説明

油圧ポンプ・モータ用揺動支持軸受

【課題】トラブル発生時における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐焼付性の向上を達成することが可能な油圧ポンプ・モータ用揺動支持軸受を提供する。
【解決手段】斜板式油圧ポンプ・モータの斜板を、当該斜板に対向するように配置される部材に対して揺動可能に支持する油圧ポンプ・モータ用揺動支持軸受を構成するころ23は、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たすβサイアロンを主成分とし、残部不純物からなる焼結体から構成され、ヤング率が180GPa以上270GPa以下となっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、油圧ポンプ・モータ用揺動支持軸受に関し、より特定的には、βサイアロンを主成分とする焼結体からなる構成部品を備えた油圧ポンプ・モータ用揺動支持軸受に関するものである。
【背景技術】
【0002】
従来、斜板式油圧ポンプ・モータの一例である、油圧回路の油圧発生源に用いられる可変容量型ピストンポンプとして、いわゆるクレイドル型ポンプが知られている(たとえば、特許文献1参照)。クレイドル型ポンプは、ピストンを収容するシリンダブロックが、回転軸と共に一体的に回転されるものであり、クレイドル(斜板)はクレイドルガイドに摺接して回転軸に対して傾斜可能に支持される。そして、ピストンはその端部に連結されたシューを介して斜板の傾斜面に接している。このため、ピストンは、回転軸の回転に伴い斜板の傾角に応じて規定されるストロークで往復運動を行ない、結果的にポンプとして動作させることができる。そして、ストローク差によるポンプの吐出容量は、斜板の回転軸に対する傾角を油圧等で制御することによって常時変更することができる。
【0003】
ここで、たとえばアルミニウム材(アルミニウム合金を含む)からなる斜板を、同材料のアルミニウム材からなるクレイドルガイドに摺接させて保持すると、斜板の回転軸に対する傾角を油圧等で制御する使用状態で、斜板とクレイドルガイドとは摺接摩耗を起こし、焼付き等の問題が起きる。このため、斜板とクレイドルガイドとの間に球面滑り軸受を介在させる手段を採用する場合があった。しかし、当該球面滑り軸受では、斜板とクレイドルガイドとの間の接触応力が高くなった場合に、当該球面滑り軸受における潤滑性能が不十分となり、当該軸受の耐久性が問題となる。
【特許文献1】特開2008−95543号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
そこで、十分な潤滑性能を確保するため、斜板とクレイドルガイドとの間に、油圧ポンプ・モータ用揺動支持軸受として、転動体として針状ころを用いた半円構造の転がり軸受を適用することが考えられる。このような転がり軸受を構成する針状ころは、一般に鋼製とすることが多い。しかし、上述したクレイドル型ポンプに適用される上記油圧ポンプ・モータ用揺動支持軸受は、斜板が揺動するとき以外は静止状態となっている。したがって、機器の動作に伴う微小な振動などによって、針状ころと軌道部材の軌道面との接触面内の油が押出され金属接触しやすくなり、いわゆるフレッティング磨耗が起きる可能性がある。また、クレイドル型ポンプの性能向上や小型軽量化という要請に対応するため、上記油圧ポンプ・モータ用揺動支持軸受においては、転動体の軽量化および耐焼付性の向上などが求められている。
【0005】
これに対し、油圧ポンプ・モータ用揺動支持軸受の転動体として、窒化珪素製の転動体が採用される場合がある。窒化珪素は、転動体の素材として一般的に採用される鋼に比べて比重が小さいため、転動体の軽量化に寄与することができる。また、窒化珪素を転動体の素材として採用することにより、鋼からなる軌道輪などの軌道部材と、転動体(針状ころ)とが異種材料となるとともに転動体の耐摩耗性が向上するため、耐焼付性も向上する。したがって、油圧ポンプ・モータ用揺動支持軸受の転動体の素材として窒化珪素を採用することにより、上述の転動体の軽量化および耐焼付性の向上を達成することができる。
【0006】
一方、斜板式油圧ポンプ・モータにおいては、ピストンによる負荷変動によって、油圧ポンプ・モータ用揺動支持軸受に衝撃的な負荷が作用する場合がある。ここで、窒化珪素は、鋼に比べてヤング率が大きく、弾性変形しにくいという特徴がある。そのため、鋼製の転動体に比べて、窒化珪素製の転動体と軌道部材との接触面積は小さくなり、接触面圧が大きくなる傾向にある。そのため、油圧ポンプ・モータ用揺動支持軸受の転動体として窒化珪素製の転動体が採用されている場合、上述のような衝撃的な負荷が発生すると、軌道部材に圧痕などの損傷が発生しやすくなる。軌道部材に圧痕などの損傷が発生した場合、異音や早期焼付きなどの原因となる。つまり、油圧ポンプ・モータ用揺動支持軸受の転動体として窒化珪素製の転動体を採用した場合、上述のようなトラブルが発生した場合の軌道部材の損傷が大きくなるという問題があった。
【0007】
そこで、本発明の目的は、トラブル発生時における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐焼付性の向上を達成することが可能な油圧ポンプ・モータ用揺動支持軸受を提供することである。
【課題を解決するための手段】
【0008】
本発明に従った油圧ポンプ・モータ用揺動支持軸受は、斜板式油圧ポンプ・モータの斜板を、当該斜板に対向するように配置される部材に対して揺動可能に支持する油圧ポンプ・モータ用揺動支持軸受である。この油圧ポンプ・モータ用揺動支持軸受は、軌道部材と、軌道部材に接触し、円弧状の軌道上に配置される転動体とを備える。転動体は、窒化珪素からなる場合に比べて軌道部材に対する衝撃を抑制することが可能なセラミックスからなっている。より具体的には、たとえば転動体は、窒化珪素からなる場合に比べてヤング率が小さくなるセラミックスからなっている。
【0009】
本発明の油圧ポンプ・モータ用揺動支持軸受によれば、衝撃的な負荷が作用する場合でも軌道部材における損傷が抑制されるため、耐衝撃性を向上させつつ転動体の軽量化および耐焼付性の向上を図ることが可能な油圧ポンプ・モータ用揺動支持軸受を提供することができる。
【0010】
本発明の一の局面における油圧ポンプ・モータ用揺動支持軸受は、斜板式油圧ポンプ・モータの斜板を、当該斜板に対向するように配置される部材に対して揺動可能に支持する油圧ポンプ・モータ用揺動支持軸受である。この油圧ポンプ・モータ用揺動支持軸受は、軌道部材と、軌道部材に接触し、円弧状の軌道上に配置される転動体とを備えている。そして、転動体は、βサイアロンを主成分とし、残部不純物からなる焼結体から構成される。
【0011】
