説明

流体判別装置

【課題】流体の種類の変化を適切に検出できる流体判別装置を提供する。
【解決手段】マイクロ流路において、複数種類の流体を制御された流速で通過させ、マイクロ流路に介挿された各流体を加熱する抵抗40によって検出された温度変化に基づき、マイクロ流路において流れる流体の種類を判別する。例えば、流れて来る流体が、比較的熱伝導率が小さい流体から比較的熱伝導率が大きい流体に変化すると、抵抗値が大きく発熱量が小さい抵抗50は、温度変化しないが、抵抗値が小さく発熱量が大きい抵抗40は、より多くの熱を奪われるので温度が低下する。従って、抵抗40の抵抗値が下がるので、ブリッジ回路のバランスが崩れることになる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体の種類を判別する技術に関する。
【背景技術】
【0002】
近年、マイクロマシン技術および超微細加工技術を駆使することにより、従来の試料調整、化学分析、または化学合成などを行うための装置または手段(例えばポンプ、バルブ、流路、およびセンサなど)を微細化して1チップ上に集積化したシステムが開発されている。
【0003】
これは、μ−TAS(MICRO Total Analysis System:マイクロ総合分析システム)、バイオリアクタ、ラボ・オン・チップ(Lab−on−chips)、またはバイオチップとも呼ばれ、医療検査・診断分野、環境測定分野、または農産製造分野でその応用が期待されている。現実には遺伝子検査に見られるように、煩雑な工程、熟練した手技、または機器類の操作が必要とされる場合には、自動化、高速化および簡便化されたマイクロ総合分析システムは、コスト、必要試料量、および所要時間のみならず、時間および場所を選ばない分析を可能とすることによる恩恵は多大といえる。以下では、チップ上に遺伝子検査システムを構築する場合を例に採り説明する。
【0004】
遺伝子検査を行うには、血液中の細胞からDNAを抽出する、前処理と呼ばれる工程が必要となる。まず、血液を細胞破砕液と混合することにより、血液中の細胞を破壊する。次に、この混合液を、ガラスビーズを詰めたマイクロ流路に流すことにより、ガラスビーズにDNAを吸着させる。次に、洗浄液を、上記マイクロ流路に流すことにより、ガラスビーズを洗浄し混合液を選択的に除去する。次に、水を、上記マイクロ流路に流すことにより、ガラスビーズからDNAを水に溶解させる。この水からDNAを抽出することにより、DNAを、血液と細胞破砕液との混合液から選択的に抽出することができる。
【0005】
すなわち、前処理をチップ上で行うためには、チップ上に、ガラスビーズを詰めた流路を設け、この流路に、混合液、洗浄液、および水をこの順に流し、(DNAが溶出した)水を選択的に取り出す必要がある。
【0006】
水を選択的に取り出すには、流体をCCDで撮影することにより、流体同士の境界を検知するか、あるいは、各液体を、十分な間隔をおいて流す手法がある。しかし、このような手法では、装置が大がかりになったり、多大な時間がかかってしまうという問題点があった。
【0007】
このような問題点を解決するために、特許文献1においては、ヒーターに対して流体の流れる方向と略直交方向(2箇所)にサーモパイル(温度センサ)を配置し、この温度センサの温度変化を検出することで流体の種類が変化したことを検知する流体判別装置が開示されている。
【0008】
【特許文献1】特開2001−12988号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
特許文献1に開示された流体判別装置は、ヒーターと温度センサとが離れて配置されているので、流体の種類の変化の検出にタイムラグが生じたり、流体同士の境界の状態や部品の精度により流体の種類の変化の検出精度が低下したりする。すなわち、流体の種類の変化を適切に検出できないという問題点があった。
【0010】
本発明は、以上の問題点を解決するためになされたものであり、流体の種類の変化を適切に検出できる流体判別装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記の課題を解決するために、請求項1に記載の発明に係る流体判別装置は、複数種類の流体を順次に流す一の流路と、前記一の流路において、複数種類の流体を制御された流速で通過させる流体駆動手段と、前記一の流路に介挿され、各前記流体を加熱しつつ温度変化を検出する一の加熱検出手段を含み、該加熱検出手段によって検出された前記温度変化に基づき、前記一の流路において流れる流体の種類を判別する判別手段と、を備える。
【0012】
