説明

欠陥検査方法

【課題】スループットを大きくする等のため照射電流値を増加する場合にも試料表面の帯電量を適切に制御することができ、歪の小さい鮮明な画像データが取得され、信頼性の高い検査を行うことができる欠陥検査方法を提供する。
【解決手段】欠陥検査方法は、荷電粒子ビーム2を試料10に照射するビーム源1と、試料表面からの荷電粒子を検出部する検出部18とを備える検査装置を用いる。試料10の表面が所定の電気抵抗値を有する抵抗膜42により被覆され、荷電粒子ビーム2が試料10に照射され、試料表面から発生される二次荷電粒子等が検出部18により検出される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子ビーム、特に電子線を用いて試料表面の構造評価、拡大観察、材質評価、電気的導通状態等の検査を効率的に行うことを実現し、例えば、最小線幅0.15μm以下の高密度パターンの欠陥を高精度、高信頼性、高スループットで検査を行う表面検査方法及び装置並びにそれらを使用してデバイス製造プロセス途中のウエハ表面の検査を行うデバイス製造方法に関する。
【従来技術】
【0002】
従来知られているX線マスクや同等の導線基板を荷電粒子を使用して安価に検査するための方法においては、荷電粒子入射による基板表面からの二次粒子、後方散乱粒子及び透過粒子の少なくとも1つを検出する。基板は,ステージに装填され、基板走査の間一次自由度を有する。基板表面の電場で二次粒子が加速され、荷電粒子ビームに対する基板位置が測定される。公知の装置は、基板位置整合の為の光学アライメント手段、基板を含むチャンバーを排気して再加圧する真空制御手段、基板パターンを別のパターンと比較する手段を備える。
【0003】
従来知られている汚染物質の撹乱を防止し、欠陥の検出及び分類を高速で行い、汚れを洗浄するための基板検査装置は、基板表面に荷電粒子ビームを供給して走査する荷電粒子ビーム生成部と、基板上面又は底面から流出する荷電粒子を検出する検出手段と、荷電粒子ビームを基板表面に対して移動させる手段を有し、荷電粒子の検出結果から画像データを作製し、ダイ毎のデータと比較する等によって欠陥を検査する。
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来のSEM(走査電子顕微鏡)を用いた方式及び荷電粒子ビームで広い面積を同時に照射する方式においては、荷電粒子ビームを照射することによって被検査基板が帯電し、過度の帯電が生じると画像データが歪み、嘘の欠陥を検出したり、像が不明瞭となる問題があった。帯電による歪が十分小さくなるようにビーム電流を小さくすると、二次電子信号のS/N比(検出感度)が悪くなり、誤検出の発生率が増加する。S/N比を改善するため、多数回走査して平均化処理等を行うとスループット(時間当たりの処理枚数)が低下する問題があった。
【0005】
従来の荷電粒子ビームを試料表面に照射し試料表面から発生する二次荷電粒子を検出することにより試料表面の状態を検査する検査装置においては、微細な欠陥を検出するためには、ビーム電流を大きくすることが必要である。例えば、CCDの2×2画素サイズの欠陥を判定するときに必要な信号量をQとすると、1×1画素サイズの欠陥を判定するときに必要な信号量は、4Qとなる。つまり、同じ検出器で微細な欠陥を検出するためには、二次電子量を増やすために、照射電流値を増加する必要がある。しかしながら、照射電流値を増加すると帯電が強くなり像歪が大きくなる問題がある。
【0006】
本発明の目的は、上記の問題点を解決し、スループットを大きくする等のため照射電流値を増加する場合にも試料表面の帯電量を適切に制御することができ、歪の小さい鮮明な画像データが取得され、信頼性の高い検査を行うことができる表面検査方法及び装置を提供することである。
【課題を解決するための手段】
【0007】