本発明の他の局面における油圧ポンプ・モータ用揺動支持軸受は、斜板式油圧ポンプ・モータの斜板を、当該斜板に対向するように配置される部材に対して揺動可能に支持する油圧ポンプ・モータ用揺動支持軸受である。この油圧ポンプ・モータ用揺動支持軸受は、軌道部材と、軌道部材に接触し、円弧状の軌道上に配置される転動体とを備えている。そして、転動体は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成される。
【0012】
本発明の一の局面における油圧ポンプ・モータ用揺動支持軸受においては、転動体に耐久性の高いセラミックスであるβサイアロン焼結体(βサイアロンを主成分とする焼結体)が採用されている。そのため、転動体の軽量化および耐焼付性の向上が達成される。さらに、βサイアロン焼結体は、窒化珪素(Si)やアルミナ(Al)などの一般的なセラミックスからなる焼結体に比べてヤング率が小さい。そのため、ヤング率が高いことに起因した振動や衝撃による軌道部材の損傷が抑えられる。以上のように、本発明の一の局面における油圧ポンプ・モータ用揺動支持軸受によれば、トラブル発生時における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐焼付性の向上を達成することが可能な油圧ポンプ・モータ用揺動支持軸受を提供することができる。
【0013】
また、本発明の他の局面における油圧ポンプ・モータ用揺動支持軸受は、基本的には上記本発明の一の局面における油圧ポンプ・モータ用揺動支持軸受と同様の構成を有し、同様の作用効果を奏する。しかし、本発明の他の局面における油圧ポンプ・モータ用揺動支持軸受では、焼結体が焼結助剤を含む点で上記本発明の一の局面における油圧ポンプ・モータ用揺動支持軸受とは異なっている。本発明の他の局面における油圧ポンプ・モータ用揺動支持軸受によれば、焼結助剤の採用により、焼結体の気孔率を低下させやすくなり、十分な耐久性を安定して確保することが可能な油圧ポンプ・モータ用揺動支持軸受を容易に提供することができる。
【0014】
なお、焼結助剤としては、マグネシウム(Mg)、アルミニウム(Al)、珪素(Si)、チタン(Ti)、希土類元素の酸化物、窒化物、酸窒化物のうち少なくとも一種類以上を採用することができる。また、上記本発明の一の局面における油圧ポンプ・モータ用揺動支持軸受と同等の作用効果を奏するためには、焼結助剤は、焼結体のうち20質量%以下とすることが望ましい。
【0015】
上記油圧ポンプ・モータ用揺動支持軸受において好ましくは、上記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たす。
【0016】
本発明者は、βサイアロン焼結体からなる転動体の転動疲労寿命とβサイアロンの組成との関係を詳細に調査した。その結果、以下の知見が得られた。βサイアロンは、燃焼合成を含む製造工程を採用することにより、上記zの値(以下、z値という)が0.1以上となる種々の組成を有するものを安価に製造することができる。そして、一般に転動疲労寿命に大きな影響を与える硬度は、製造の容易なz値4.0以下の範囲において、ほとんど変化しない。しかしながら、βサイアロン焼結体からなる転動体の転動疲労寿命とz値との関係を詳細に調査したところ、z値が3.5を超えると転動体の転動疲労寿命が低下することが分かった。
【0017】
より具体的には、z値が0.1以上3.5以下の範囲においては、転動疲労寿命はほぼ同等で、転がり軸受の運転時間が所定時間を超えると、転動体の表面に剥離が発生して破損する。これに対し、z値が3.5を超えると転動体が摩耗しやすくなり、これに起因して転動疲労寿命が低下する。つまり、z値が3.5となる組成を境界として、βサイアロンからなる転動体の破損モードが変化し、z値が3.5を超えると転動疲労寿命が低下するという現象が明らかとなった。したがって、βサイアロン焼結体からなる転動体において、安定して十分な寿命を確保するためには、z値を3.5以下とすることが好ましい。以上のように、上記βサイアロンを0.1≦z≦3.5を満たすものとすることにより、安価で、かつ耐久性に優れた油圧ポンプ・モータ用揺動支持軸受を提供することができる。
【0018】
上記油圧ポンプ・モータ用揺動支持軸受において好ましくは、上記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.5≦z≦3.0を満たす。
【0019】
これにより、振動や衝撃が作用した場合における油圧ポンプ・モータ用揺動支持軸受の耐久性を一層向上させることができる。
【0020】
上記油圧ポンプ・モータ用揺動支持軸受において好ましくは、上記転動体のヤング率は180GPa以上270GPa以下である。
【0021】
転動体のヤング率が高くなると、転動体を構成する素材(βサイアロン焼結体)の強度が上昇する傾向にある。しかし、その反面、転動体のヤング率が高くなると、転動体が弾性変形しにくくなるため、軌道部材との接触面積が小さくなり、接触面圧が高くなる。その結果、軌道部材に損傷が発生し易くなる。一方、転動体のヤング率が低くなると、転動体が弾性変形しやすくなるため、軌道部材との接触面積が大きくなり、接触面圧が低くなる。しかし、その反面、転動体のヤング率が低くなると、これに伴って転動体を構成する素材の強度が低下する傾向にある。そのため、転動体のヤング率は、転動体を構成する素材の強度と軌道部材との間における接触面圧の低減とのバランスを確保可能な範囲とすることが必要である。
【0022】
より具体的には、βサイアロン焼結体からなる転動体のヤング率が180GPa未満の場合、転動体を構成する素材の強度低下の影響が接触面圧の低減の効果を上回り、転動体の転動疲労寿命が低下する。また、軌道部材との接触面積が増大することに伴い、軌道部材との間に作用する摩擦力が増加して軸受トルクが上昇するという問題も発生する。したがって、βサイアロン焼結体からなる転動体のヤング率は、180GPa以上であることが好ましく、220GPa以上であることがより好ましい。
【0023】
一方、βサイアロン焼結体からなる転動体のヤング率が270GPaを超えると、接触面圧の増加の影響が転動体を構成する素材の強度上昇の効果を上回り、軌道部材の転走面に圧痕などの損傷が発生しやすくなる。したがって、βサイアロン焼結体からなる転動体のヤング率は、270GPa以下であることが好ましく、260GPa以下であることがより好ましい。
【0024】
上記油圧ポンプ・モータ用揺動支持軸受においては、軌道部材は鋼からなるものとすることができる。この場合、当該軌道部材の表面硬度はHV680以上であることが好ましい。これにより、振動や衝撃が作用した場合における軌道部材の損傷を抑制することができる。
【0025】