また、請求項2に記載の発明に係る流体判別装置は、請求項1に記載の流体判別装置であって、前記加熱検出手段が、第一の抵抗体からなり、前記判別手段が、前記第一の抵抗体より大きい抵抗値を有し且つ前記第一の抵抗体に並列に接続された第二の抵抗体をさらに含み、前記第一の抵抗体における発熱量と前記第二の抵抗体における発熱量との差に基づき、前記一の流路において流れる前記流体の種類を判別する。
【0013】
また、請求項3に記載の発明に係る流体判別装置は、請求項1又は請求項2に記載の流体判別装置であって、前記複数種類の流体が、血液、前記血液内の細胞を破砕する細胞破砕液、前記血液と前記細胞破砕液との混合液を洗浄する洗浄液、および水を含み、前記一の流路が、前記血液内の細胞が前記細胞破砕液によって破砕されて得られるDNAを吸着するガラスビーズが詰められたマイクロ流路を含む。
【0014】
また、請求項4に記載の発明に係る流体判別装置は、請求項1乃至請求項3の何れかに記載の流体判別装置であって、前記判別手段による判別結果に応じて、前記複数種類の流体のうちの所定種類の流体と、前記所定種類の流体と種類が異なる流体とを異なる経路に分別して流出させる分別手段、を更に備える。
【発明の効果】
【0015】
本発明に係る流体判別装置は、一の加熱検出手段を用いて、各流体を加熱しつつ温度変化を検出するので、加熱手段と検出手段とが離れて配置される場合に比べて、流体の種類の変化の検出にタイムラグが生じたり、流体同士の境界の状態や部品の精度により流体の種類の変化の検出精度が低下したりすることを防ぐことができるので、流体の種類の変化を適切に検出できる。
【発明を実施するための最良の形態】
【0016】
<実施の形態1>
図1は、実施の形態1に係る流体判別装置を備える遺伝子検査システムにおいて血液中の細胞からDNAを抽出する前処理工程を示す模式図である。
【0017】
図1に示されるように水、細胞破砕液、血液、および洗浄液は、それぞれ、流体駆動手段(例えばポンプ)21により流速を制御されつつ流されており、マイクロ流路からなる細胞溶解エリア10に流し込まれ混合される。細胞溶解エリア10には、その終端部に、20〜50μm径のガラスビーズが詰め込まれている。
【0018】
図1において、まず、血液を細胞破砕液と混合することにより、血液中の細胞を破壊する。次に、この混合液を、細胞溶解エリア10に流すことにより、ガラスビーズにDNAを吸着(トラップ)させる。次に、洗浄液を、細胞溶解エリア10に流すことにより、ガラスビーズを洗浄し混合液を選択的に除去する。次に、水を、細胞溶解エリア10に流すことにより、ガラスビーズからDNAを水に溶解させる。この水からDNAを抽出することにより、DNAを、血液と細胞破砕液との混合液から選択的に抽出することができる。
【0019】
具体的には、複数種類の流体同士の境界(界面)を検出可能なセンサ20をマイクロ流路に介挿して、細胞溶解エリア10から順次流れてくる混合液、洗浄液、および水について、これらの境界を判別する。そして、センサ20での判別結果に同期してスイッチ22が流路を切り替えることにより、混合液および洗浄液を、不要な液体を流す流路へ流出させ、水を、必要な液体を流す流路へ選択的に流出させて、混合液および洗浄液と、水とが分別される。
【0020】
図2は、図1のセンサ20の動作原理を示す模式図である。センサ20は、特許文献1に係る流体判別装置とは異なり、流体を加熱する加熱手段(ヒーター)と、加熱による温度の上昇を検出する検出手段とが、同一の抵抗体40により実現されていることを特徴とする。なお、図2は模式図であるので、発明の理解に最低限必要な部材以外は、省略している。
【0021】
図2のセンサ20において、加熱手段と検出手段とを兼ねてなる抵抗体40の一方端子と、温度補償用の抵抗体50の一方端子とは、接点N1において電気的に接続されている。
【0022】
抵抗体40の他方端子は、接点N2において、半固定抵抗体41の一方端子へ電気的に接続されている。半固定抵抗体41の他方端子は、接点N4において、固定抵抗体42の一方端子へ電気的に接続されている。固定抵抗体42の他方端子は、接点N6において、接地されている。
【0023】
抵抗体50の他方端子は、接点N3において、半固定抵抗体51の一方端子へ電気的に接続されている。半固定抵抗体51の他方端子は、接点N5において、固定抵抗体52の一方端子へ電気的に接続されている。固定抵抗体52の他方端子は、接点N6において、接地されている。
【0024】