上記問題を解決するため、本発明においては、基板表面に電気抵抗値を有する薄膜からなる抵抗膜を被覆することにより、荷電粒子ビーム(電子線、イオンビーム)を照射して生じる帯電量を制御し、歪の少ない鮮明な電位コントラストの画像の取得を可能にする。抵抗膜の抵抗値は、試料の表面構造や材質に対応して異なるものが選択される。抵抗膜の材料は、表面活性材、金属含有表面活性材、金属含有高分子材料、チニエルアルカンスルホン酸系高分子化合物等が用いられる。抵抗膜の抵抗値は、例えば、1cm当たり、1×10Ω〜100×10Ω(膜厚0.1nm〜100nm)である。抵抗膜の材料は、チニエルアルカンスルホン酸系高分子化合物のように水溶性の材料が好適であり、この場合、純水又は超純水を用いる洗浄を行うことにより、抵抗膜を除去できる。好適には表面から放出される電子を写像光学系で検出することにより、表面検査のスループットを高くできる。またデバイス製造方法においてプロセス途中のウエハ表面の欠陥の検査に上述の手段が用いられる。
【0008】
本発明の表面検査方法は、荷電粒子ビームを試料表面に照射し試料表面から発生する二次荷電粒子を検出することにより試料表面の状態を検査する。この表面検査方法は、試料表面に所定の電気抵抗値を有する薄膜からなる抵抗膜を被覆する工程、抵抗膜を被覆した試料表面に荷電粒子ビームを照射し試料表面から発生する二次荷電粒子を検出する工程、及び試料表面から抵抗膜を除去する工程を含む。本発明の表面検査方法は、次の工程を含むことができる。(a)抵抗膜を被覆した試料表面において荷電粒子ビームの照射により生じる電位コントラストが所定値であるように抵抗膜の電気抵抗値が選定される。(b)抵抗膜の電気抵抗値は試料の表面構造及び材質に応じて変化される。(c)抵抗膜は水溶性である。(d)純水又は超純水を用いた洗浄により試料表面から抵抗膜が除去される。(e)荷電粒子ビームが電子線であり、電子線を試料に照射し試料表面から発生する二次電子を写像光学系で検出することにより試料表面の状態を検査する。
【0009】
本発明の表面検査装置は、荷電粒子ビームを試料表面に照射し試料表面から発生する二次荷電粒子を検出することにより試料表面の状態を検査する。本発明の表面検査装置は、荷電粒子ビームを試料表面に照射するビーム源と、荷電粒子ビームを照射された試料表面からの荷電粒子を検出部に結像させる写像投影部と、写像投影部により結像された電気信号を検出し出力する信号検出部と、信号検出部から出力された信号を表示する画像処理部を備え、試料表面を所定の電気抵抗値を有する薄膜からなる抵抗膜により被覆し、二次荷電粒子を試料表面から発生させる。
【0010】
本発明の表面検査装置は、荷電粒子ビームを試料表面へ放出するビーム源と、荷電粒子ビームに走査動作をさせるための走査コイルと、照射された試料表面から放出される二次荷電粒子を検出する検出部とを備え、試料表面を所定の電気抵抗値を有する薄膜からなる抵抗膜により被覆し、二次荷電粒子を試料表面の抵抗膜から発生させる。更に、本発明のデバイス製造方法は、上記の表面検査方法又は装置を用いてプロセス途中のウエハ表面を検査する工程を含む。
【発明の実施の態様】
【0011】
図面を参照して本発明の実施の形態を述べる。図1は、本発明のシリコンウエハに抵抗膜を被覆した状態を示す概略断面図であり、図2は、絶縁物に電子線を照射した時の二次電子等の放出効率を示すグラフ、図3は、本発明の第2の実施の形態のパターン構造を備えるシリコンウエハ表面に抵抗膜を被覆した状態を示す概略断面図、図4は、本発明の第1の実施の形態の電子線検査装置の構成を示すブロック図である。本発明においては、図1に示すように、シリコンウエハ48及びその表面上に設けた半導体回路製造工程途中のパターン構造45からなる固体試料10について、ごみ、導通不良、パターン不良、欠落等の欠陥の有無、状態判定、種類分別を行うために、固体試料10の表面に所定電気抵抗値を有する薄膜からなる抵抗膜42を被覆する。この抵抗膜42で覆われた試料10を、第1の実施の形態の図4の写像投影型電子線検査装置により検査する。
【0012】