上記油圧ポンプ・モータ用揺動支持軸受において好ましくは、上記転動体は、軌道部材と接触する面である転走面を含む領域に、内部よりも緻密性の高い層である緻密層を有している。
【0026】
上述のβサイアロン焼結体からなる転動体においては、その緻密性が転動疲労寿命に大きく影響する。これに対し、上記構成によれば、転走面を含む領域に内部よりも緻密性の高い層である緻密層が形成されていることにより、転動疲労寿命が向上する。その結果、十分な耐久性を安定して確保することが可能な油圧ポンプ・モータ用揺動支持軸受を提供することができる。
【0027】
ここで、緻密性の高い層とは、焼結体において空孔率の低い(密度の高い)層であって、たとえば以下のように調査することができる。まず、βサイアロン焼結体からなる転動体の表面に垂直な断面において転動体を切断し、当該断面を鏡面ラッピングする。その後、鏡面ラッピングされた断面を光学顕微鏡の斜光(暗視野)にて、たとえば50〜100倍程度で撮影し、300DPI(Dot Per Inch)以上の画像として記録する。このとき、白色の領域として観察される白色領域は、空孔率の高い(密度の低い)領域に対応する。したがって、白色領域の面積率が低い領域は、当該面積率が高い領域に比べて緻密性が高い。そして、記録された画像を、画像処理装置を用いて輝度閾値により2値化処理した上で白色領域の面積率を測定し、当該面積率により、撮影された領域の緻密性を知ることができる。
【0028】
つまり、上記油圧ポンプ・モータ用揺動支持軸受において好ましくは、上記焼結体は、転走面を含む領域に内部よりも白色領域の面積率の低い層である緻密層が形成されている。なお、上記撮影は、ランダムに5箇所以上で行ない、上記面積率は、その平均値で評価することが好ましい。また、上記焼結体の内部における上記白色領域の面積率は、たとえば15%以上である。また、βサイアロン焼結体からなる転動体の転動疲労寿命を一層向上させるためには、上記緻密層は100μm以上の厚みを有していることが好ましい。
【0029】
上記油圧ポンプ・モータ用揺動支持軸受において好ましくは、緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である。
【0030】
白色領域の面積率が7%以下となる程度に上記緻密層の緻密性を向上させることで、βサイアロン焼結体からなる転動体の転動疲労寿命がより向上する。したがって、上記構成により、本発明の油圧ポンプ・モータ用揺動支持軸受の耐久性を一層向上させることができる。
【0031】
上記油圧ポンプ・モータ用揺動支持軸受において好ましくは、緻密層の表面を含む領域には、緻密層内の他の領域よりもさらに緻密性の高い層である高緻密層が形成されている。
【0032】
緻密性のさらに高い高緻密層が緻密層の表面を含む領域に形成されることにより、βサイアロン焼結体からなる転動体の転動疲労に対する耐久性がより向上し、油圧ポンプ・モータ用揺動支持軸受の寿命を一層向上させることができる。
【0033】
上記油圧ポンプ・モータ用揺動支持軸受において好ましくは、高緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下である。
【0034】
白色領域の面積率が3.5%以下となる程度に上記高緻密層の緻密性を向上させることで、βサイアロン焼結体からなる転動体の転動疲労寿命がより向上する。したがって、上記構成により、本発明の油圧ポンプ・モータ用揺動支持軸受の耐久性を一層向上させることができる。
【発明の効果】
【0035】
以上の説明から明らかなように、本発明の油圧ポンプ・モータ用揺動支持軸受によれば、トラブル発生時における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐焼付性の向上を達成することが可能な油圧ポンプ・モータ用揺動支持軸受を提供することができる。
【発明を実施するための最良の形態】
【0036】
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
【0037】
図1は、本発明の一実施の形態における油圧ポンプ・モータ用揺動支持軸受としての揺動軸受を備えた油圧ポンプ・モータの構成を示す概略断面図である。図1を参照して、本発明の一実施の形態における揺動軸受を備えた油圧ポンプ・モータについて説明する。
【0038】
図1を参照して、本実施の形態における油圧ポンプ・モータは、斜板を備えるクレイドル型の可変容量型アキシャルピストンポンプであって、接合された一対のハウジング5、6の端壁間に、回転軸7が回転可能に支持されている。回転軸7にはシリンダブロック8が固定されている。つまり、回転軸7とシリンダブロック8とは一体となって回転する。シリンダブロック8内には複数のピストン2が回転軸7の軸方向へスライド変位可能に収容されている。シリンダブロック8に形成されたピストン収容室8aは、内部に上記ピストン2を収容するものであって、回転軸7の回転に連動して弁板9に形成された円弧状の吸入ポート9aおよび吐出ポート9bと交互に接続する。これにより、作動油などの流体が吸入ポート9aから各ピストン収容室8a内へ吸入される。そして、回転軸7と共にシリンダブロック8が回転することによって、ピストン収容室8a内の作動油はピストン収容室8aから吐出ポート9bへ排出される。
【0039】
押圧バネ10は、シリンダブロック8をクレイドル3側に押圧している。これにより回転軸7の周りにおいてリテーナ11に保持されたアルミニウム材からなるシュー12がクレイドル3の平面部と接触した状態となる。そして、シュー12に嵌められたピストン2は、回転軸7の回転に伴ってクレイドル3の傾斜角に応じたストロークで往復運動する。
【0040】
ここで、クレイドル3の傾斜角は、ハウジング5内の押圧バネ13の押圧力と、油圧制御装置14によって調整されるシリンダ15からの油圧とによってクレイドル3の端部の位置を調整することにより、常時適正な角度に制御されている。つまり、押圧バネ13によりクレイドル3の端部の表側面(クレイドルガイド4側の表面)が押圧される。一方、シリンダ15によってクレイドル3の端部の裏側面(クレイドルガイド4側とは反対側の表面)が押圧される。このため、押圧バネ13とシリンダ15との押圧力を調整することで、クレイドル3の端部の位置を変更することができる。このようにクレイドル3の端部の位置が変われば、回転軸7に対するクレイドル3の表面(リテーナ11側の表面)の角度を変更することができる。
【0041】
図1に示すように、アルミニウム合金製のハウジング5内にはクレイドルガイド4が2個一組で固定して配置される。2つのクレイドルガイド4の間に、回転軸7がクレイドル3の軸孔を貫通して配置されている。2個一組のクレイドルガイド4には、それぞれクレイドル3を揺動可能に支持するための揺動軸受1を配置する支持面が円弧面状に形成されている。この支持面上に2個一組の揺動軸受1が配置されている。