抵抗体40の他方端子は、接点N2において、オペアンプopの負入力端子へ接続されている。抵抗体50の他方端子は、接点N3において、オペアンプopの正入力端子へ接続されている。オペアンプopの出力端子は、増幅手段ampを介して、接点N1において、抵抗体40の一方端子および抵抗体50の一方端子へ電気的に接続されている。これにより、ブリッジ回路が構成される。また、オペアンプopから出力される電圧VOは、抵抗体40,50へフィードバックされるのみならず、センサ20内部の流体判別回路60により流体の種類の判別に用いられる。流体判別回路60は、入力された電圧VOに基づき、流体の境界を判別し、制御信号によりスイッチ22を切り替える。
【0025】
抵抗体40、半固定抵抗体41、および固定抵抗体42は、いずれも、数100Ωオーダーの抵抗値を有し、低抵抗系を構成する。また、抵抗体50、半固定抵抗体51、および固定抵抗体52は、いずれも、数kΩオーダーの抵抗値を有し、高抵抗系を構成する。
【0026】
図2の回路においては、抵抗体40,50のみが、流体と熱的に接触する(流体と熱をやりとりする)。抵抗体は、自身の温度より低い温度を有する流体と熱的に接触すると、該流体に固有の物性値(熱伝導率等)および該流体の流速に応じて熱量を奪われ、温度が低下することになる。但し、抵抗体50は、抵抗体40に比べて、極めて高い抵抗値を有するので、電流があまり流れておらず、従って発熱量が小さい。以下では、抵抗体40,50が、比較的熱伝導率が小さい流体Aと熱的に接触し平衡状態にあった場合において、流れて来る流体が、比較的熱伝導率が大きい流体Bに変化したときを例にとり説明する。なお、流体A,Bは、同一の温度を有するものとする。
【0027】
流体Aと熱的に接触し平衡状態にあった場合においては、発熱量が小さい抵抗50は、流体Aと同じ温度を保っており、発熱量が大きい抵抗40は、流体Aより高い温度を保ちつつ流体Aを加熱している。すなわち、抵抗40,50は、一定の温度差で平衡状態を保っており、オペアンプopの負入力端子へ入力される電位とオペアンプopの正入力端子へ入力される電位とで電位差は0である。
【0028】
次に、流れて来る流体が、比較的熱伝導率が大きい流体Bに変化すると、抵抗50は、温度変化しないが、発熱量が大きい抵抗40は、より多くの熱を奪われるので温度が低下する。従って、抵抗40の抵抗値が下がるので、ブリッジ回路のバランスが崩れることになる。具体的には、抵抗体40、半固定抵抗体41、および固定抵抗体42からなる低抵抗系の分圧において、抵抗体40の分圧比が低くなるので、オペアンプopの負入力端子へ入力される電位が高くなる。一方、抵抗50の抵抗値は変化しないので、オペアンプopの正入力端子へ入力される電位は変化しない。
【0029】
これにより、オペアンプopから出力される電圧VOは高くなるので、増幅手段ampからフィードバックされる電圧も高くなる。従って、オペアンプopの正入力端子へ入力される電位も高くなり、オペアンプopの負入力端子へ入力される電位とオペアンプopの正入力端子へ入力される電位とで電位差が小さくなる。すなわち、このようなフィードバック動作を繰り返すことにより、ブリッジ回路のバランスが回復する(言い換えれば、オペアンプopの負入力端子へ入力される電位とオペアンプopの正入力端子へ入力される電位とで電位差が0まで小さくなることにより、平衡状態に戻る)。
【0030】
但し、上述したように、流体Bに係る平衡状態では、流体Aに係る平衡状態と比べて、抵抗体40、半固定抵抗体41、および固定抵抗体42からなる低抵抗系の分圧において、抵抗体40の分圧比が低くなっているので、電圧VOがより高い状態で安定することになる。すなわち、電圧VOの変化を検出することにより、流体Aから流体Bへの変化を検出することができる。
【0031】
図3は、図1のセンサ20の構成を模式的に示す斜視図である。図3に示されるように、センサ20は、溝状のマイクロ流路33が設けられた基板31と、抵抗体40,50と、シート状部材32とを含んで構成されている。基板31は樹脂からなり、マイクロ流路33は、数百μm〜数mmの幅および数百μmの深さを有する。
【0032】
シート状部材32は例えば樹脂からなり、抵抗体40,50はシート状部材32上に形成されている。抵抗体40,50は白金またはサーミスタなどで形成されている。
【0033】
図4は、図3の周辺図であり、図5は、図3の断面図である。図4〜5に示されるように、マイクロ流路33には、流体駆動手段21により、流体A,Bが、所定の流速で制御されつつ流されており、マイクロ流路33に流し込まれ混合されている。
【0034】
