説明

焼き入れ深さ測定装置および焼き入れ深さ測定方法

【課題】測定対象物の温度が変動しても精度良く測定対象物の焼き入れ深さを測定することが可能な焼き入れ深さ測定装置および焼き入れ深さ測定方法を提供する。
【解決手段】複数の異なる周波数の交流励磁信号が印加されることにより測定対象物2に複数の異なる周波数に対応する浸透深さを有する誘導電流(渦電流)を発生させる励磁コイル11と、測定対象物2に発生する誘導電流に起因する検出信号を検出する検出コイル21と、複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差φを算出し、浸透深さに対応する測定対象物2の表面からの深さと位相差φとの関係を求め、位相差φの上端値φと下端値φとの差分値Δφ(=φ−φ)に基づいて測定対象物2の焼き入れ深さを算出する制御装置30と、を焼き入れ深さ測定装置1に具備した。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、焼き入れ処理を施すことにより鉄鋼材料からなる部品等の表面に形成される焼き入れ層の深さ(焼き入れ深さ)を測定する技術に関する。
【背景技術】
【0002】
従来、焼き入れ処理により鉄鋼材料からなる部品等の表面に形成される焼き入れ層の深さ(焼き入れ深さ)を測定する方法として、同一バッチで焼き入れ処理が施された部品等の一部を切断し、その切断面の組織観察を行う、あるいは当該切断面におけるビッカース硬度の深さ方向の分布を測定する方法が知られている。
しかし、この方法は、(1)製品となり得る部品等の一部を切断する工程を含むことから測定対象物は測定後に廃棄せざるを得ず、製品歩留まりの低下の要因となること、(2)切断、切断面の処理(研磨、エッチング等)、電子顕微鏡等による切断面の観察あるいはビッカース硬度計による硬度測定、といった一連の工程を経て行われることから測定に要する時間が長いこと、(3)上記理由から全数検査に適用することが不可能であること、(4)そもそも抜き取り検査による全数の品質保証には限界があり、測定対象物の測定結果次第では同一バッチで焼き入れ処理が施された部品等を全て不良品扱いしなければならず、これも製品歩留まりの低下の要因となること、といった種々の問題がある。
【0003】
このような問題を解消する方法として、非接触で行う焼き入れ深さの測定が検討されている。例えば特許文献1乃至特許文献5に記載の如くである。
【0004】
特許文献1および特許文献2に記載の方法は、測定対象物の表面に超音波を照射し、測定対象物の表面における反射波の伝播時間と焼き入れ層と母層との境界における反射波の伝播時間との差に基づいて焼き入れ層の深さを測定するものである。
【0005】
特許文献3に記載の方法は、測定対象物に磁歪みによる軸対称剪断波を発生し、測定対象物の共鳴周波数に基づいて焼き入れ層の深さを測定するものである。
【0006】
特許文献4に記載の方法は、測定対象物に挿通された励磁コイルにより交流磁場を発生させ、当該交流磁場により測定対象物の表面に渦電流を発生させ、当該渦電流により発生する誘導磁場の大きさを測定対象物に挿通された検出コイルにより出力電圧の形で検出し、同種の材料からなる既知の測定対象物の焼き入れ深さと出力電圧との関係と当該検出コイルの出力電圧とを比較することにより焼き入れ層の深さを測定するものである。
【0007】
特許文献5に記載の方法は、測定対象物に挿通された励磁コイルに複数の異なる周波数の交流電圧(交流励磁信号)を印加し、励磁コイルにより測定対象物の表面に渦電流を発生させ、当該渦電流に起因する誘導磁場の大きさを測定対象物に挿通された検出コイルの出力電圧(検出信号)として検出し、交流励磁信号と検出信号の振幅比に基づいて測定対象物の硬度の深さ方向の分布を測定するとともに、交流励磁信号に対する検出信号の位相差に基づいて測定対象物の焼き入れ深さを測定するものである。
特許文献5に記載の方法は、非接触で測定対象物の硬度の深さ方向の分布および焼き入れ深さの両方を同時に測定することが可能であり、全数検査への適用が可能である。
【0008】
しかし、特許文献5に記載の方法は、測定対象物のロット変動や測定環境の変動等により測定対象物の測定時の温度が変動すると焼き入れ深さの測定結果が変動してしまい、焼き入れ深さを精度良く測定することが困難であるという問題がある。
これは、測定対象物の温度が変動すると測定対象物の透磁率や導電率が変化し、ひいては検出コイルの出力電圧(検出信号)の振幅(の絶対値)が変動することによる。
【特許文献1】特開平7−229705号公報
【特許文献2】特開平8−220077号公報
【特許文献3】特開2001−208526号公報
【特許文献4】特開2002−14081号公報