【0042】
クレイドル3は、例えば珪素を含有するアルミニウム合金により形成されてもよい。クレイドル3の背面には各クレイドルガイド4に支持された揺動軸受1に対向するように一対の円弧面状の軸受接続部が形成されている。クレイドル3の軸受接続部は、一対の揺動軸受1に接続される。この結果、クレイドル3は揺動軸受1を介してクレイドルガイド4に対して揺動可能に配置される。なお、揺動軸受1の湾曲形状は、クレイドルガイド4における支持面の円弧面形状に対応し、当該円弧面形状に沿った形状に形成されている。
【0043】
次に、図1に示した油圧ポンプ・モータの動作を簡単に説明する。図1に示した油圧ポンプ・モータでは、回転軸7が回転することにより当該回転軸7と一体となったシリンダブロック8が回転する。このとき、シリンダブロック8のピストン収容室8aに収容されたピストン2は、クレイドル3の傾斜角に応じたストロークで往復運動する。そして、ピストン収容室8aは、回転軸7の回転に連動して弁板9に形成された円弧状の吸入ポート9aおよび吐出ポーと9bと交互に接続される。このため、シリンダブロック8の回転(回転軸7の回転)によるピストン2の往復運動と、ピストン収容室8aの吸入ポート9aおよび吐出ポート9bとの交互接続とにより、作動油などを吸入ポート9aから各ピストン収容室8a内へ吸入し、その後ピストン収容室8a内から吐出ポート9bを介して当該作動油など排出する(圧送する)ことができる。そして、クレイドル3の回転軸7に対する傾斜角を変更することにより、ピストン2のストロークを変更できるので、結果的に圧送される作動油などの量を変更できる。上記油圧ポンプ・モータは、回転軸7にトルクを与えて回転させると油圧ポンプとして作用し、吐出ポート9bから作動油などを圧送できる。一方、吸入ポート9aへ作動油を高圧で流入させると油圧モーととして作用し、回転軸7において回転トルクを発生させることができる。
【0044】
次に、図1に示した油圧ポンプ・モータに用いられる揺動軸受を説明する。図2は、図1に示した油圧ポンプ・モータに用いられる揺動軸受を示す模式図である。また、図3は、図2に示した揺動軸受の要部を拡大して示した概略部分断面図である。
【0045】
図2および図3を参照して、揺動軸受1は、凹曲面状の軌道輪転走面22Aを有する軌道輪22と、当該軌道輪転走面22Aに接触するように配置された複数のころ23と、複数のころ23を転動自在に保持する保持器24とを備える。軌道輪22は図1に示したクレイドルガイド4の支持面上に接続固定されている。そして、クレイドル3の軸受接続部の表面がころ23に接触するように配置される。
【0046】
軌道輪22の側端には、各ころ23の端面に沿って張り出すように鍔部が形成されている。鍔部は軌道輪22の側端の全長に渡って形成される。また、軌道輪22は、保持器24よりも周方向(軌道輪転走面22Aに沿った方向)において長くなるように形成されている。そして、軌道輪22の周方向における両端には、保持器24の周方向端面と間隔を隔てて対向するストッパ25が形成されている。このストッパ25は、軌道輪22の周方向端部から保持器24が抜け落ちることを防止するために設けられている。
【0047】
そして、本実施の形態における転動体としてのころ23は、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たすβサイアロンを主成分とし、残部不純物からなる焼結体から構成され、ヤング率が180GPa以上270GPa以下となっている。
【0048】
さらに、図3を参照して、ころ23の転走面であるころ転走面23Aを含む領域には、内部23Cよりも緻密性の高い層であるころ緻密層23Bが形成されている。このころ緻密層23Bの断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である。そのため、本実施の形態おける揺動軸受1は、トラブル発生時における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐焼付性の向上を達成することが可能な油圧ポンプ・モータ用揺動支持軸受となっている。なお、上記不純物は、原料に由来するもの、あるいは製造工程において混入するものを含む不可避的不純物を含む。
【0049】
さらに、図3を参照して、ころ緻密層23Bの表面であるころ転走面23Aを含む領域には、ころ緻密層23B内の他の領域よりもさらに緻密性の高い層であるころ高緻密層23Dが形成されている。ころ高緻密層23Dの断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下となっている。これにより、ころ23の転動疲労に対する耐久性がより向上し、揺動軸受1の耐久性が一層向上している。
【0050】
なお、上記本実施の形態においては、揺動軸受1を構成するころ23は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成されていてもよい。焼結助剤を含むことで、焼結体の気孔率を低下させやすくなり、十分な耐久性を安定して確保することが可能な揺動軸受1を、容易に提供することができる。上記不純物は、原料に由来するもの、あるいは製造工程において混入するものを含む不可避的不純物を含む。
【0051】
次に、本実施の形態における油圧ポンプ・モータ用揺動支持軸受の製造方法について説明する。図4は、本発明の一実施の形態における油圧ポンプ・モータ用揺動支持軸受の製造方法の概略を示す図である。また、図5は、本発明の一実施の形態におけるβサイアロン焼結体からなる転動体(ころ23)の製造方法の概略を示す図である。
【0052】
図4を参照して、本実施の形態における油圧ポンプ・モータ用揺動支持軸受の製造方法においては、まず、軌道部材を製造する軌道部材製造工程と、転動体を製造する転動体製造工程とが実施される。具体的には、軌道部材製造工程では、軌道輪22などが製造される。一方、転動体製造工程では、ころ23などが製造される。
【0053】
そして、軌道部材製造工程において製造された軌道部材と、転動体製造工程において製造された転動体とを組み合わせることにより、油圧ポンプ・モータ用揺動支持軸受を組立てる組立工程が実施される。具体的には、たとえば軌道輪22と、ころ23と、別途準備した保持器24とを組み合わせることにより、揺動軸受1が組立てられる。そして、転動体製造工程は、たとえば以下のβサイアロン焼結体からなる転動体の製造方法を用いて実施される。
【0054】
図5を参照して、本実施の形態におけるβサイアロン焼結体からなる転動体の製造方法においては、まず、βサイアロンの粉末を準備するβサイアロン粉末準備工程が実施される。βサイアロン粉末準備工程においては、たとえば燃焼合成法を採用した製造工程により、安価にβサイアロンの粉末を製造することができる。