図4の写像投影型電子線検査装置は、正方形開口で整形された一次電子線(成形ビーム)2を放出する電子銃1を備える。電子銃1から放出された一次電子線2は、2段のレンズ系3、4で縮小され、E×B分離器5の偏向中心面に1.25mm角に結像される。E×B分離器5で偏向された電子線は、レンズ8、9で1/5に縮小され、試料10に投影される。試料10から放出されたパターン画像情報を持った二次電子11は、レンズ9、8、12、13で拡大され、検出器14で二次電子画像を形成する。この検査装置においては、E×B分離器5が電子銃1から放出された電子線2を偏向するが試料表面から放出される二次電子11は直進するように設定し、一次電子線2を試料表面へ垂直に入射させている。
【0013】
4段の拡大レンズ9、8、12、13は、レンズ9と8が対称タブレットレンズを形成し、レンズ12と13も対称タブレットレンズを形成しているので、無歪レンズとなっている。しかしながら、電極等が汚れてくると、多少歪みが発生するので、定期的に標準パターンを試料面に入れ、歪みを測定し歪み補正のパラメーターを算出しておく。図4の写像投影型電子線検査装置により、酸化膜や窒化膜が選択的に形成されたウエハを検査する場合は、光学系の歪みが補正されているのみでは不十分であり、画像データを取得した後、パターンエッジから代表的な点を選んでデータ画像と比較することによって歪みの補正を行い、その後、ダイとダイ或いは画像データとデータ画像との比較等で欠陥を検出する。
【0014】
抵抗膜で覆われた試料10を、第1の実施の形態の図4の写像投影型電子線検査装置により検査すると、ビーム照射により試料表面に帯電が起こり、電位コントラストの像を取得することができる。しかしながら、パターン構造中の絶縁材料、金属導通材料、回路抵抗等により、帯電状態が異なり、場合によっては、パターン境界に極端な電位差が生じ、試料表面からの二次電子が取得できなくなる場合やアーク放電が生じることがある。試料表面からの二次電子放出特性は、入射ビームのエネルギーや材質によって異なる。
【0015】
図2は、絶縁物に電子線を照射した時の二次電子等の放出効率ηの特性例である。放出効率ηが1より大きいビームエネルギーでは、入射した電子よりも多くの電子が放出されるため、絶縁物表面は正に帯電される(図2の+で示す領域)。逆に放出効率ηが1より小さいビームエネルギーでは、入射した電子よりも少ない電子が放出されるため、絶縁物表面は負に帯電される(図2の−で示す領域)。ここで問題なのは、抵抗膜の抵抗値と膜厚である。抵抗値が金属膜のように小さいと、電位コトラストが小さくなり、像の歪みは小さくなるが、パターン認識性が低下して、欠陥検出が難しくなる。また抵抗値が大き過ぎると像の歪みが大きく、二次電子の取得ができない場所やアーク放電が起こる場合が生じる。それ故、抵抗膜の抵抗値は、像歪みの小さい状態を実現し誤検出を少なくするような適切な値に選定することが必要である。
【0016】
また、特にLSI製造工程の途中段階検査では、抵抗膜の脱着性が問題であり、加工品に抵抗膜を被覆して検査後、次の加工工程に進むために、抵抗膜が加工品から除去されねばならない。この問題を解決するために、本発明は、水溶性の抵抗膜を使用し、水洗浄により抵抗膜の除去を行う工程を含む。
【0017】
図3は、本発明の第2の実施の形態のパターン構造を備えるシリコンウエハ表面に抵抗膜を被覆した試料10の状態を示す概略断面図である。試料10は、シリコンウエハ48(直径8〜12インチ)の上面に酸化シリコン(SiO2)膜46及び配線44を含むLSI回路パターンを備え、それらがほぼ均一な厚さ20nmの水溶性抵抗膜42により被覆されている。水溶性抵抗膜42は、例えば、チエニルアルカンスルホン酸系高分子膜であり、スピンコーターによりほぼ均一にコーティングされる。試料10は、図3の形態において、例えば図4の写像光学系を有する検査装置により欠陥検査をされ、その後、超純水洗浄で抵抗膜42を除去し次の工程へ進められる。欠陥検査において、試料の欠陥検査部位が記憶され、欠陥検出及び分類判別がなされて、製造工程管理にフィードバッグされる。チエニルアルカンスルホン酸系高分子膜の代りに、金属含有表面活性材を用いてもよい。金属含有率により、伝導率を制御することが可能である。また、検査後、超純粋水洗浄により抵抗膜を取り除くことができる。
