いストリップおよびリボンのうちの少なくとも1本の形態にある、請求項1記載のテキスタイル電極。
【請求項3】
上記エネルギー活性 機能性フィラメントのフロートが平行に分布され、水平方向に方向付けされている、請求項1記載のテキスタイル電極。
【請求項4】
上記エネルギー活性 機能性フィラメントのフロートが平行に分布され、垂直方向に方向付けされている、請求項1記載のテキスタイル電極。
【請求項5】
上記エネルギー活性 機能性フィラメントのフロートが互いに角度を成して分布されている、請求項1記載のテキスタイル電極。
【請求項6】
上記電気-テキスタイル ファブリックが該ファブリックの一表面上のみに高い表面機能性を示す、請求項1記載のテキスタイル電極。
【請求項7】
経糸方向に非電気的伝導性ファイバーと緯糸方向に電気的伝導性ファイバーを有する織られた電気-テキスタイル ファブリックを含んでなり、
上記電気-テキスタイル ファブリックは第1の面と第2の面を有し、
上記第1の面が、上記第2の面上の上記電気的伝導性ファイバー セグメントのフロートの集中状態よりも高い電気的伝導性ファイバー セグメントの集中状態を有するように、上記織りは少なくとも上記第1の面上に上記電気的伝導性ファイバーのフロートを含み、
上記電気-テキスタイル ファブリックは、直流から100GHzの周波数範囲において高い伝導性を示す織りファブリック アンテナ。
【請求項8】
上記電気-テキスタイル ファブリックは、経糸と緯糸ヤーン セグメントの数が非対称な構造を有する織りパターン ダイアグラムに従って織られている、請求項7記載のアンテナ。
【請求項9】
(緯糸+経糸)のヤーン密度に対して緯糸ヤーン密度の数の比は、少なくとも約0.30である、請求項8記載のアンテナ。
【請求項10】
経糸ファイバーが弾性ヤーンからなる、請求項7記載のアンテナ。
【請求項11】
上記弾性ヤーンがスパンデックス ファイバーと、付随する非弾性ファイバーからなり、上記付随するファイバーがポリエステルもしくはファイバーグラスからなる、請求項10記載のアンテナ。
【請求項12】
緯糸ファイバーが少なくとも20マイクロメーターの直径を有する、少なくとも単線の金属ファイバーからなり、上記単線の金属ファイバーが、銅、銀、および銀メッキされた銅ファイバーの少なくとも1本から選ばれる、請求項7記載のアンテナ。
【請求項13】
緯糸ファイバーがその上に金属被覆を有する非伝導性ファイバーからなり、上記金属被覆厚さが、1ヘルツ(Hz)から100ギガヘルツ(GHz)の電気的周波数で上記金属被覆へ向けての皮膚深さ(a)と同じ、および(b)5倍まで大きい、の少なくとも1つである、請求項7記載のアンテナ。
【請求項14】
上記非伝導性ファイバーのフィラメント直径が20μmより大きい、請求項13記載のアンテナ。
【請求項15】
上記緯糸方向ファイバーが弾性 電気的伝導性ヤーンからなる、請求項7記載のアンテナ。
【請求項16】
上記弾性 電気的伝導性ヤーンが、少なくとも1本の電気的伝導性ヤーンによって取り囲まれたスパンデックス ファイバーからなる、請求項15記載のアンテナ。
【請求項17】
上記経糸と上記緯糸ファイバーの両方が弾性ヤーンである、請求項7記載のアンテナ。
【請求項18】
上記アンテナが、1000メガヘルツから15ギガヘルツの範囲において、メートル当たり1×10シーメンスと同じかもしくは大きい電気的伝導性を有する、請求項7記載のアンテナ。
【請求項19】
上記アンテナが、ポリエステルおよび溶融石英から選ばれたファイバーからなる誘電体テキスタイル ファブリックを含むパッチとして形成されている、請求項7記載のアンテナ。
【請求項20】
上記アンテナが、2.4ギガヘルツ(GHz)の周波数で80%と同じかもしくは大きい効率を有する、請求項19記載のアンテナ。
【請求項21】
上記アンテナが、少なくとも1つの追加的で使用可能なマルチ-モード共振周波数を有する、請求項19記載のアンテナ。
【請求項22】
織りプロセスにおいてアンテナが少なくとも一部分に形成され、
経糸ヤーンは弾性 電気的非伝導性テキスタイル フィラメントからなり、緯糸ヤーンは電気的伝導性テキスタイル
フィラメントからなり、
織機上での織りの間、ファブリックの上記経糸ヤーンに張力を与え、
上記織機から上記ファブリックを取り外し、
かけられた張力を外して上記ファブリックを弛緩させる、
ステップを含んでなる電気-テキスタイル ファブリック アンテナの電気的伝導性を増す方法。
【請求項23】
上記ファブリックを蒸気で処理し、
上記ファブリックを熱処理および熱湯処理のうちの少なくとも1つによって加熱する、
ステップをさらに含み、その後、かけられた張力を外して上記ファブリックを弛緩させる、請求項22記載の方法。
【請求項24】
上記ファブリックを伸長させ回復させることによって、上記電気-テキスタイル ファブリック アンテナの周波数応答特性を変化させる、
ステップをさらに含む、請求項23記載の方法。
【請求項25】
織機内に非伝導性テキスタイル フィラメントとエネルギー活性 機能性フィラメントを入れ、
上記非伝導性テキスタイル フィラメントと上記エネルギー活性 機能性フィラメントを、サテン、あや織り、うね織り、バスケット織り、2面構造、およびこれらに基づくどの派生からなるグループから選ばれた織りパターンに従う織りによって一体化することを含んでなり、
上記非伝導性テキスタイル フィラメントと上記エネルギー活性 機能性フィラメントの少なくとも1つは弾性であり、
使用の間、上記ファブリックを伸長および回復する、
電気-テキスタイル ファブリックの機能性を調整する方法。
【請求項26】
電気-テキスタイル ファブリック内に非伝導性テキスタイル フィラメントとエネルギー活性 機能性フィラメントを織りもしくは編み、
上記電気-テキスタイル ファブリックの他の表面よりも高い集中状態の該電気-テキスタイル ファブリックの1つの表面における上記エネルギー活性 機能性フィラメントのフロートを入れる、ことを含んでなる、
電気-テキスタイル ファブリックの機能性を調整する方法。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図3D】
image rotate

【図3E】
image rotate

【図3F】
image rotate

【図3G】
image rotate

【図3H】
image rotate

【図3I】
image rotate

【図3J】
image rotate

【図3K】
image rotate

【図3L】
image rotate

【図3M】
image rotate

【図3N】
image rotate

【図3O】
image rotate

【図3P】
image rotate

【図3Q】
image rotate

【図3R】
image rotate

【図3S】
image rotate

【図3T】
image rotate

【図3U】
image rotate

【図3V】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図4D】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公表番号】特表2008−546209(P2008−546209A)
【公表日】平成20年12月18日(2008.12.18)
【国際特許分類】
【出願番号】特願2008−515306(P2008−515306)
【出願日】平成18年6月6日(2006.6.6)
【国際出願番号】PCT/IB2006/001477
【国際公開番号】WO2006/131810
【国際公開日】平成18年12月14日(2006.12.14)
【出願人】(505470889)テクストロニクス, インク. (17)
【Fターム(参考)】