【0055】
次に、βサイアロン粉末準備工程において準備されたβサイアロンの粉末に、焼結助剤を添加して混合する混合工程が実施される。この混合工程は、焼結助剤を添加しない場合、省略することができる。
【0056】
次に、図5を参照して、上記βサイアロンの粉末またはβサイアロンの粉末と焼結助剤との混合物を、転動体の概略形状に成形する成形工程が実施される。具体的には、上記βサイアロンの粉末またはβサイアロンの粉末と焼結助剤との混合物に、プレス成形、鋳込み成形、押し出し成形、転動造粒などの成形手法を適用することにより、ころ23などの概略形状に成形された成形体が作製される。
【0057】
次に、上記成形体の表面が加工されることにより、当該成形体が焼結後に所望の転動体の形状により近い形状になるよう成形される焼結前加工工程が実施される。具体的には、グリーン体加工などの加工手法を適用することにより、上記成形体が焼結後にころ23などの形状により近い形状になるように加工される。この焼結前加工工程は、成形工程において上記成形体が成形された段階で、焼結後に所望の転動体の形状に十分近い形状が得られる状態である場合には省略することができる。
【0058】
次に、図5を参照して、上記成形体が焼結される焼結工程が実施される。具体的には、上記成形体が、たとえば1MPa以下の圧力下でヒータ加熱、マイクロ波やミリ波による電磁波加熱などの加熱方法により加熱されて焼結されることにより、ころ23などの概略形状を有する焼結体が作製される。焼結は、不活性ガス雰囲気中または窒素と酸素との混合ガス雰囲気中において、1550℃以上1800℃以下の温度域に上記成形体が加熱されることにより実施される。不活性ガスとしては、ヘリウム、ネオン、アルゴン、窒素などが採用可能であるが、製造コスト低減の観点から、窒素が採用されることが好ましい。
【0059】
次に、焼結工程において作製された焼結体の表面が加工され、当該表面を含む領域が除去される仕上げ加工が実施されることにより、転動体を完成させる仕上げ工程が実施される。具体的には、焼結工程において作製された焼結体の表面を研磨することにより、転動体としてのころ23などを完成させる。以上の工程により、本実施の形態におけるβサイアロン焼結体からなる転動体は完成する。
【0060】
ここで、上記焼結工程における焼結により、焼結体の表面から厚み500μm程度の領域には、内部よりも緻密性が高く、断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率が7%以下である緻密層が形成される。さらに、焼結体の表面から厚み150μm程度の領域には、緻密層内の他の領域よりもさらに緻密性が高く、断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率が3.5%以下である高緻密層が形成される。したがって、仕上げ工程においては、除去される焼結体の厚みは、特に転走面となるべき領域において150μm以下とすることが好ましい。これにより、ころ転走面23Aを含む領域に、高緻密層を残存させ、ころ23の転動疲労寿命を向上させることができる。
【0061】
なお、上記焼結工程は、βサイアロンの分解を抑制するため、0.01MPa以上の圧力下で行なうことが好ましく、低コスト化を考慮すると大気圧以上の圧力下で行なうことがより好ましい。また、製造コストを抑制しつつ緻密層を形成するためには、焼結工程は1MPa以下の圧力下で行なうことが好ましい。また、βサイアロン焼結体からなる転動体のヤング率を180GPa以上270GPa以下の所望の値に調整するためには、たとえばβサイアロン粉末準備工程において準備されるβサイアロン粉末のz値を、0.1≦z≦3.5の範囲で調節すればよい。より具体的には、z値を増加させることにより、βサイアロン焼結体のヤング率を低下させることができる。
【0062】
また、上記実施の形態における軌道輪22の素材としては、たとえばJIS規格SUJ2などの高炭素クロム軸受鋼、SCM420などの機械構造用合金鋼、S53Cなどの機械構造用炭素鋼などの鋼を採用することができる。
【0063】
上記実施の形態においては、本発明の油圧ポンプ・モータ用揺動支持軸受の一例として揺動軸受について説明したが、本発明の揺動支持軸受はこれに限られず、転炉の傾動装置、コンクリートミキサーの傾動装置など種々の形式の揺動支持軸受に採用することができる。また、上記実施の形態においては、本発明の揺動軸受の軌道部材として、軌道輪22が採用される場合について説明したが、軌道部材は、転動体(ころ22)が表面を転走するように使用されるクレイドルガイド4の支持面などの部材であってもよい。すなわち、軌道部材は、転動体が転走するための転走面が形成された部材であればよい。
【実施例1】
【0064】
以下、本発明の実施例1について説明する。種々のz値を有するβサイアロン焼結体からなる転動体を有する転がり軸受を作製し、z値と転動疲労寿命(耐久性)との関係を調査する試験を行なった。なお、ここでは転動体の転動疲労寿命を評価するため、試験方法の確立した転がり軸受を試験軸受として用いた。試験の手順は以下のとおりである。
【0065】
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法でz値を0.1〜4の範囲で作製したβサイアロンの粉末を準備し、上記実施の形態において図5に基づいて説明した転動体の製造方法と基本的に同様の方法で、z値が0.1〜4である転動体を作製した。具体的な作製方法は以下のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で球体に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない、球状の成形体を得た。
【0066】
引き続き当該成形体に対して1次焼結として常圧焼結を行なった後、圧力200MPaの窒素雰囲気中でHIP(Hot Isostatic Press;熱間静水圧焼結)処理することで、焼結球体を製造した。次に、当該焼結球体にラッピング加工を行ない、3/8インチセラミック球(JIS等級 G5)とした。そして、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(実施例A〜J)。また、比較のため、窒化珪素からなる転動体、すなわちz値が0である転動体も上記βサイアロンからなる転動体と同様の方法で作製し、同様に軸受に組立てた(比較例A)。
【0067】
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:3.2GPa、軸受回転数:2000rpm、潤滑:タービン油VG68(清浄油)の循環給油、試験温度:室温、の条件の下で運転する疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、転動体に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。また、試験中止後、軸受を分解して転動体の破損状態を確認した。