【特許文献5】特開2004−108873号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は以上の如き状況に鑑み、測定対象物の温度が変動しても精度良く測定対象物の焼き入れ深さを測定することが可能な焼き入れ深さ測定装置および焼き入れ深さ測定方法を提供するものである。
【課題を解決するための手段】
【0010】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
【0011】
即ち、請求項1においては、
複数の異なる周波数の交流励磁信号が印加されることにより測定対象物に前記複数の異なる周波数に対応する浸透深さを有する誘導電流を発生させる励磁コイルと、
前記測定対象物に発生する誘導電流に起因する検出信号を検出する検出コイルと、
前記複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差を算出し、前記浸透深さに対応する前記測定対象物の表面からの深さと前記位相差との関係を求め、前記位相差の上端値と下端値との差分値に基づいて前記測定対象物の焼き入れ深さを算出する制御装置と、
を具備するものである。
【0012】
請求項2においては、
前記制御装置は、
前記複数の異なる周波数の交流励磁信号に対応する検出信号の振幅値を算出し、前記浸透深さに対応する前記測定対象物の表面からの深さと前記振幅値との関係を求め、前記振幅値の上端値と下端値との差分値に基づいて前記測定対象物の表面硬さを算出するものである。
【0013】
請求項3においては、
励磁コイルに複数の異なる周波数の交流励磁信号を印加して測定対象物に前記複数の異なる周波数に対応する浸透深さを有する誘導電流を発生させるとともに、前記測定対象物に発生する誘導電流に起因する検出信号を検出コイルにより検出する励磁・検出工程と、
前記複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差を算出し、前記浸透深さに対応する前記測定対象物の表面からの深さと前記位相差との関係を求め、前記位相差の上端値と下端値との差分値に基づいて前記測定対象物の焼き入れ深さを算出する焼き入れ深さ算出工程と、
を具備するものである。
【0014】
請求項4においては、
前記複数の異なる周波数の交流励磁信号に対応する検出信号の振幅値を算出し、前記浸透深さに対応する前記測定対象物の表面からの深さと前記振幅値との関係を求め、前記振幅値の上端値と下端値との差分値に基づいて前記測定対象物の表面硬さを算出する表面硬さ算出工程を具備するものである。
【発明の効果】
【0015】
本発明の効果は、測定対象物の温度が変動しても精度良く測定対象物の焼き入れ深さを測定することが可能であることである。
【発明を実施するための最良の形態】
【0016】
以下では、図1を用いて本発明に係る焼き入れ深さ測定装置の実施の一形態である焼き入れ深さ測定装置1の装置構成について説明する。
【0017】
焼き入れ深さ測定装置1は測定対象物2の焼き入れ深さを測定するものであり、主として励磁部10、検出部20、制御装置30等を具備する。
ここで、本実施例における「焼き入れ深さ」は、日本工業規格の「鋼の炎焼入及び高周波焼入硬化層深さ測定方法(JIS G 0559)」に示される「有効硬化層深さ」(炭素濃度が0.45wt%の鋼の場合、ビッカース硬度が450Hvとなる深さ)に相当するが、本発明に係る焼き入れ深さはこれに限定されず、同じく日本工業規格の「鋼の炎焼入及び高周波焼入硬化層深さ測定方法(JIS G 0559)」に示される「全硬化層深さ(硬化層の表面から生地(母層)との物理的性質(硬さ)または化学的性質(マクロ組織)の差異が区別できなくなる位置までの深さ)」としても良く、他の方法で定めたものとしても良い。
【0018】
測定対象物2は鉄鋼材料等の金属材料からなり、予め焼き入れ処理が施された部品等である。
本実施例の測定対象物2は自動車の駆動力伝達機構に用いられるドライブシャフトであり、機械構造用炭素鋼であるS45C(炭素濃度:約0.45wt%)に焼き入れを施したものであるが、本発明に係る測定対象物の形状(部品の種類等)および材質はこれに限定されず、焼き入れ処理を施し得る金属材料(主として鉄鋼材料)からなる部品等を広く含む。
なお、後述する焼き入れ深さ測定装置1を用いた測定対象物2の焼き入れ深さの測定方法の実施例は本発明に係る焼き入れ深さ測定方法の実施の一形態に相当する。
【0019】
励磁部10は、測定対象物2に交流磁場を作用させることにより測定対象物2に(より厳密には、測定対象物2の表面および内部に)誘導電流を発生させるものである。
励磁部10は励磁コイル11、交流電源12等を具備する。
【0020】