【0018】
図5の走査型電子線検査装置は、抵抗膜を被覆した試料の検査のために図4の写像投影型電子線検査装置に代えて使用するできる。図5の走査型電子線検査装置において、電子銃1から放出された電子がアノードにより加速され、開口板19のアパーチャ、レンズ系3、4を通過し、電子線2となり、試料10の抵抗膜42を照射する。図5の検査装置において、走査コイル16及びレンズ系8が、電子線2の走査動作と拡大率を制御する。電子線2の照射により放出された二次電子、後方散乱電子、又は反射電子は、ホトマルなどの電子検出器18により検出され、二次画像にされる。また、試料10は、可動ステージ21上に取付けられ、結像倍率に見合った速度でX又はY方向に連続移動が加えられ、ライナセンサーとの組合せで連続した画像が得られる。この二次画像を使用し、ダイとダイ或いは画像データとデータ画像との比較を行う等で試料10の欠陥が検出される。
【0019】
図6は、本発明の電子線検査装置を使用する半導体デバイス製造方法の1例を示すフロー図である。図6の半導体デバイス製造方法は、以下の主工程を含む。(1)ウエハ52を製造するウエハ製造工程51又はウエハ52を準備するウエハ準備工程、(2)露光に使用するマスク(レクチル)62を製作するマスク製造工程61又はマスクを準備するマスク準備工程、(3)ウエハに必要な加工を行うウエハプロセッシング工程53、(4)ウエハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめるチップ組立工程54、(5)できたチップ55を検査するチップ検査工程56及び検査に合格したチップからなる製品(半導体デバイス)57を得る工程。なお、これらの主程は、それぞれ幾つかのサブ工程を含む。図5の右方部分は、そのうちのウエハプロセッシング工程53のサブ工程を示す。
【0020】
上記(1)〜(5)の主工程の中で、半導体デバイスの性能に決定的な影響を及ぼす主工程がウエハプロセッシング工程53である。この工程では、設計された回路パターンをウエハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウエハプロセッシング工程は、以下の工程を含む。(6)絶縁層となる誘電体薄膜や配線部、あるいは電極部を形成する金属薄膜等を形成する薄膜形成工程64(CVDやスパッタリング等を用いる)。(7)この薄膜層やウエハ基板を酸化する酸化工程64。(8)薄膜層やウエハ基板等を選択的に加工するためのマスク(レクチル)を用いてレジストのパターンを形成するリゾグラフィー工程63。(9)レジストパターンに従って薄膜層や基板を加工するエッチング工程64(例えばドライエッチング技術を用いる)。(10)イオン・不純物注入拡散工程64。(11)レジスト剥離工程。(12)加工されたウエハを検査する検査工程。
【0021】
なお、ウエハプロセッシング工程は、必要な層数だけ繰り返し行い、設計通り動作する半導体デバイスを製造する。図6のフロー図は、上記(6)、(9)及び(10)をまとめて1つのブロック64で示し、付加的な洗浄工程65を含み、更に繰り返し工程をブロック66で示す。上記(12)の加工されたウエハを検査する検査工程に本発明の検査装置を用いることにより、微細なパターンを有する半導体デバイスでもスループットよく検査でき、全数検査が可能になり、製品の歩留まり向上、欠陥製品の出荷防止が可能である。
【0022】
図7は、図6の製造方法におけるリゾグラフィー工程63の詳細を示すフロー図である。図7に示すように、リゾグラフィー工程63は、(13)前段の工程で回路パターンが形成されたウエハ上にレジストを被覆するレジスト塗布工程71、(14)レジストを露光する露光工程72、(15)露光されたレジストを現像してレジストパターンを得る現像工程73、(16)現像されたレジストパターンを安定化させるためのアニール工程74。なお、半導体デバイス製造工程、ウエハプロセッシング工程、及びリゾグラフィー工程は、周知のものであるから、これ以上の説明は、省略する。