図5において、抵抗体40直下を流れる流体Aが流体Bに変わった場合には、流体Aと流体Bとで流速(および温度)は一定であるので、流体Aと流体Bとの物性値(熱伝導率)の差のみに応じて、抵抗体40の温度が変化するので、オペアンプopから出力される電圧VOが変化する。従って、図6に示されるように、オペアンプopから出力される電圧VOの変化を流体判別回路60で検出することにより、流体の物性値の変化時点すなわち流体同士の境界を検出することが可能となる。
【0035】
このように、本実施の形態に係る流体判別装置は、一の加熱検出手段としての抵抗体40を用いて、各流体を加熱しつつ温度変化を検出する。従って、加熱手段としてのヒーターと検出手段としての温度センサとが離れて配置される特許文献1等に比べて、流体の種類の変化の検出にタイムラグが生じたり、流体同士の境界の状態や部品の精度により流体の種類の変化の検出精度が低下したりすることを防ぐことができるので、流体の種類の変化を適切に検出できる。
【0036】
なお、上述においては、図6を用いて、各流体において電圧VOが一定すなわち流速が一定である場合について説明した。しかし、これに限らず、各流体においては、物性値の変化に比較してごく小さい範囲内であれば、流速が変化してもよい。すなわち、図7〜8に示されるように、流速が変化しても、物性値の変化に比較してごく小さい範囲内であれば、電圧VOの変化を検出する閾値を適切に設定することにより、流体同士の境界を適切に判別することが可能となる。
【図面の簡単な説明】
【0037】
【図1】実施の形態1に係る流体判別装置を備える遺伝子検査システムにおいて血液中の細胞からDNAを抽出する前処理工程を示す模式図である。
【図2】実施の形態1に係る流体判別装置のセンサの動作原理を示す模式図である。
【図3】実施の形態1に係る流体判別装置のセンサの構成を模式的に示す斜視図である。
【図4】実施の形態1に係る流体判別装置のセンサの構成を模式的に示す斜視図である。
【図5】実施の形態1に係る流体判別装置のセンサの構成を模式的に示す断面図である。
【図6】実施の形態1に係る流体判別装置における電圧の変化を示すグラフである。
【図7】実施の形態1に係る流体判別装置における電圧の変化を示すグラフである。
【図8】実施の形態1に係る流体判別装置における電圧の変化を示すグラフである。
【符号の説明】
【0038】
10 細胞溶解エリア
20 センサ
21 流体駆動手段
22 スイッチ
31 基板
32 シート状部材
33 マイクロ流路
40 抵抗体
41 半固定抵抗体
42 固定抵抗体
50 抵抗体
51 半固定抵抗体
52 固定抵抗体
60 流体判別回路
A,B,C 流体
N1〜N6 接点
VO 電圧
amp 増幅手段
op オペアンプ

【特許請求の範囲】
【請求項1】
複数種類の流体を順次に流す一の流路と、
前記一の流路において、複数種類の流体を制御された流速で通過させる流体駆動手段と、
前記一の流路に介挿され、各前記流体を加熱しつつ温度変化を検出する一の加熱検出手段を含み、該加熱検出手段によって検出された前記温度変化に基づき、前記一の流路において流れる流体の種類を判別する判別手段と、
を備える流体判別装置。
【請求項2】
請求項1に記載の流体判別装置であって、
前記加熱検出手段が、第一の抵抗体からなり、
前記判別手段が、前記第一の抵抗体より大きい抵抗値を有し且つ前記第一の抵抗体に並列に接続された第二の抵抗体をさらに含み、前記第一の抵抗体における発熱量と前記第二の抵抗体における発熱量との差に基づき、前記一の流路において流れる前記流体の種類を判別する流体判別装置。
【請求項3】
請求項1又は請求項2に記載の流体判別装置であって、
前記複数種類の流体が、血液、前記血液内の細胞を破砕する細胞破砕液、前記血液と前記細胞破砕液との混合液を洗浄する洗浄液、および水を含み、
前記一の流路が、前記血液内の細胞が前記細胞破砕液によって破砕されて得られるDNAを吸着するガラスビーズが詰められたマイクロ流路を含む流体判別装置。
【請求項4】
請求項1乃至請求項3の何れかに記載の流体判別装置であって、
前記判別手段による判別結果に応じて、前記複数種類の流体のうちの所定種類の流体と、前記所定種類の流体と種類が異なる流体とを異なる経路に分別して流出させる分別手段、
を更に備える流体判別装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−288009(P2009−288009A)
【公開日】平成21年12月10日(2009.12.10)
【国際特許分類】
【出願番号】特願2008−139622(P2008−139622)
【出願日】平成20年5月28日(2008.5.28)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】