励磁コイル11は導電体からなるコイルであり、複数の異なる周波数の交流励磁信号が印加されることにより測定対象物2に誘導電流(渦電流)を発生させるものである。
ここで、「交流励磁信号を印加する」とは、励磁コイルに所定の振幅の交流電圧を印加することを指す。
励磁コイル11の両端はそれぞれ端子11a・11bとなっている。
【0021】
なお、本実施例では図1に示す如く測定対象物2を励磁コイル11に挿通した状態で励磁コイル11に交流励磁信号を印加する構成としたが、本発明に係る焼き入れ深さ測定装置はこれに限定されず、測定対象物から所定の距離だけ離間した位置に励磁コイルを配置した状態で当該励磁コイルに交流励磁信号を印加する構成としても良い。
【0022】
交流電源12は所定の振幅の交流電圧を発生することにより、励磁コイル11に交流励磁信号(交流電圧)を印加するものである。交流電源12は励磁コイル11の端子11a・11bに接続される。また、交流電源12は交流電圧の周波数を25Hzから25kHzの範囲で変更することが可能である。
なお、本実施例の焼き入れ深さ測定装置1の励磁コイルに印加される交流励磁信号の周波数は25Hzから25kHzの範囲であるが、本発明はこれに限定されず、交流励磁信号の周波数を測定対象物の材質、大きさ、形状等に応じて適宜選択することが可能である。
【0023】
検出部20は測定対象物2(より厳密には、測定対象物2の表面および内部)に発生する誘導電流に起因する誘導電圧(検出信号)を検出するものである。
検出部20は主として検出コイル21、電圧計22等を具備する。
【0024】
検出コイル21は測定対象物2に挿通されるコイルであり、測定対象物2(より厳密には、測定対象物2の表面および内部)に発生する誘導電流に起因する検出信号を検出するものである。
検出コイル21の両端はそれぞれ端子21a・21bとなっている。
検出コイル21および励磁コイル11は、両者の中心軸が略一直線となるように配置される。
【0025】
なお、本実施例では図1に示す如く測定対象物2を検出コイル21に挿通した状態で検出信号を検出する構成としたが、本発明に係る焼き入れ深さ測定装置はこれに限定されず、測定対象物から所定の距離だけ離間した位置に検出コイルを配置した状態で検出信号を検出する構成としても良い。
【0026】
電圧計22は端子21a・21bに接続され、検出コイル21により検出される検出信号(誘導電圧)を所定のデジタル信号に変換するものである。
【0027】
制御装置30は、焼き入れ深さ測定装置1の動作を制御するとともに検出部20からの検出信号に基づいて測定対象物2の焼き入れ深さおよび表面硬さを算出する(焼き入れ深さおよび表面硬さの測定結果を取得する)ものである。
制御装置30は主として制御部31、表示部32、入力部33等を具備する。
【0028】
制御部31は焼き入れ深さ測定装置1の動作を制御するためのプログラム、検出部20からの検出信号に基づいて測定対象物2の焼き入れ深さおよび表面硬さを算出するためのプログラム等の種々のプログラムを格納し、適宜これらのプログラムを展開して実行し、測定対象物2の焼き入れ深さおよび表面硬さの測定結果を記憶するものである。
制御部31は交流電源12に接続され、交流電源12に所定の制御信号を送信することにより交流電源12の交流励磁信号の周波数を変更することが可能である。
また、制御部31は電圧計22に接続され、電圧計22により検出信号(誘導電圧)を所定のデジタル信号に変換したものを取得することが可能である。
制御部31による焼き入れ深さ測定装置1の動作制御および検出部20からの検出信号に基づく測定対象物2の焼き入れ深さおよび表面硬さの算出については後で詳述する。
制御部31は専用品でも良いが、市販のパーソナルコンピュータやワークステーション等を用いて達成する事が可能である。
【0029】
表示部32は、焼き入れ深さ測定装置1の動作状況に係る情報、測定対象物2の焼き入れ深さ等の測定結果に係る情報等を表示するものである。
表示部32は専用品でも良いが、市販の液晶ディスプレイ(LCD;Liquid Crystal Display)やCRTディスプレイ(Cathode Ray Tube Display)等を用いて達成することが可能である。
【0030】
入力部33は作業者が焼き入れ深さ測定装置1の測定条件その他の情報を入力するものである。
入力部33は専用品でも良いが、市販のキーボード、マウス、スイッチ等を用いて達成することが可能である。
【0031】
本実施例の表示部32および入力部33は別体であるが、例えば市販のタッチパネル等を用いることによりこれらを一体とすることも可能である。
【0032】
以下では、図2乃至図4を用いて焼き入れ深さ測定装置1の測定原理について説明する。
【0033】