【0068】
【表1】

【0069】
表1に本実施例の試験結果を示す。表1においては、各実施例および比較例における寿命が、比較例A(窒化珪素)における寿命を1とした寿命比で表されている。また、破損形態は、転動体の表面に剥離が発生した場合「剥離」、剥離が発生することなく表面が摩耗して試験が中止された場合「摩耗」と記載されている。
【0070】
表1を参照して、z値が0.1以上3.5以下となっている本発明の実施例A〜Hでは、窒化珪素(比較例A)と比較して遜色ない寿命を有している。また、破損形態も窒化珪素の場合と同様に「剥離」となっている。これに対し、z値が3.5を超える実施例Iでは、寿命が低下するとともに、転動体に摩耗が観察される。すなわち、z値が3.8である実施例Iでは、最終的には転動体に剥離が発生しているものの、転動体における摩耗が影響し、寿命が低下したものと考えられる。さらに、z値が4である実施例Jにおいては、短時間に転動体の摩耗が進行し、転がり軸受の耐久性がさらに低下している。
【0071】
以上のように、z値が0.1以上3.5以下の範囲においては、βサイアロン焼結体からなる転動体を備えた転がり軸受の耐久性は、窒化珪素の焼結体からなる転動体を備えた転がり軸受とほぼ同等である。これに対し、z値が3.5を超えると転動体が摩耗しやすくなり、これに起因して転動疲労寿命が低下する。さらに、z値が大きくなると、βサイアロンからなる転動体の破損原因が「剥離」から「摩耗」に変化し、転動疲労寿命が一層低下することが明らかとなった。このように、z値を0.1以上3.5以下とすることにより、安価で、かつ耐久性に優れたβサイアロン焼結体からなる転動体が得られることが確認された。
【0072】
なお、表1を参照して、z値が3を超える3.5の実施例Hにおいては、転動体には僅かな摩耗が発生しており、寿命も実施例A〜Gに比べて低下している。このことから、十分な耐久性をより安定して確保するためには、z値は3以下とすることが望ましいといえる。
【0073】
また、上記実験結果より、窒化珪素からなる転動体と同等以上の耐久性(寿命)を得るには、z値は2以下とすることが好ましく、1.5以下とすることが、より好ましい。一方、燃焼合成を採用した製造工程によるβサイアロン粉体の作製の容易性を考慮すると、十分に自己発熱による反応が期待できる0.5以上のz値を採用することが好ましい。
【実施例2】
【0074】
以下、本発明の実施例2について説明する。種々のz値を有するβサイアロン焼結体からなる転動体を有する転がり軸受を作製し、当該転がり軸受に対して衝撃が作用する環境下におけるz値と転動疲労寿命との関係を調査する試験を行なった。試験の手順は以下のとおりである。
【0075】
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法でz値を0.1〜3.5の範囲で作製したβサイアロンの粉末を準備し、上記実施例1と同様の方法で、z値が0.1〜3.5である転動体を作製した。そして、別途準備した様々な鋼材を素材として製作した軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(実施例A〜J)。軌道輪を構成する鋼としては、JIS規格SUJ2、SCM420、SCr420、S53C、S45C、S40CおよびAISI規格M50を採用した。また、比較のため、窒化珪素からなる転動体、すなわちz値が0である転動体も上記βサイアロンからなる転動体と同様の方法で作製し、同様に軸受に組立てた(比較例A)。
【0076】
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:2.5GPa、軸受回転数:500rpm、潤滑:タービン油VG68循環給油、加振条件:2500N(50Hz)、試験温度:室温の条件の下で運転する加振衝撃疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、軸受に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。また、試験中止後、軸受を分解して軸受の破損状態を確認した。
【0077】
【表2】

【0078】
表2に本実施例の試験結果を示す。表2においては、各欄内の上段に各実施例および比較例における寿命が、軌道輪の材質をSUJ2とした場合の比較例A(窒化珪素)の寿命を1とした寿命比で表されている。また、各欄内の下段には、軸受の破損部位(軌道輪または玉)が記載されている。
【0079】
表2を参照して、z値が0.5以上3.0以下となっている本発明の実施例C〜Hは、窒化珪素(比較例A)と比較して明確に長寿命となっている。ここで、表2に示すように、破損部位は窒化珪素の場合と同様に軌道部材(軌道輪)となっており、破損形態は剥離であった。これに対し、z値が3.0を超える実施例IおよびJでは、寿命が低下するとともに、転動体(玉)の破損(剥離)が先行する。すなわち、z値が3.25である実施例Iでは、衝撃の影響によりβサイアロン焼結体からなる軸受部品(玉)に損傷が生じ、寿命が低下したものと考えられる。さらに、z値が3.5である実施例Jおいては、さらに短時間に転動体の剥離が生じ、転がり軸受の耐久性が一層低下している。
【0080】
一方、z値が0.5より小さい実施例AおよびBでは、寿命が比較例Aとほぼ同じ程度にまで低下するとともに、軌道部材の破損(剥離)が先行する。すなわち、z値が0.25である実施例Bでは、z値が0(窒化珪素)である比較例Aとの物性の差が小さくなる。そのため、βサイアロン焼結体からなる玉と、当該玉に相対する軌道部材との衝突によって、一方的に軌道部材側に損傷が生じ、窒化珪素焼結体からなる玉を採用した比較例A並みにまで寿命が低下したものと考えられる。
【0081】
さらに、表2を参照して、z値が0.5以上3.0以下となっている場合であっても、相対する軌道輪の硬度(表面硬度)がHV680未満である場合、軌道輪の硬度がHV680以上の場合に比べて寿命が低下する傾向にある。これは、軌道輪の硬度が低い場合、βサイアロン焼結体からなる玉と、当該玉に相対する軌道部材との衝突によって、軌道部材側に損傷が生じ易くなるためであると考えられる。
【0082】