【0023】
図8は、本発明の第3の実施の形態の装置の光学系の概略構成を示すブロック図であり、図9は、マルチ開口板83及び91を重ねた平面図である。図8において、単一の電子銃1から放出される電子線2は、コンデンサーレンズ82によって集束され、点84においてクロスオーバを形成する。コンデンサーレンズ82の下方には、複数の開口78を有する第1のマルチ開口板83が配置される。電子銃1から放出される電子のうち各開口78を通過する電子から成る電子線により、複数の一次電子線が形成される。第1のマルチ開口板83によって形成される一次電子線の各々が、縮小レンズ85によって縮小され点75に投影される。各一次電子線は、点75で合焦した後に対物レンズ97によって試料10表面に合焦される。第1のマルチ開口板83から出た複数の一次電子線は、縮小レンズ85と対物レンズ97との間に配置される偏向器により偏向され、複数の一次電子線が同時に試料10の面上を走査する。
【0024】
縮小レンズ85及び対物レンズ87の像面湾曲収差を無くすため、第1のマルチ開口板83は、円周上に開口78が配置され、そのx方向へ投影したものが等間隔となるように構成される。合焦された複数の一次電子線によって、試料10の複数の点(走査点)が照射され、照射されたこれら複数の点(走査点)から放出される二次電子が、対物レンズ97の電界に引かれて細く集束され、E×B分離器86で偏向され、レンズ89、90を有する二次光学系に投入される。二次電子線は、点75より対物レンズ97に近い点76に焦点を結ぶ。これは、各一次電子線は、試料面上で500eVのエネルギーを持っているのに対して、二次電子線は、数eVのエネルギーしか持っていないためである。
【0025】
二次光学系の拡大レンズ89、90を通過した二次電子線は、第2マルチ開口板91の複数の開口を通って複数の検出器92に結像する。検出器92の前に配置される第2のマルチ開口板91に形成される複数の開口79と、第1のマルチ開口板3に形成される複数の開口78とは、1対1に対応する。
【0026】
各検出器92は、検出した二次電子線を、その強度を表す電気信号へ変換する。各検出器92から出力される電気信号は、増幅器93によってそれぞれ増幅された後、画像処理部94により画像データへ変換される。画像処理部94は、一次電子線を偏向させるための走査信号を更に供給され、試料の面を表す画像を表示する。この画像を標準パターンと比較することにより、試料10の欠陥を検出することができ、また、レジストレーション(整合器)により試料10を一次光学系の光軸の近くへ移動させ、ラインスキャンすることにより線幅評価信号を取り出し、これを適宜に校正することにより、試料10上のパターンの線幅を測定することができる。
【0027】
ここで、第1のマルチ開口板83の開口78を通過した一次電子線を試料の面上に合焦させ、試料10から放出された二次電子線を検出器92に結像させる際、一次光学系及び二次光学系で生じる歪み、像面湾曲及び視野非点という3つの収差による影響を最小にすることが重要である。複数の一次電子線の像の間隔と、二次光学系との関係は、一次電子線の像の間隔を二次光学系の収差よりも大きい距離だけ離せば、複数の電子線間のクロストーク(crosstalk:混信)を無くすることができる。
【0028】
本発明においては、荷電粒子ビームを試料表面に照射し試料表面から発生する二次荷電粒子等を検出して試料表面の状態を検査する検査方法及び装置において、検査される試料表面が適当な電気抵抗値を有する薄膜の抵抗膜により被覆され、荷電粒子ビームを照射して生じる試料表面の帯電量が適当な範囲にあるように制御され、画像データの歪みや嘘の欠陥の検出が防止され、二次荷電粒子のS/N比(検出感度)の良い比較的大きなビーム電流を使用する場合も帯電量が適当な範囲とすることができ歪みの小さい鮮明な電位コントラスト画像を取得することが可能である。またS/N比を改善するために多数回走査及び平均化処理を行う必要がなくスループット(単位時間当たり処理数)を大きくすることができる。またビーム電流を大きくすることができるので、微細な欠陥の検出が可能である。