図2は焼き入れ処理が施された測定対象物2の結晶組織(層)、硬さおよび透磁率と測定対象物2の表面からの距離(深さ)との関係を示す模式図である。
【0034】
図2に示す如く、測定対象物2の結晶組織は、表面から順に硬化層101、境界層102、母層103の三つの層で構成される。
【0035】
硬化層101は測定対象物2の表面近傍に形成される層であり、焼き入れ処理時における冷却速度が最も大きい部分である。
硬化層101の主たる結晶組織はマルテンサイト(martensite)である。
【0036】
境界層102は硬化層101よりも表面からの距離が大きく、焼き入れ処理時における冷却速度が硬化層101よりも小さい部分に形成される層である。
本実施例では、測定対象物2を構成する材料であるS45Cは中炭素鋼に分類される(炭素濃度が0.45wt%程度)ものであり、境界層102の主たる結晶組織はトルースタイト(troostite)およびソルバイト(sorbite)からなる微細パーライト(fine pearlite)、熱影響層等である。
なお、境界層を構成する結晶組織は測定対象物を構成する材料の組成により異なるものであり、本実施例に限定されるものではない。
境界層を構成し得る結晶組織の他の例としては、上部ベイナイト(upper bainite)および下部ベイナイト(lower bainite)等が挙げられる。
【0037】
母層103は境界層102よりも表面からの距離が大きく、焼き入れ処理時における冷却速度が境界層102よりも小さい部分に形成される層である。
本実施例では、測定対象物2を構成する材料であるS45Cは中炭素鋼に分類されるものであり、母層103の主たる結晶組織はパーライト(pearlite)およびフェライト(ferrite)の混合組織である。
なお、母層を構成する結晶組織は測定対象物を構成する材料の組成により異なるものであり、本実施例に限定されるものではない。
母層を構成し得る結晶組織の他の例としては、パーライト組織、フェライトとセメンタイトとの混合組織等が挙げられる。
【0038】
図2に示す如く、測定対象物2の硬度(ビッカース硬度)は結晶組織と密接な関係がある。
【0039】
硬化層101を構成するマルテンサイトは一般に結晶粒径が小さく転位密度が大きいことから硬度が高い。ただし、硬化層101の硬度は一般に表面からの距離が変化してもほとんど変化しない。本実施例の硬化層101の硬度はビッカース硬度で600〜700(Hv)程度である。
境界層102を構成する微細パーライトや熱影響層は、硬化層101を構成するマルテンサイトに比べて一般的に結晶粒径が大きく転位密度も小さいので、硬度も相対的に低い。
また、境界層102の硬度は表面からの距離が大きくなる(深くなる)ほど小さくなる。
母層103を構成するパーライトおよびフェライトの混合組織は、境界層102を構成する微細パーライトや熱影響層に比べて一般的に結晶粒径が大きいので、硬度も相対的に低い。ただし、母層103の硬度は一般に表面からの距離が変化してもほとんど変化しない。本実施例の母層103の硬度はビッカース硬度で300(Hv)程度である。
【0040】
図2に示す如く、測定対象物2の透磁率は結晶組織と密接な関係がある。これは、一般に測定対象物2の結晶粒径が小さくなると測定対象物2の透磁率は低くなる傾向があることによるものであり、測定対象物2の透磁率と硬さとは略反比例の関係にある。
【0041】
硬化層101の透磁率は低く、一般に表面からの距離が変化してもほとんど変化しない。
境界層102の透磁率は硬化層101よりも相対的に大きく、表面からの距離が大きくなる(深くなる)ほど大きくなる。
母層103の透磁率は硬化層101および境界層102よりも相対的に大きく、一般に表面からの距離が変化してもほとんど変化しない。
【0042】
図3に示す如く、測定対象物2が励磁コイル11および検出コイル21に挿通された状態で、所定の周波数fnかつ所定の振幅を有する交流励磁信号を励磁コイル11に印加すると、励磁コイル11の周囲に磁界が発生し、測定対象物2の表面および内部に誘導電流(渦電流)が発生する。
そして、当該誘導電流により発生する磁束が検出コイル21を貫通することにより、検出コイル21に検出信号(誘導電圧)が発生する。
また、表皮効果により、励磁コイル11に印加される交流励磁信号の周波数fnが大きくなるほど誘導電流(渦電流)は測定対象物2の表面に集中し、誘導電流(渦電流)の浸透深さδは小さくなる傾向がある(δ=(π×fn×μ×σ)−0.5;μは透磁率、σは導電率)。すなわち、交流励磁信号の周波数fnを変更することにより誘導電流(渦電流)の浸透深さδを変更することが可能であり、誘導電流(渦電流)の浸透深さδは測定対象物の表面からの深さと対応する。
【0043】
図4に示す如く、検出信号は所定の振幅値Yを有するとともに、交流励磁信号に対して所定の位相差φを有する。