以上のように、z値が3.0を超えるとβサイアロン焼結体からなる軸受部品自身が破損し易くなる一方、z値が0.5未満では、相手部材との間の接触面圧が増加し、相手部材に損傷が発生しやすくなる。そして、z値を0.5以上3.0以下とすることにより、転動体を構成する素材の強度と、軌道部材との間の接触面圧の低減とのバランスが確保される。その結果、軸受に対して衝撃が作用する環境下において、βサイアロン焼結体からなる転動体を含む転がり軸受の寿命が向上することが確認された。特に、軌道部材が鋼からなる場合、軌道部材の物性と転動体の物性とがほどよく調和して、衝撃、振動等による損傷の発生を抑制することができる。このように、転動体を構成するβサイアロンのz値を0.5以上3.0以下とすることにより、振動や衝撃が作用した場合における転がり軸受の耐久性を向上させることができることが確認された。
【0083】
また、軌道部材が鋼からなる場合、当該軌道部材の損傷を抑制するため、軌道部材の表面硬度はHV680以上とすることが好ましいことが確認された。
【実施例3】
【0084】
以下、本発明の実施例3について説明する。本発明の油圧ポンプ・モータ用揺動支持軸受を構成するβサイアロンからなる転動体の緻密層および高緻密層の形成状態を調査する試験を行なった。試験の手順は以下のとおりである。
【0085】
はじめに、燃焼合成法で作製した組成がSiAlONであるβサイアロンの粉末(株式会社イスマンジェイ製、商品名メラミックス)を準備し、上記実施の形態において図5に基づいて説明した転動体の製造方法と同様の方法で、一辺が約10mmの立方体試験片を作製した。具体的な製造方法は次のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で所定の形状に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない、成形体を得た。引き続き当該成形体を圧力0.4MPaの窒素雰囲気中で1650℃に加熱して焼結することで(常圧焼結)、上記立方体試験片を製造した。
【0086】
その後、当該試験片を切断し、切断された面をダイヤモンドラップ盤でラッピングした後、酸化クロムラップ盤による鏡面ラッピングを実施することにより、立方体の中心を含む観察用の断面を形成した。そして、当該断面を光学顕微鏡(株式会社ニコン製、マイクロフォト−FXA)の斜光で観察し、倍率50倍のインスタント写真(フジフイルム株式会社製 FP−100B)を撮影した。その後、得られた写真の画像を、スキャナーを用いて(解像度300DPI)パーソナルコンピューターに取り込んだ。そして、画像処理ソフト(三谷商事株式会社製 WinROOF)を用いて輝度閾値による2値化処理を行なって(本実施例での2値化分離閾値:140)、白色領域の面積率を測定した。
【0087】
次に、試験結果について説明する。図6は、試験片の上記観察用の断面を光学顕微鏡の斜光で撮影した写真である。また、図7は、図6の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理した状態を示す一例である。また、図8は、図6の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理して白色領域の面積率を測定する際に、画像処理を行なう領域(評価領域)を示す図である。図6において、写真上側が試験片の表面側であり、上端が表面である。
【0088】
図6および図7を参照して、上記実施の形態と同様の製造方法により作製された本実施例における試験片は、表面を含む領域に内部よりも白色領域の少ない層が形成されていることがわかる。そして、図8に示すように、撮影された写真の画像を試験片の最表面からの距離に応じて3つの領域(最表面からの距離が150μm以内の領域、150μmを超え500μm以内の領域、500μmを超え800μm以内の領域)に分け、領域毎に画像解析を行なって白色領域の面積率を算出したところ、表3に示す結果が得られた。表3においては、図8に示した各領域を1視野として、無作為に撮影された5枚の写真から得られる5視野における白色領域の面積率の、平均値と最大値とが示されている。
【0089】
【表3】

【0090】
表3を参照して、本実施例における白色領域の面積率は、内部において18.5%であったのに対し、表面からの深さが500μm以下である領域においては3.7%、表面からの深さが150μm以下の領域においては1.2%となっていた。このことから、上記実施の形態と同様の上記製造方法により作製された本実施例における試験片においては、表面を含む領域に内部よりも白色領域の少ない緻密層および高緻密層が形成されていることが確認された。
【実施例4】
【0091】
以下、本発明の実施例4について説明する。本発明の油圧ポンプ・モータ用揺動支持軸受を構成するβサイアロン焼結体からなる転動体の転動疲労寿命を確認する試験を行なった。試験の手順は以下のとおりである。
【0092】
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法で作製した組成がSiAlONであるβサイアロンの粉末(株式会社イスマンジェイ製、商品名メラミックス)を準備し、上記実施の形態において図5に基づいて説明した転動体の製造方法と同様の方法で直径9.525mmの3/8インチセラミック球を作製した。具体的な製造方法は次のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で球体に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない球状の成形体を得た。
【0093】
次に、当該成形体に対して焼結後の加工代が所定の寸法となるようにグリーン体加工を行ない、引き続き当該成形体を圧力0.4MPaの窒素雰囲気中で1650℃に加熱して焼結することで、焼結球体を製造した。次に、当該焼結球体にラッピング加工を行ない、3/8インチセラミック球(転動体;JIS等級 G5)とした。そして、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した。ここで、上記焼結球体に対するラッピング加工により除去される焼結球体の厚み(加工代)を8段階に変化させ、8種類の軸受を作製した(実施例A〜H)。一方、比較のため、窒化珪素および焼結助剤からなる原料粉末を用いて加圧焼結法により焼結した焼結球体(日本特殊陶業株式会社製 EC141)に対して、上述と同様にラッピング加工を行ない、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(比較例A)。ラッピング加工による加工代は0.25mmとした。
【0094】
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:3.2GPa、軸受回転数:2000rpm、潤滑:タービン油VG68(清浄油)の循環給油、試験温度:室温、の条件の下で運転する疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、転動体に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。なお、試験数は実施例、比較例ともに15個ずつとし、そのL10寿命を算出した上で、比較例Aに対する寿命比で耐久性を評価した。