【0029】
本発明の検査方法及び装置は、試料表面を被覆する抵抗膜をチエニルアルカンスルホン酸系の高分子化合物のように水溶性材料で形成することにより、試料表面の状態の検査後に、純水又は超純水を用いた洗浄により抵抗膜を容易に除去可能であるから、半導体製造装置に適用ことが容易である。また本発明の検査方法及び装置を使用することにより、半導体製造装置において、微細なパターンを有する半導体デバイスについても大きなスループットで検査することができ、従って全数検査を行うことができ、欠陥製品の出荷防止が可能となる。
【図面の簡単な説明】
【0030】
【図1】本発明のシリコンウエハ表面に抵抗膜を被覆した状態を示す概略断面図。
【図2】絶縁物に電子線を照射した時の二次電子等の放出効率を示すグラフ。
【図3】本発明の第2の実施の形態のパターン構造を備えるシリコンウエハ表面に抵抗膜を被覆した状態を示す概略断面図。
【図4】本発明の第1実施の形態の検査装置の構成を示すブロック図。
【図5】本発明の第2実施の形態の検査装置の構成を示すブロック図。
【図6】本発明の検査方法又は装置を使用する半導体デバイス製造方法の1例を示すフロー図。
【図7】図6の製造方法におけるリゾグラフィー工程の詳細を示すフロー図。
【図8】本発明の第3の実施の形態の検査装置を概略的に示すブロック図。
【図9】図8の装置の開口板を示す平面図である。
【符号の説明】
【0031】
1:電子銃、2:一次電子線、3:レンズ系1、4:レンズ系2、5:E×B分離器、6:電極、7:磁石、8:レンズ系3、9:レンズ系4、10:試料、11:二次電子、12:レンズ系6、13:レンズ系7、14、15:検出部、16:走査コイル、17:レンズ系、18:電子検出器、19:開口板、21:可動ステージ、34:写像投影型電子線検査装置、35:走査型電子線検査装置、42:抵抗膜、44:LSI回路用配線、46:酸化シリコン、48:ウエハ、51:ウエハ製造工程、63:リゾグラフィー工程、75:点、76:点、78、79:開口、82:コンデンサ・レンズ、83:マルチ開口板、84:点、85:縮小レンズ、86:E×B分離器、89、90:拡大レンズ、91:マルチ開口板、92:検出器、93:増幅器、94:画像処理部、97:対物レンズ。

【特許請求の範囲】
【請求項1】
電子ビームを試料表面に照射し試料表面から発生する二次電子を検出することにより試料表面の欠陥を検出する欠陥検査方法であって、
試料表面に所定の電気抵抗値を有する薄膜からなる抵抗膜を被覆する工程、
抵抗膜を被覆した試料表面に対して開口により成形された電子ビームを投影する工程、
試料表面から放出されるパターン画像情報を持った二次電子から試料表面の二次電子画像を形成する工程、
画像データと画像データとの比較で欠陥を検出する工程、及び
純水又は超純水を用いた洗浄により試料表面から抵抗膜を除去する工程を含み、
前記抵抗膜の抵抗値を、前記二次電子による試料表面の二次電子画像における像歪み及びパターン認識性に基づいて選定することを特徴とする欠陥検査方法。
【請求項2】
前記抵抗膜の被覆をスピンコーターにより行うことを特徴とする請求項1記載の欠陥検査方法。
【請求項3】
前記抵抗膜は金属含有表面活性剤からなり、金属含有率により該抵抗膜の伝導率を制御することを特徴とする請求項2記載の欠陥検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2006−317466(P2006−317466A)
【公開日】平成18年11月24日(2006.11.24)
【国際特許分類】
【出願番号】特願2006−219104(P2006−219104)
【出願日】平成18年8月11日(2006.8.11)
【分割の表示】特願2000−340651(P2000−340651)の分割
【原出願日】平成12年11月8日(2000.11.8)
【出願人】(000000239)株式会社荏原製作所 (1,477)
【Fターム(参考)】