測定対象物2の透磁率は、(1)検出信号の振幅値Y、および(2)交流励磁信号に対する検出信号の位相差φと相関関係にある。
従って、交流励磁信号の周波数fnを適宜変更しつつ当該周波数に対応する検出信号を検出し、当該検出信号の振幅値Yや位相差φ(検出信号値X=Ycosφ)を求めることは、測定対象物2において表面からの深さが周波数fnの交流励磁信号の浸透深さに対応する部分の透磁率を求めることに相当する。
特に、検出信号の振幅値Yは測定対象物の表面硬さと強い相関を示し、検出信号の位相差φは測定対象物の焼き入れ深さと強い相関がある。
【0044】
このように、測定対象物2の表面からの距離(深さ)と位相差φとの関係を求めることにより、測定対象物2の表面からの距離(深さ)と焼き入れ深さとの関係を求めることが可能である。
また、測定対象物2の表面からの距離(深さ)と振幅値Yとの関係を求めることにより、測定対象物2の表面からの距離(深さ)と表面硬さとの関係を求めることが可能である。
【0045】
以下では、図1、図2および図5を用いて焼き入れ深さ測定装置1を用いた測定対象物2の焼き入れ深さの測定方法の実施例について説明する。
図5に示す如く、焼き入れ深さ測定装置1を用いた測定対象物2の焼き入れ深さの測定方法の実施例は励磁・検出工程S1100、焼き入れ深さ算出工程S1200、表面硬さ算出工程S1300等を具備する。
【0046】
励磁・検出工程S1100は励磁コイル11に複数の異なる周波数の交流励磁信号を印加して測定対象物2に誘導電流(渦電流)を発生させるとともに、測定対象物2に発生する誘導電流(渦電流)に起因する検出信号を検出コイル21により検出する工程である。
励磁・検出工程S1100において、制御部31は交流電源12により励磁コイル11に印加される交流励磁信号の周波数を高い周波数から順に低い周波数に変更し、各周波数(すなわち、浸透深さ)に対応する検出信号を取得する。
励磁・検出工程S1100が終了したら焼き入れ深さ算出工程S1200に移行する。
【0047】
焼き入れ深さ算出工程S1200は複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差φを算出し、測定対象物2の表面からの深さと位相差φとの関係を求め、位相差φの上端値φと下端値φとの差分値Δφ(=φ−φ)に基づいて測定対象物2の焼き入れ深さを算出する工程である。
本実施例の焼き入れ深さ算出工程S1200は位相差算出工程S1210、上端値・下端値算出工程S1220、差分値比較工程S1230を具備する。
【0048】
位相差算出工程S1210は複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差φを算出し、測定対象物2の表面からの深さと位相差φとの関係を求める工程である。
位相差算出工程S1210において、制御部31は複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差φを算出する。
また、制御部31には予め実験等により求められた交流励磁信号の周波数fnと浸透深さ(測定対象物2の表面からの距離)との関係を示すデータが格納されており、制御部31は算出された位相差φと当該データとに基づいて測定対象物2の表面からの距離と位相差φとの関係を求める(δ−φグラフの作成に相当する)。
位相差算出工程S1210が終了したら上端値・下端値算出工程S1220に移行する。
【0049】
上端値・下端値算出工程S1220は測定対象物2の表面からの距離と位相差φとの関係に基づいて位相差φの上端値φおよび下端値φを算出する工程である。
本実施例の場合、上端値・下端値算出工程S1220において、制御部31は測定対象物2の表面からの距離と位相差φとの関係に基づいて位相差φの上端値φおよび下端値φを算出する。
ここで、「位相差の上端値」は測定対象物の母層に対応する部分の位相差の値を指し、「位相差の下端値」は測定対象物の硬化層に対応する部分の位相差の値を指す。
なお、位相差の上端値・下端値を算出する具体的な方法としては、例えば(1)予め硬化層から境界層に移行する距離に対応する交流励磁信号の周波数fm1および境界層から母層に移行する距離に対応する交流励磁信号の周波数fm2を定めておき(図2参照)、周波数fm1に対応する位相差を「位相差の上端値」とするとともに周波数fm2に対応する位相差を「位相差の下端値」とする方法、(2)検出信号の検出に用いられる交流励磁信号の周波数のうち、最も高い周波数から周波数fm1までに対応する位相差の平均値を「位相差の上端値」とするとともに周波数fm1から最も低い周波数までに対応する位相差の平均値を「位相差の下端値」とする方法等が挙げられるが、本発明に係る位相差の上端値・下端値の算出方法はこれに限定されるものではなく、他の方法で定めても良い。