【0095】
【表4】

【0096】
表4に本実施例の試験結果を示す。表4を参照して、実施例の軸受の寿命は、その製造コスト等を考慮するといずれも良好であるといえる。そして、加工代を0.5mm以下とすることにより転動体の表面に緻密層を残存させた実施例D〜Gの軸受の寿命は、比較例Aの寿命の1.5〜2倍程度となっていた。さらに、加工代を0.15mm以下とすることにより転動体の表面に高緻密層を残存させた実施例A〜Cの軸受の寿命は、比較例Aの寿命の3倍程度となっていた。このことから、本発明の油圧ポンプ・モータ用揺動支持軸受は、耐久性において優れていることが確認された。そして、本発明の油圧ポンプ・モータ用揺動支持軸受は、βサイアロン焼結体からなる転動体の加工代を0.5mm以下として、表面に緻密層を残存させることにより寿命が向上し、加工代を0.15mm以下として、表面に高緻密層を残存させることにより寿命がさらに向上することが分かった。
【0097】
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
【産業上の利用可能性】
【0098】
本発明の油圧ポンプ・モータ用揺動支持軸受は、長寿命化が求められる油圧ポンプ・モータ用揺動支持軸受に、特に有利に適用され得る。
【図面の簡単な説明】
【0099】
【図1】本発明の一実施の形態における油圧ポンプ・モータ用揺動支持軸受としての揺動軸受を備えた油圧ポンプ・モータの構成を示す概略断面図である。
【図2】図1に示した油圧ポンプ・モータに用いられる揺動軸受を示す模式図である。
【図3】図2に示した揺動軸受の要部を拡大して示した概略部分断面図である。
【図4】本発明の一実施の形態における油圧ポンプ・モータ用揺動支持軸受の製造方法の概略を示す図である。
【図5】本発明の一実施の形態におけるβサイアロン焼結体からなる転動体の製造方法の概略を示す図である。
【図6】試験片の観察用の断面を光学顕微鏡の斜光で撮影した写真である。
【図7】図6の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理した状態を示す一例である。
【図8】画像処理を行なう領域(評価領域)を示す図である。
【符号の説明】
【0100】
1 揺動軸受、2 ピストン、3 クレイドル、4 クレイドルガイド、5,6 ハウジング、7 回転軸、8 シリンダブロック、8a ピストン収容室、9 弁板、9a 吸入ポート、9b 吐出ポート、10 押圧バネ、11 リテーナ、12 シュー、13 押圧バネ、14 油圧制御装置、15 シリンダ、22 軌道輪、22A 軌道輪転走面、23 ころ、23A ころ転走面、23B ころ緻密層、23C 内部、23D ころ高緻密層、24 保持器、25 ストッパ。

【特許請求の範囲】
【請求項1】
斜板式油圧ポンプ・モータの斜板を、前記斜板に対向するように配置される部材に対して揺動可能に支持する油圧ポンプ・モータ用揺動支持軸受であって、
軌道部材と、
前記軌道部材に接触し、円弧状の軌道上に配置される転動体とを備え、
前記転動体は、窒化珪素からなる場合に比べて前記軌道部材に対する衝撃を抑制することが可能なセラミックスからなっている、油圧ポンプ・モータ用揺動支持軸受。
【請求項2】
前記転動体は、βサイアロンを主成分とし、残部不純物からなる焼結体から構成される、請求項1に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項3】
前記転動体は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成される、請求項1に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項4】
前記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たす、請求項2または3に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項5】
前記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.5≦z≦3.0を満たす、請求項2または3に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項6】
前記転動体のヤング率は180GPa以上270GPa以下である、請求項2〜5のいずれか1項に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項7】
前記転動体のヤング率は220GPa以上260GPa以下である、請求項2〜5のいずれか1項に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項8】
前記軌道部材は鋼からなり、
前記軌道部材の表面硬度はHV680以上となっている、請求項2〜7のいずれか1項に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項9】
前記転動体は、前記軌道部材と接触する面である転走面を含む領域に、内部よりも緻密性の高い層である緻密層を有している、請求項2〜8のいずれか1項に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項10】
前記緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である、請求項9に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項11】
前記緻密層の表面を含む領域には、前記緻密層内の他の領域よりもさらに緻密性の高い層である高緻密層が形成されている、請求項9または10に記載の油圧ポンプ・モータ用揺動支持軸受。
【請求項12】
前記高緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下である、請求項11に記載の油圧ポンプ・モータ用揺動支持軸受。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−1990(P2010−1990A)
【公開日】平成22年1月7日(2010.1.7)
【国際特許分類】
【出願番号】特願2008−161889(P2008−161889)
【出願日】平成20年6月20日(2008.6.20)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】