上端値・下端値算出工程S1220が終了したら差分値比較工程S1230に移行する。
【0050】
差分値比較工程S1230は位相差φの上端値φUと下端値φLとの差分値Δφ(=φ−φ)を算出し、差分値Δφに基づいて測定対象物2の焼き入れ深さを算出する工程である。
差分値比較工程S1230において、制御部31は上端値φと下端値φとの差分値Δφを算出する。
制御部31は予め実験等により得られた差分値Δφと焼き入れ深さとの関係を示すデータを格納しており、制御部31は当該データと算出された差分値Δφとを比較することにより、測定対象物2の焼き入れ深さを算出する。
差分値比較工程S1230が終了したら、表面硬さ算出工程S1300に移行する。
【0051】
なお、本実施例では交流励磁信号の周波数を変更しつつ検出信号を検出する励磁・検出工程S1100が完全に終了してから焼き入れ深さ算出工程S1200に移行する構成としたが、本発明はこれに限定されず、或る周波数の交流励磁信号に対応する検出信号を検出し、次に別の周波数の交流励磁信号に対応する検出信号を検出している間に、当該検出された検出信号を用いて位相差φの算出等、演算の一部を行う(すなわち、励磁・検出工程における作業と焼き入れ深さ算出工程における作業とが時間的にオーバーラップする部分がある)構成としても良い。
【0052】
表面硬さ算出工程S1300は複数の異なる周波数の交流励磁信号に対応する検出信号の振幅値Yを算出し、測定対象物2の表面からの深さと振幅値Yとの関係を求め、振幅値Yの上端値Yと下端値Yとの差分値ΔY(=Y−Y)に基づいて測定対象物2の表面硬さを算出する工程である。
本実施例における表面硬さ算出工程S1300の具体的な動作手順は焼き入れ深さ算出工程S1200における位相差φを振幅値Yに置き換えればあとは略同じ構成であるため、説明を省略する。
【0053】
以下では、図6乃至図9を用いて焼き入れ深さ測定装置1による測定対象物2の焼き入れ深さの測定結果について説明する。
【0054】
焼き入れ深さ測定装置1による測定対象物2の焼き入れ深さの測定は、形状や直径がそれぞれ異なる複数の測定対象物2・2・・・を用意し、これらを順に励磁コイル11および検出コイル21に挿通した状態で励磁コイル11に交流励磁信号を印加することにより行われた。
【0055】
焼き入れ深さ測定装置1による測定対象物2の焼き入れ深さの測定において、用意された複数の測定対象物2・2・・・を、充填率(励磁コイル11および検出コイル21の直径に対する測定対象物2の直径)が比較的大きい計14個のものからなるグループ(図6および図7参照)と、充填率が比較的小さい計42個のものからなるグループ(図8および図9参照)の二つのグループに分け、それぞれ1〜14、1〜42のロット番号(Lot No.)を付した。
これらの測定対象物2・2・・・はそれぞれ形状や直径が異なっており、それぞれ異なる生産ライン(熱処理条件等)を経て製造されることから、これらの測定対象物2・2・・・の焼き入れ深さ測定装置1による測定時の温度もそれぞれ異なっている。
【0056】
焼き入れ深さ測定装置1による測定対象物2の焼き入れ深さの測定は、(1)本発明に係る焼き入れ深さの測定方法に従って焼き入れ深さを算出する方法(図7および図9中の黒四角参照)、および(2)従来方法(複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差φ(の絶対値)と、予め実験等により得られた位相差φ(の絶対値)と焼き入れ深さとの関係を示すデータとの比較により焼き入れ深さを算出する方法)(図6および図8中の黒丸参照)の二種類の方法により行われた。
また、焼き入れ深さ測定装置1による測定対象物2の焼き入れ深さの測定後、(3)当該測定に用いられた測定対象物2の測定箇所を切断し、当該切断面においてビッカース硬度測定を行う方法(切断法)により焼き入れ深さを求めた(図6乃至図9中の白丸参照)。
なお、測定対象物2の測定箇所は、本実施例の場合検出信号を検出する際に検出コイル21と重なっている部分を指す。
【0057】
図6は、測定対象物2の充填率が比較的高い場合において、従来方法による測定対象物2の焼き入れ深さの測定結果と、切断面のビッカース硬度測定による測定対象物2の焼き入れ深さの測定結果と、を比較したものである。
【0058】
図6に示す如く、従来の測定方法による測定対象物2の焼き入れ深さの測定結果(図6中の黒丸)と、ビッカース硬度測定による測定対象物2の焼き入れ深さの測定結果(図6中の白丸)と、の測定値の差を測定誤差(図6中の黒い棒グラフ)とし、当該測定誤差の最大値と最小値の差を2で割った値を従来の測定方法の測定精度とすると、当該測定精度は0.33mmであった。
【0059】
図7は、測定対象物2の充填率が比較的高い場合において、本発明に係る焼き入れ深さの測定方法による測定対象物2の焼き入れ深さの測定結果と、切断面のビッカース硬度測定による測定対象物2の焼き入れ深さの測定結果と、を比較したものである。
【0060】
図7に示す如く、本発明に係る焼き入れ深さの測定方法による測定対象物2の焼き入れ深さの測定結果(図7中の黒四角)と、ビッカース硬度測定による測定対象物2の焼き入れ深さの測定結果(図7中の白丸)と、の測定値の差を測定誤差(図7中の黒い棒グラフ)とし、当該測定誤差の最大値と最小値の差を2で割った値を本発明に係る焼き入れ深さの測定方法の測定精度とすると、当該測定精度は0.24mmであった。
【0061】
このように、測定対象物の充填率が比較的高い場合において、本発明に係る焼き入れ深さの測定方法は従来方法に比べてビッカース硬度測定による測定対象物の焼き入れ深さの測定結果に対する測定誤差が小さく、ひいては測定精度が良い。
【0062】
図8は、測定対象物2の充填率が比較的低い場合において、従来方法による測定対象物2の焼き入れ深さの測定結果と、切断面のビッカース硬度測定による測定対象物2の焼き入れ深さの測定結果と、を比較したものである。
【0063】
図8に示す如く、従来の測定方法による測定対象物2の焼き入れ深さの測定結果(図8中の黒丸)と、ビッカース硬度測定による測定対象物2の焼き入れ深さの測定結果(図8中の白丸)と、の測定値の差を測定誤差(図8中の黒い棒グラフ)とし、当該測定誤差の最大値と最小値の差を2で割った値を従来の測定方法の測定精度とすると、当該測定精度は0.57mmであった。
【0064】
図9は、測定対象物2の充填率が比較的低い場合において、本発明に係る焼き入れ深さの測定方法による測定対象物2の焼き入れ深さの測定結果と、切断面のビッカース硬度測定による測定対象物2の焼き入れ深さの測定結果と、を比較したものである。
【0065】
図9に示す如く、本発明に係る焼き入れ深さの測定方法による測定対象物2の焼き入れ深さの測定結果(図9中の黒四角)と、ビッカース硬度測定による測定対象物2の焼き入れ深さの測定結果(図9中の白丸)と、の測定値の差を測定誤差(図9中の黒い棒グラフ)とし、当該測定誤差の最大値と最小値の差を2で割った値を本発明に係る焼き入れ深さの測定方法の測定精度とすると、当該測定精度は0.32mmであった。
【0066】
このように、測定対象物の充填率が比較的低い場合においても、本発明に係る焼き入れ深さの測定方法は従来方法に比べてビッカース硬度測定による測定対象物の焼き入れ深さの測定結果に対する測定誤差が小さく、ひいては測定精度が良い。
【0067】
以上の如く、焼き入れ深さ測定装置1は、
複数の異なる周波数の交流励磁信号が印加されることにより測定対象物2に複数の異なる周波数に対応する浸透深さを有する誘導電流(渦電流)を発生させる励磁コイル11と、
測定対象物2に発生する誘導電流に起因する検出信号を検出する検出コイル21と、
複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差φを算出し、浸透深さに対応する測定対象物2の表面からの深さと位相差φとの関係を求め、位相差φの上端値φと下端値φとの差分値Δφ(=φ−φ)に基づいて測定対象物2の焼き入れ深さを算出する制御装置30と、
を具備するものである。
このように構成することにより、測定対象物2の温度が変動しても精度良く測定対象物2の焼き入れ深さを測定することが可能である。
【0068】
また、焼き入れ深さ測定装置1の制御装置30(制御部31)は、
複数の異なる周波数の交流励磁信号に対応する検出信号の振幅値Yを算出し、浸透深さに対応する測定対象物2の表面からの深さと振幅値Yとの関係を求め、振幅値Yの上端値Yと下端値Yとの差分値ΔY(=Y−Y)に基づいて(予め実験等により得られた差分値ΔYと表面硬さとの関係を示すデータと、算出された差分値ΔYと、を比較することにより)測定対象物2の表面硬さを算出するものである。
このように構成することにより、測定対象物2の焼き入れ深さの測定に加えて、測定対象物2の表面硬さを精度良く測定することが可能である。
【0069】
以上の如く、本発明に係る焼き入れ深さ測定方法の実施の一形態は、
励磁コイル11に複数の異なる周波数の交流励磁信号を印加して測定対象物2に複数の異なる周波数に対応する浸透深さを有する誘導電流(渦電流)を発生させるとともに、測定対象物2に発生する誘導電流に起因する検出信号を検出コイル21により検出する励磁・検出工程S1100と、
複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差φを算出し、浸透深さに対応する測定対象物2の表面からの深さと位相差φとの関係を求め、位相差φの上端値φと下端値φとの差分値Δφ(=φ−φ)に基づいて測定対象物2の焼き入れ深さを算出する焼き入れ深さ算出工程S1200と、
を具備するものである。
このように構成することにより、測定対象物2の温度が変動しても精度良く測定対象物2の焼き入れ深さを測定することが可能である。
【0070】
また、本発明に係る焼き入れ深さ測定方法の実施の一形態は、
複数の異なる周波数の交流励磁信号に対応する検出信号の振幅値Yを算出し、浸透深さに対応する測定対象物2の表面からの深さと振幅値Yとの関係を求め、振幅値Yの上端値Yと下端値Yとの差分値ΔY(=Y−Y)に基づいて測定対象物2の表面硬さを算出する表面硬さ算出工程S1300を具備するものである。
このように構成することにより、測定対象物2の焼き入れ深さの測定に加えて、測定対象物2の表面硬さを精度良く測定することが可能である。
なお、本実施例では表面硬さ算出工程S1300を焼き入れ深さ算出工程S1200の後に行う構成としたが、本発明はこれに限定されず、焼き入れ深さ算出工程の前に表面硬さ算出工程を行う構成としても良く、焼き入れ深さ算出工程と表面硬さ算出工程とを並行して行う構成としても良い。
【図面の簡単な説明】
【0071】
【図1】本発明に係る焼き入れ深さ測定装置の実施の一形態を示す図。
【図2】測定対象物の結晶組織、硬さ及び透磁率と表面からの距離との関係を示す図。
【図3】本発明に係る焼き入れ深さ測定装置の測定原理を示す図。
【図4】交流励磁信号と検出信号の関係を示す図。
【図5】本発明に係る焼き入れ深さ測定方法の実施の一形態を示すフロー図。
【図6】従来の測定方法及び切断法による焼き入れ深さの測定結果(充填率:高)を示す図。
【図7】本発明に係る測定方法及び切断法による焼き入れ深さの測定結果(充填率:高)を示す図。
【図8】従来の測定方法及び切断法による焼き入れ深さの測定結果(充填率:低)を示す図。
【図9】本発明に係る測定方法及び切断法による焼き入れ深さの測定結果(充填率:低)を示す図。
【符号の説明】
【0072】
1 焼き入れ深さ測定装置
2 測定対象物
11 励磁コイル
21 検出コイル
30 制御装置

【特許請求の範囲】
【請求項1】
複数の異なる周波数の交流励磁信号が印加されることにより測定対象物に前記複数の異なる周波数に対応する浸透深さを有する誘導電流を発生させる励磁コイルと、
前記測定対象物に発生する誘導電流に起因する検出信号を検出する検出コイルと、
前記複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差を算出し、前記浸透深さに対応する前記測定対象物の表面からの深さと前記位相差との関係を求め、前記位相差の上端値と下端値との差分値に基づいて前記測定対象物の焼き入れ深さを算出する制御装置と、
を具備する焼き入れ深さ測定装置。
【請求項2】
前記制御装置は、
前記複数の異なる周波数の交流励磁信号に対応する検出信号の振幅値を算出し、前記浸透深さに対応する前記測定対象物の表面からの深さと前記振幅値との関係を求め、前記振幅値の上端値と下端値との差分値に基づいて前記測定対象物の表面硬さを算出する請求項1に記載の焼き入れ深さ測定装置。
【請求項3】
励磁コイルに複数の異なる周波数の交流励磁信号を印加して測定対象物に前記複数の異なる周波数に対応する浸透深さを有する誘導電流を発生させるとともに、前記測定対象物に発生する誘導電流に起因する検出信号を検出コイルにより検出する励磁・検出工程と、
前記複数の異なる周波数の交流励磁信号とこれに対応する検出信号との位相差を算出し、前記浸透深さに対応する前記測定対象物の表面からの深さと前記位相差との関係を求め、前記位相差の上端値と下端値との差分値に基づいて前記測定対象物の焼き入れ深さを算出する焼き入れ深さ算出工程と、
を具備する焼き入れ深さ測定方法。
【請求項4】
前記複数の異なる周波数の交流励磁信号に対応する検出信号の振幅値を算出し、前記浸透深さに対応する前記測定対象物の表面からの深さと前記振幅値との関係を求め、前記振幅値の上端値と下端値との差分値に基づいて前記測定対象物の表面硬さを算出する表面硬さ算出工程を具備する請求項3に記載の焼き入れ深さ測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2008−170233(P2008−170233A)
【公開日】平成20年7月24日(2008.7.24)
【国際特許分類】
【出願番号】特願2007−2738(P2007−2738)
【出願日】平成19年1月10日(2007.1.10)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】